
High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES: Using the Slurm Scheduler on
Composable Resources

Michael Dickens
January 20, 2026

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Overview
● HPC Architecture
● Slurm SBATCH Parameters
● Single node jobs

○ single-core
○ multi-core

● Break
● Multi-node jobs

○ MPI jobs
○ TAMULauncher

● Monitoring job resource usage
○ at runtime
○ after job completion
○ job details and debugging

● Drona Workflow Engine

2

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES

● ACES is a Dell cluster with various accelerator types available
○ Intel Max GPUs (PVC)
○ Intel FPGAs (Field Programmable Gate Arrays)
○ NVIDIA H100 and A30 GPUs
○ NEC Vector Engines
○ NextSilicon co-processors
○ Graphcore IPUs (Intelligence Processing Units).

3

https://hprc.tamu.edu/kb/User-Guides/ACES

https://hprc.tamu.edu/kb/User-Guides/ACES

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Accessing the HPRC ACES Portal

HPRC webpage: hprc.tamu.edu

4

https://hprc.tamu.edu/

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Accessing ACES via the Portal (ACCESS)
Log-in using your ACCESS credentials.

Select the Identity
Provider appropriate for
your account.

5

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Shell Access via the Portal

6

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Hands-On Activity

1. Login to the ACES portal.

2. Connect to the shell command line.

3. What message do you see when connecting to
the shell command line?

4. On which login node did you land?

7

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Slurm

The Slurm Workload Manager is a job resource
manager that matches available HPC resources
with the resources requested in your job script.

ACES HPRC documentation

Slurm documentation

8

https://slurm.schedmd.com/documentation.html

https://hprc.tamu.edu/kb/User-Guides/ACES/Batch

https://slurm.schedmd.com/documentation.html
https://hprc.tamu.edu/kb/User-Guides/ACES/Batch

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Nodes and Cores
● Node

○ One computer unit of an HPC cluster each containing memory and one or more CPUs.
There are generally two classifications of HPC nodes available to users; login and
compute.

■ login node
● This is where users first login to stage their job scripts and do file and directory

manipulations with text file editors (vi, gedit, emacs, portal) and Unix
commands.

■ compute node
● These are often referred to as just nodes since jobs are only scheduled on the

compute nodes.
● Some compute nodes contain GPUs or other accelerators.
● One or more compute nodes can be used for a job, based on how you

configure your job script and whether the software supports running on
multiple nodes.

● Core
○ There are 96 cores (CPUs) on the ACES 512GB memory compute nodes (488GB available).
○ You can use one or all 96 cores in a job script.

■ Check to see that the software you use in your job script supports multi-core usage.

9

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

HPC Diagram

 login nodes are for:
● file manipulation and job script preparation
● software installation and testing
● short tasks (< 60 minutes and max 8 cores)

○ also be aware of amount of memory utilized

 compute nodes are for:
● computational jobs which can use up to 96

cores and/or up to 488GB memory per ACES
compute node.

● all jobs running > 60 minutes

10

Slurm

compute node 1

compute node 2

compute node 3

compute node 4

compute node 5

compute node 6

 Shared File Storage for /home and /scratch

login node 2

login node 1

Submit Job Job Queue

many more compute nodes

login node 3

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Slurm SBATCH Parameters

11

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Slurm Job Script Example
#!/bin/bash
#SBATCH --job-name=spades # keep job name short with no spaces
#SBATCH --time=1-00:00:00 # request 1 day; Format: days-hours:minutes:seconds
#SBATCH --nodes=1 # request 1 node
#SBATCH --ntasks-per-node=1 # request 1 task (command) per node
#SBATCH --cpus-per-task=1 # request 1 cpu (core, thread) per task
#SBATCH --mem=5G # request 5GB total memory per node
#SBATCH --output=stdout.%x.%j # save stdout to a file with job name and JobID appended to file name
#SBATCH --error=stderr.%x.%j # save stdout to a file with job name and JobID appended to file name

unload any modules to start with a clean environment
module purge
load software modules
module load GCC/11.3.0 SPAdes/3.15.5
run commands
spades.py -1 s22_R1.fastq.gz -2 s22_R2.fastq.gz -o s22_out --threads 1

● Always include the first line exactly as it is; no trailing spaces or comments.
● Slurm job parameters begin with #SBATCH and you can add comments afterwards as above.
● Name the job script whatever you like, but be consistent to make it easier to search for job scripts.

○ my_job_script.job
○ my_job_script.sbatch
○ run_program_project.sh
○ job_program_project.slurm

12

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● --nodes
○ number of compute nodes to use for the job

■ --nodes=1 # request 1 node
○ used for multi-node jobs

■ --nodes=10
● --ntasks

○ a task can be considered a command such as blastn, bwa, script.py, etc.
○ --ntasks=1 # total tasks across all nodes where each task is scheduled a max of 1 cpu
● when using --ntasks > 1 without --nodes=1, the job might be scheduled on multiple compute nodes so

provide either --ntasks-per-node or --nodes when using --ntasks
● --ntasks-per-node

○ use together with --cpus-per-task
○ --ntasks-per-node=1

● --cpus-per-task
○ number of CPUs (cores) for each task (command)
○ --cpus-per-task=96

 spades.py --threads 96

one task 96 cpus

13

Commonly Used Slurm SBATCH Parameters

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Commonly Used Slurm SBATCH Parameters
● --time

○ max runtime for job (required); format: days-hours:minutes:seconds (days- is optional)
○ --time=24:00:00 # set max runtime 24 hours (same as --time=1-00:00:00)
○ --time=7-00:00:00 # set max runtime 7 days

● --mem
○ total memory for each node (required)
○ --mem=488G # request 488GB total memory (max available for 512gb nodes)

● --job-name
○ set the job name; keep it short and concise without spaces (optional but highly recommended)
○ --job-name=myjob

● --output
○ save all stdout to a specified file (optional but highly recommended for debugging)
○ --output=stdout.%x.%j # saves stdout to a file named stdout.jobname.JobID

● --error
○ save all stderr to a specified file (optional but highly recommended for debugging)
○ --error=stderr.%x.%j # saves stderr to a file named stderr.jobname.JobID
○ use just --output to save stdout and stderr to the same output file: --output=output.%x.%j.log

● --partition
○ specify a partition to use (optional, use as needed)
○ partition is automatically assigned to cpu so you don't need --partition unless you want to use accelerators.

■ need to specify --partition parameter to use gpu, bittware, memverge, nextsilicon, pvc

14

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Commonly Used Optional Slurm Parameters
● --gres

○ used for requesting 1 or more GPUs; use GPU type in lowercase
○ use gpuavail command to see number of GPUs per compute node
○ --gres=gpu:h100:1 # request 1 H100 GPU; use replace :1 with :2 for two GPUs, etc
○ --partition=gpu # also include this line when requesting GPUs

● --account
○ specify which account to use; use myproject to see your accounts
○ --account=ACCOUNTNUMBER
○ default account from myproject output is used if not specified

● --mail-user
○ --mail-user=myemail@myuniversity.edu

● --mail-type
○ send email per job event: BEGIN, END, FAIL, ALL
○ --mail-type=ALL

● --dependency
○ schedule a job to start after a previous job successfully completes
○ --dependency=afterok:JobID

■ get the JobID of the previous job with squeue --me

15

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Slurm Partitions and Queues
● Partition

○ compute nodes are assigned to a partition
○ partitions have certain attributes like an accelerator(s) attached to the

compute nodes, or short or long runtime limits.
○ some partitions are automatically assigned while others require the

Slurm parameter: #SBATCH --partition
■ run the sinfo command to see partitions

● Queue
○ Ordered list of all scheduled jobs of all users both in the PENDING

and RUNNING states
○ The queue includes all jobs from all the partitions
○ The cpu partition is auto-assigned, but you must request gpu and

other partitions.

16

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Submitting Slurm Jobs
● A job script is a text file of Unix commands with #SBATCH parameters.
● #SBATCH parameters provide resource configuration request values.

○ time, memory, nodes, cpus, output files, ...
● Jobs can be submitted using a job script or directly on the command line.

○ start time depends on available resources
● Submit the job using sbatch command with the job script name.

○ Your job script provides a record of commands used for an analysis.
○ sbatch job_script.sh

● Submit command on the command line by specifying all necessary parameters.
○ sbatch -t 01:00:00 -n 1 -J myjob --mem 4G -o stdout.%j commands.sh

● You can start an interactive job on the command line using the srun command instead of
sbatch. Your srun job ends when you exit the terminal.

○ Do not to use more than the requested memory and CPUs when your srun job starts.
○ srun --time=04:00:00 --mem=4G --ntasks=1 --cpus-per-task=1 --pty bash

slurm.schedmd.com/sbatch.html

17

sbatch my_job_script.job

sbatch -t 01:00:00 -n 1 -J myjob --mem 5G -o stdout.%j commands.sh

srun --time=04:00:00 --mem=5G --ntasks=1 --cpus-per-task=1 --pty bash

http://slurm.schedmd.com/sbatch.html

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

How Busy is the ACES Cluster?

18

Check on the command line of a cluster using the sinfo command or view the main HPRC webpage

PARTITION AVAIL TIMELIMIT JOB_SIZE NODES(A/I/O/T) CPUS(A/I/O/T)
cpu* up 7-00:00:00 1-64 30/11/13/54 2255/1681/1248/5184
gpu up 2-00:00:00 1-8 5/0/2/7 216/264/192/672
gpu_debug up 2:00:00 1 0/1/2/3 0/96/192/288
pvc up 2-00:00:00 1-30 5/14/13/32 216/1608/1248/3072
bittware up 2-00:00:00 1 0/0/2/2 0/0/192/192
memverge up 2-00:00:00 1 0/7/3/10 0/672/288/960
nextsilicon up 2-00:00:00 1 0/2/0/2 0/192/0/192
staff up 2-00:00:00 1-110 40/35/33/108 2687/4513/3168/10368

 A/I/O/T
A = Active (in use by running jobs)
I = Idle (available for jobs)
O = Offline (unavailable for jobs)
T = Total

sinfo

not all partitions are available to users

hprc.tamu.edu

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Checking GPU Availability on ACES

19

 [username@aces ~]$ gpuavail

 CONFIGURATION
 NODE NODE
 TYPE COUNT

 gpu:pvc:4 17
 gpu:pvc:2 11
 gpu:pvc:8 4
 gpu:h100:4 3
 gpu:a30:2 2
 gpu:h100:8 2
 gpu:h100:2 1

 AVAILABILITY
 NODE GPU GPU GPU CPU MEM
 NAME TYPE COUNT AVAIL AVAIL AVAIL

 ac010 pvc 4 4 96 488
 ac040 h100 2 2 96 488
 ac046 h100 2 1 48 244
 ac055 h100 2 2 96 488
 ac064 a30 4 4 96 488

● Use the gpuavail command
line (shell) utility to see the
current GPU configuration
and availability.

● The GPU configuration can
change since ACES is a
composable resource cluster.

https://hprc.tamu.edu/kb/Software/useful-tools/gpuavail

https://hprc.tamu.edu/kb/Software/useful-tools/gpuavail

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Checking non-GPU node Availability on ACES

20

 [username@aces ~]$ cpuavail

 CONFIGURATION
 NODE NODE
 TYPE COUNT

 CPU-only 54
 GPU 40
 other 13

 AVAILABILITY
 NODE CPUs GB MEM
 NAME AVAIL AVAIL

 ac029 6 24
 ac031 15 40
 ac052 9 16
 ac054 6 216
 ac077 1 43
 ac090 3 232

Use the cpuavail command line (shell) utility to see the current non-GPU configuration and availability.

https://hprc.tamu.edu/kb/Software/useful-tools/cpuavail

https://hprc.tamu.edu/kb/Software/useful-tools/cpuavail

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 21

The maxconfig command will show the recommended Slurm parameters for the
maximum resources (cores, memory, time) per node for a specified accelerator or
partition (default partition: cpu).

[username@aces ~]$ maxconfig

 ACES partitions: cpu gpu gpu_debug pvc bittware nextsilicon nec
 ACES GPUs in gpu partition: a30:2 h100:2 h100:4 h100:8 pvc:2 pvc:4 pvc:8 ve:8

 Showing max parameters (cores, mem, time) for partition cpu

#!/bin/bash
#SBATCH --job-name=my_job
#SBATCH --time=7-00:00:00
#SBATCH --nodes=1 # max 64 nodes for partition cpu
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

Viewing Maximum Resources

https://hprc.tamu.edu/kb/Software/useful-tools/maxconfig

https://hprc.tamu.edu/kb/Software/useful-tools/maxconfig

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 22

 Run the maxconfig -h command to answer the following questions.

1. What maxconfig option(s) can you use to see max resources for the H100 GPUs nodes?

a. What is the maximum number of H100 GPUs available per node?

b. What is the maximum runtime for an H100 GPU job?

2. What maxconfig option(s) can you use to see max resources for just one H100 GPU?

a. Why doesn't this option show all available memory and cores on the compute node?

3. What maxconfig option(s) can you use to see max resources for the bittware partition?

Hands-on Activity:
Exploring the maxconfig Command

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=7-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=7-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=96
#SBATCH --cpus-per-task=1
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

23

Example 1 (maxconfig) Example 2 (for mpi jobs)

Requesting all Cores and Memory on One Compute Node

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=7-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=7-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

Example 3

Example 4
#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=7-00:00:00
#SBATCH --ntasks=96
#SBATCH --ntasks_per_node=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

Example 5

use --nodes if not
using
--ntasks_per_node

use
--ntasks_per_node
if not using
--nodes

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Single-Node Jobs

24

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Single vs Multi-Core Jobs
● When to use single-core jobs

○ The software being used only supports commands utilizing a
single-core

● When to use multi-core jobs
○ If the software supports multiple cores (--threads, --cpus, …), then

configure the job script and software command options to utilize all
CPUs on a compute node to get the job done faster, unless the
software specifically recommends a limited number of cores.
■ ACES 512GB memory compute nodes

● 96 CPUs (cores) per compute node
● 488GB of available memory per compute node

○ Can group multiple single-core commands into a "multi-core" job
using TAMULauncher on one or multiple nodes

25

https://hprc.tamu.edu/kb/Software/tamulauncher

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● --ntasks=1
○ NumNodes=1 NumCPUs=1 NumTasks=1 CPUs/Task=1

● --ntasks=96 # without --nodes=1 job could result using multiple nodes
○ NumNodes=1 NumCPUs=96 NumTasks=96 CPUs/Task=1

 or
○ NumNodes=96 NumCPUs=1 NumTasks=96 CPUs/Task=1

#!/bin/bash
#SBATCH --job-name=myjob # job name
#SBATCH --time=1:00:00 # set the wall clock limit to 1 hour
#SBATCH --ntasks=1 # request 1 task (command) per node
#SBATCH --mem=5G # request 3GB of memory per node
#SBATCH --output=stdout.%x.%j # create a file for stdout
#SBATCH --error=stderr.%x.%j # create a file for stderr

Slurm Parameter: --ntasks

If you use --ntasks=2 or more, and do not use --nodes or --ntasks-per-node, the
job could land on more than one node and your software may not support running
on multiple nodes.

26

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 27

Incorrect Resource Request Parameters
for a Single-node Job

#!/bin/bash
#SBATCH --job-name=myjob
#SBATCH --time=1-00:00:00
#SBATCH --ntasks=96
#SBATCH --mem=24G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

● This job could be scheduled across multiple nodes since --nodes
or --ntasks_per_node were not used with --ntasks=96

● Request all the memory if requesting all the cores.
● Request all the cores if requesting all the memory.

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Requesting one GPU on ACES
Compute Nodes that Have Two or More GPUs

28

● Request less than the available CPU and memory resources for a compute node that has
2 or more installed GPUs when you need just 1 GPU so that someone else can use the
other GPUs, unless you need more CPUs and memory resources for your job.

○ maxconfig will scale the cores and memory based on the fraction of GPUs selected.
● If you request 1 GPU with 96 cores and 488GB memory, any other GPUs on the compute

node are unavailable for other jobs.

 CONFIGURATION
 NODE NODE
 TYPE COUNT

 gpu:pvc:4 19
 gpu:h100:2 15
 gpu:a30:4 1
 gpu:pvc:2 1

 AVAILABILITY
NODE GPU GPU GPU CPU MEM
NAME TYPE COUNT AVAIL AVAIL AVAIL
–-------------------------------------
ac046 h100 2 1 48 244
ac055 h100 2 2 96 488
ac064 a30 4 4 96 488

gpuavail maxconfig -g a30 -G 1

#!/bin/bash
#SBATCH --job-name=my_job
#SBATCH --time=2-00:00:00
#SBATCH --partition=gpu
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=24
#SBATCH --mem=122G
#SBATCH --gres=gpu:a30:1
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Select GPU type on ACES Cluster
#!/bin/bash
#SBATCH --job-name=my_gpu_job
#SBATCH --time=1-00:00:00 # request 1 day of time for the job
#SBATCH --ntasks-per-node=1 # request 1 task (command)
#SBATCH --cpus-per-task=48 # request ½ of the available cores since using 1 of 2 GPUs
#SBATCH --mem=244G # request ½ of the available memory since using 1 of 2 GPUs
#SBATCH --gres=gpu:h100:1 # request 1 x H100 GPU; replace :1 with :2 for two GPUs
#SBATCH --partition=gpu # use partition=gpu when selecting GPUs
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

unload modules to start with a clean environment; then load required modules
module purge
module load CUDA/11.7.0
run your gpu command
my_gpu_command

● There are two types of GPUs on ACES compute nodes. Select the type and quantity with --gres
○ H100 --gres=gpu:h100:N (N can be 1 to max) 30 x H100 on ACES
○ A30 --gres=gpu:a30:N (N can be 1 to max) 4 x A30 on ACES

29

The max value for N can change since ACES is a composable cluster

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Single-Node Multi-Core Job Scripts

#!/bin/bash
#SBATCH --job-name=spades
#SBATCH --time=1-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=48
#SBATCH --mem=244G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge
module load GCC/11.2.0 SPAdes/3.15.3
spades.py -1 s1_R1 -2 s1_R2 -o outdir --threads 48

#!/bin/bash
#SBATCH --job-name=spades
#SBATCH --time=1-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge
module load GCC/11.2.0 SPAdes/3.15.3
spades.py -1 s1_R1 -2 s1_R2 -o outdir --threads 96

specify
number of
threads to
match
SBATCH
parameters

It is best to request all cores if requesting all the memory because no other
jobs will be scheduled when all the memory is requested and vice versa.

30

Example 1 Example 2

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Slurm Environment Variables

#!/bin/bash
#SBATCH --job-name=spades
#SBATCH --time=1-00:00:00
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge
module load GCC/11.3.0 SPAdes/3.15.5
spades.py -1 s1_R1 -2 s1_R2 -o outdir_s1 --threads $SLURM_CPUS_PER_TASK
spades.py -1 s2_R1 -2 s2_R2 -o outdir_s2 --threads $SLURM_CPUS_PER_TASK

$SLURM_CPUS_PER_TASK
variable used in
commands to match
SBATCH parameters

You can use the environment variable $SLURM_CPUS_PER_TASK to
capture the value in the #SBATCH --cpus-per-task parameter so
that you only need to adjust the cpus in one place.

31

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Multi-Node Jobs

32

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● --nodes=2 --ntasks-per-node=96
○ NumNodes=2 NumCPUs=192 NumTasks=192 CPUs/Task=1 mem=488G per node

● --nodes=2 --ntasks=192
○ NumNodes=2 NumCPUs=192 NumTasks=192 CPUs/Task=1 mem=488G per node

● --nodes=1 --ntasks=96
○ NumNodes=1 NumCPUs=96 NumTasks=96 CPUs/Task=1 mem=488G per node

● --nodes=2 --ntasks=96
○ will allocate 48 cores on one node and 48 cores on a second node

● when --nodes is > 1, make sure the software you are using supports multi-node processing

#!/bin/bash
#SBATCH --job-name=myjob # job name
#SBATCH --time=1:00:00 # set the wall clock limit to 1 hour
#SBATCH --nodes=2 # request 2 nodes
#SBATCH --ntasks-per-node=1 # request 1 task (command) per node
#SBATCH --cpus-per-task=96 # request 96 cores per task
#SBATCH --mem=488G # request 488GB of memory per node
#SBATCH --output=stdout.%x.%j # create a file for stdout
#SBATCH --error=stderr.%x.%j # create a file for stderr

Slurm Parameters: --nodes --ntasks-per-node

It may be easier to scale jobs by using --nodes with --ntasks-per-node instead of with --ntasks.
If you use --nodes with --ntasks, you need to calculate total CPUs for all nodes as the --ntasks value.

33

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

MPI Multi-Node Multi-Core Job Script
#!/bin/bash
#SBATCH --job-name=my_mpi_job
#SBATCH --time=1-00:00:00
#SBATCH --nodes=10
#SBATCH --ntasks-per-node=96
#SBATCH --cpus-per-task=1
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge

mpirun my_mpi_script -i input_file

34

960 Total CPUs requested

96 CPUs per node

488 Total requested GB memory per node

mpirun reads the Slurm
parameters to know how
to distribute the job
across compute nodes

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

TAMULauncher
● https://hprc.tamu.edu/kb/Software/tamulauncher
● Use when you have hundreds or thousands of commands to run, each

utilizing a single-core or a few cores. Do not create hundreds of job scripts.
○ tamulauncher keeps track of which commands completed successfully

■ To see the list of completed commands:
● tamulauncher --status commands_file.txt

■ If time runs out, tamulauncher can be restarted, and it will know
which was the last successfully completed command.

○ Submit tamulauncher as a batch job within your job script.
○ You can run tamulauncher interactively on login node-limited to 8 cores.
○ You can check the --status on the command line from the working

directory.
● Run a single command of your thousands to make sure the command is

correct and to get an estimate of resource usage (CPUs, memory, time).
● Request all cores and memory on the compute node(s) and configure your

commands to use all available cores.
35

tamulauncher --status commands_file.txt

https://hprc.tamu.edu/kb/Software/tamulauncher

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

#!/bin/bash
#SBATCH --job-name=spades
#SBATCH --time=1-00:00:00
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=96
#SBATCH --cpus-per-task=1
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge
module load GCC/11.3.0 SPAdes/3.15.5

tamulauncher commands.txt

spades.py -1 s1_R1.fastq.gz -2 s1_R2.fastq.gz -o s1_out --threads 1
spades.py -1 s2_R1.fastq.gz -2 s2_R2.fastq.gz -o s2_out --threads 1
spades.py -1 s3_R1.fastq.gz -2 s3_R2.fastq.gz -o s3_out --threads 1
spades.py -1 s4_R1.fastq.gz -2 s4_R2.fastq.gz -o s4_out --threads 1
spades.py -1 s5_R1.fastq.gz -2 s5_R2.fastq.gz -o s5_out --threads 1
spades.py -1 s6_R1.fastq.gz -2 s6_R2.fastq.gz -o s6_out --threads 1
spades.py -1 s7_R1.fastq.gz -2 s7_R2.fastq.gz -o s7_out --threads 1
spades.py -1 s8_R1.fastq.gz -2 s8_R2.fastq.gz -o s8_out --threads 1
spades.py -1 s9_R1.fastq.gz -2 s9_R2.fastq.gz -o s9_out --threads 1
spades.py -1 s10_R1.fastq.gz -2 s10_R2.fastq.gz -o s10_out --threads 1
spades.py -1 s11_R1.fastq.gz -2 s11_R2.fastq.gz -o s11_out --threads 1
spades.py -1 s12_R1.fastq.gz -2 s12_R2.fastq.gz -o s12_out --threads 1
spades.py -1 s13_R1.fastq.gz -2 s13_R2.fastq.gz -o s13_out --threads 1
spades.py -1 s14_R1.fastq.gz -2 s14_R2.fastq.gz -o s14_out --threads 1
spades.py -1 s15_R1.fastq.gz -2 s15_R2.fastq.gz -o s15_out --threads 1
spades.py -1 s16_R1.fastq.gz -2 s16_R2.fastq.gz -o s16_out --threads 1
spades.py -1 s17_R1.fastq.gz -2 s17_R2.fastq.gz -o s17_out --threads 1
spades.py -1 s18_R1.fastq.gz -2 s18_R2.fastq.gz -o s18_out --threads 1
spades.py -1 s19_R1.fastq.gz -2 s19_R2.fastq.gz -o s19_out --threads 1
spades.py -1 s20_R1.fastq.gz -2 s20_R2.fastq.gz -o s20_out --threads 1
spades.py -1 s21_R1.fastq.gz -2 s21_R2.fastq.gz -o s21_out --threads 1
spades.py -1 s22_R1.fastq.gz -2 s22_R2.fastq.gz -o s22_out --threads 1

TAMULauncher Multi-Node Single-Core Commands
commands.txt (500 lines for example) run_spades_tamulauncher.sh

● Run 96 single-core commands per node; useful when each command requires <= 5GB memory.
● Create a commands file (named whatever you want) to go with the the job script.
● The commands.txt file will contain one command per line.
● Load the software module in the job script not the commands file.

run 96 spades.py
commands per
node with each
command using 1
core.
Requesting all 96
cores on ACES
reserves entire
node for your job

36

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

#!/bin/bash
#SBATCH --job-name=spades
#SBATCH --time=1-00:00:00
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=24
#SBATCH --cpus-per-task=4
#SBATCH --mem=488G
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge
module load GCC/11.3.0 SPAdes/3.15.5

tamulauncher commands.txt

run 24 spades.py
commands per
node with each
command using
4 cores.
Requesting all 96
cores on ACES
reserves entire
node for your job

TAMULauncher Multi-Node Multi-Core Commands

spades.py -1 s1_R1.fastq.gz -2 s1_R2.fastq.gz -o s1_out --threads 4
spades.py -1 s2_R1.fastq.gz -2 s2_R2.fastq.gz -o s2_out --threads 4
spades.py -1 s3_R1.fastq.gz -2 s3_R2.fastq.gz -o s3_out --threads 4
spades.py -1 s4_R1.fastq.gz -2 s4_R2.fastq.gz -o s4_out --threads 4
spades.py -1 s5_R1.fastq.gz -2 s5_R2.fastq.gz -o s5_out --threads 4
spades.py -1 s6_R1.fastq.gz -2 s6_R2.fastq.gz -o s6_out --threads 4
spades.py -1 s7_R1.fastq.gz -2 s7_R2.fastq.gz -o s7_out --threads 4
spades.py -1 s8_R1.fastq.gz -2 s8_R2.fastq.gz -o s8_out --threads 4
spades.py -1 s9_R1.fastq.gz -2 s9_R2.fastq.gz -o s9_out --threads 4
spades.py -1 s10_R1.fastq.gz -2 s10_R2.fastq.gz -o s10_out --threads 4
spades.py -1 s11_R1.fastq.gz -2 s11_R2.fastq.gz -o s11_out --threads 4
spades.py -1 s12_R1.fastq.gz -2 s12_R2.fastq.gz -o s12_out --threads 4
spades.py -1 s13_R1.fastq.gz -2 s13_R2.fastq.gz -o s13_out --threads 4
spades.py -1 s14_R1.fastq.gz -2 s14_R2.fastq.gz -o s14_out --threads 4
spades.py -1 s15_R1.fastq.gz -2 s15_R2.fastq.gz -o s15_out --threads 4
spades.py -1 s16_R1.fastq.gz -2 s16_R2.fastq.gz -o s16_out --threads 4
spades.py -1 s17_R1.fastq.gz -2 s17_R2.fastq.gz -o s17_out --threads 4
spades.py -1 s18_R1.fastq.gz -2 s18_R2.fastq.gz -o s18_out --threads 4
spades.py -1 s19_R1.fastq.gz -2 s19_R2.fastq.gz -o s19_out --threads 4
spades.py -1 s20_R1.fastq.gz -2 s20_R2.fastq.gz -o s20_out --threads 4
spades.py -1 s21_R1.fastq.gz -2 s21_R2.fastq.gz -o s21_out --threads 4
spades.py -1 s22_R1.fastq.gz -2 s22_R2.fastq.gz -o s22_out --threads 4

● useful when each command requires more than 5GB but less than all available memory
● use OMP_NUM_THREADS if needed when running fewer commands than requested cores

○ add on the line before the tamulauncher command
○ export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

37

commands.txt (500 lines for example) run_spades_tamulauncher.sh

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Making a TAMULauncher Commands File
Part 1

file=seqs/s1_R1.fastq.gz
echo $file
basename $file
sample=$(basename $file)
echo $sample
echo ${sample/_R1.fastq.gz}
echo ${sample/R1/R2}

create variable named file

show contents of variable

strip off path of variable

create variable named sample

show contents of variable

strip off _R1.fastq.gz

substitute R1 text with R2

Input files are two files per sample and named: s1_R1.fastq.gz s1_R2.fastq.gz
Run these commands to create the example files:

Run the following commands to get familiar with useful shell commands for creating and manipulating variables:

cd $SCRATCH
mkdir seqs && touch seqs/s{1..40}_R{1,2}.fastq.gz

38

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Input files are two files per sample and named: s1_R1.fastq.gz s1_R2.fastq.gz

● Run the following commands to loop through all R1 files in the reads directory
and create the commands.txt.

● Use just the R1 files because we only need to capture the sample names once.

for file in seqs/*_R1.*gz
do
read1=$file
read2=${read1/_R1./_R2.}
sample=$(basename ${read1/_R1.fastq.gz})
echo spades.py -1 $read1 -2 $read2 -o ${sample}_out --threads 1
done > commands.txt

Making a TAMULauncher Commands File
Part 2

Match as much
as possible to
avoid matching
sample names

39

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Other Useful Unix Commands
${variable#*SubStr} # will drop beginning of variable value up to first occurrence of 'SubStr'
${variable##*SubStr} # will drop beginning of variable value up to last occurrence of 'SubStr'
${variable%SubStr*} # will drop part of variable value from last occurrence of 'SubStr' to the end
${variable%%SubStr*} # will drop part of variable value from first occurrence of 'SubStr' to the end

These are useful if the part of the filename for each sample that needs to be removed is not the same.
 s1_S1_R1.fastq.gz s2_S2_R1.fastq.gz s3_S3_R1.fastq.gz
Make a new directory and create a new set of files for this exercise.

 Unix Command Output _
file=seqs2/s1_S1_R1.fastq.gz
echo $file seqs2/s1_S1_R1.fastq.gz
echo ${file%_S*} seqs2/s1
basename ${file%_S*} s1
sample=$(basename ${file%_S*})
echo $sample s1

mkdir seqs2
for i in {1..10}; do touch seqs2/s${i}_S${i}_R{1,2}.fastq.gz; done

want to remove this part
from each file name

40

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Useful Slurm Runtime Environment Variables
● $TMPDIR

○ This is a temporary local disk space (1.4TB) created at runtime and is deleted when
the job completes.

○ The directory is mounted on the compute node, and files created in $TMPDIR do not
count against your file and disk quotas.

○ samtools sort -T $TMPDIR/sort
● $SLURM_CPUS_PER_TASK

○ returns how many CPU cores were allocated on this node
○ can be used in your command to match requested #SBATCH cpus

■ #SBATCH --cpus-per-task=96
■ spades.py --threads $SLURM_CPUS_PER_TASK

● $SLURM_ARRAY_TASK_ID
○ can be used to select or run one of many commands when using a job array

● $SLURM_JOB_NAME
○ populated by the --job-name parameter
○ #SBATCH --job-name=spades_job

● $SLURM_JOB_NODELIST
○ can be used to get the list of nodes assigned at runtime

● $SLURM_JOBID
○ can be used to capture JobID at runtime

41

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Useful Unix Environment Variables
● Type env to see all Unix environment variables for your login session.
● $USER

○ This will be automatically populated with your username.
■ echo $USER

● $SCRATCH
○ You can use this to change to your /scratch/user/username directory.

■ cd $SCRATCH
● $OMP_NUM_THREADS

○ used when software uses OpenMP for multithreading; default is 1
○ value is not updated based on Slurm parameters selected
○ set it manually by exporting the variable with the new value

■ export OMP_NUM_THREADS=96
● $PWD

○ contains the full path of the current working directory
42

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● Enter 1, then continue through the menus to
find the template that contains fastqc.

○ or use the search to find fastqc
● The final step will save a template job script

file to your current working directory.

Finding NGS job template scripts using
GCATemplates

 gcatemplates

 mkdir $SCRATCH/slurm_class

 cd $SCRATCH/slurm_class

For practice, we will copy a template file.

Genomic Computational Analysis Templates

43

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Monitoring Job
Resource Usage

44

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Service Unit Calculations
For the ACES compute nodes, your account is charged Service Units (SUs) based on one of
the following values whichever is greater.

○ 1 SU per CPU per hour or 1 SU per 5GB of requested memory per hour

* Each Accelerator is an additional SU rate charge per hour.

 https://hprc.tamu.edu/kb/User-Guides/AMS/#aces

Hours Number of
Cores

Total Memory
per node (GB)

Accelerator*
 count, type

Accelerator
SUs charged

Total SUs
charged

1 1 5 0 0 1

1 1 6 0 0 2

1 1 488 0 0 96

1 96 488 0 0 96

1 48 244 gpu:a30:1 64 112

45

https://hprc.tamu.edu/kb/User-Guides/AMS/#aces

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Estimate SUs for a Job Script

[username@aces ~]$ maxconfig -f run_fastqc_0.11.9_aces.sh

 Showing SU calculation for file run_fastqc_0.11.9_aces.sh

 CPU-billing * hours * nodes = SUs
 2 * 0.5 * 1 = 1

#!/bin/bash
#SBATCH --job-name=fastqc # job name
#SBATCH --time=00:30:00 # max job run time dd-hh:mm:ss
#SBATCH --ntasks-per-node=1 # tasks (commands) per compute node
#SBATCH --cpus-per-task=2 # CPUs (threads) per command
#SBATCH --mem=8G # total memory per node
#SBATCH --output=stdout.%x.%j # save stdout to file
#SBATCH --error=stderr.%x.%j # save stderr to file

46

Show estimated SUs for a job script before submitting it to the Slurm scheduler

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Submit a Slurm Job

● Submit your job script.
○ sbatch run_bbmap_38.96_bbnorm_

● See status and JobID of all your submitted jobs.
○ squeue -u $USER

● Can cancel (kill) a PENDING or RUNNING job using JOBID
○ scancel JOBID

 JOBID NAME USER PARTITION NODES CPUS STATE TIME TIME_LEFT START_TIME REASON NODELIST
 632776 fastqc username cpu 1 2 RUNNING 1:48 28:12 2025-01-17T11:58 None ac014

47

sbatch run_fastqc_0.11.9_aces.sh

squeue --me

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 48

● See CPU and memory usage of all your running jobs
○ pestat -u $USER
○ stats for pestat are updated every 3 minutes
○ can use with watch command to run pestat default interval is every 2 seconds; can set

the watch interval rate to 60 seconds but pestat updates are still every 3 minutes
■ watch -i 60 pestat -u $USER

Hostname Partition Node Num_CPU CPUload Memsize Freemem Joblist
 State Use/Tot (MB) (MB) JobId User ...
c447 long* alloc 48 48 46.56* 368640 359957 731601 netid
c466 long* alloc 48 48 46.78* 368640 360747 731601 netid
c499 long* alloc 48 48 45.65* 368640 361448 731601 netid
c514 long* alloc 48 48 47.10* 368640 361524 731601 netid
c521 long* alloc 48 48 48.01* 368640 361277 731601 netid

Low CPU load utilization highlighted in Red
Good CPU load utilization highlighted in Purple
Ideal CPU load utilization displayed in White
(Freemem should also be noted)

Monitor a Running Job

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

See Completed Job Efficiency Stats
seff JobID

will show CPU and Memory efficiency based on selected resources

[username@aces ~]$ seff 1376159

Job ID: 1376159
Cluster: aces
User/Group: u.cd40965/u.cd40965
State: COMPLETED (exit code 0)
Nodes: 1
Cores per node: 2
CPU Utilized: 00:08:15
CPU Efficiency: 99.00% of 00:08:20 core-walltime
Job Wall-clock time: 00:04:10
Memory Utilized: 1.01 GB
Memory Efficiency: 12.62% of 8.00 GB (8.00 GB/node)

CPU Efficiency close to
100% indicates the job's
efficient use of CPU
resources.

max memory utilized
was 12.62% of
requested memory

49

seff JobID

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Show Your Job Details using myjob

50

● The myjob command can be used to see detailed information related to
your job
○ Status (PENDING, RUNNING, COMPLETED, FAILED, …)
○ Node List
○ Submit time, Start time, End time, Total runtime
○ CPU Efficiency
○ Memory Utilized, Memory Efficiency

● will advise you if your job is PENDING due to a scheduled maintenance.
● will advise you if your job FAILED due to CRLF characters in the job script

and provide a link to the HPRC documentation on how to resolve this issue.
● will advise you if your job FAILED due to file or disk quota being reached.

○ will show you the directory in your $HOME directory that has the most
files when $HOME file quota is reached.

https://hprc.tamu.edu/kb/Software/useful-tools/myjob

https://hprc.tamu.edu/kb/Software/useful-tools/myjob

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Show Your Job Details using myjob

51

[username@aces ~]$ myjob 1376159

 Job ID: 1376159
 Cluster: aces
 User/Group: userid/userid
 Account: 124567891011
 SUs charged: 0.14
 State: COMPLETED (exit code 0)
 Partition: cpu
 Node Count: 1
 NodeList: ac005
 Cores per node: 2
 CPU Utilized: 00:08:15
 CPU Efficiency: 99.00% of 00:08:20 core-walltime
 Submit time: 2026-01-08 09:33:51
 Start time: 2026-01-08 09:34:04
 End time: 2026-01-08 09:38:14
 Job Wall-clock time: 00:04:10
 Memory Utilized: 1.01 GB
 Memory Efficiency: 12.62% of 10.00 GB (8.00 GB/node)
 Job Name: fastqc
 Job Submit Directory: /scratch/user/userid/fastqc
 Submit Line: sbatch run_fastqc_0.11.9_aces.sh

use the -h flag to view usage
 myjob -h

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Monitor GPU and CPU usage for a Job
You can use the jobstats command to monitor resource usage and create graphs.

#!/bin/bash
#SBATCH --job-name=my_job
#SBATCH --time=2-00:00:00
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --gres=gpu:h100:2
#SBATCH --partition=gpu
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

module purge
module load CUDA/11.7.0

run jobstats in the background (&) to monitor resource usage
jobstats &

my_gpu_command

run jobstats to create graphs of resource usage for this job

jobstats

● Notice that GPU: 1 did not
have any processes in this job.

● Adjust your software code to
use 2 GPUs or configure a
similar job to use just 1 GPU:
--gres=gpu:h100:1

52

https://hprc.tamu.edu/kb/Software/useful-tools/jobstats

80

80

https://hprc.tamu.edu/kb/Software/useful-tools/jobstats

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Dashboard

53

Request help or
new software

Request higher
file/disk quotas

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● The job was not scheduled resulting in the following error:
○

● Make sure the job CPU/GPU count and memory specification exist.

Debugging Job Submission

54

sbatch: error: CPU count per node can not be satisfied
sbatch: error: Batch job submission failed: Requested node configuration is not available

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● If your job is in the PENDING state for a long time:
○ check to see if the cluster is busy using sinfo or see hprc.tamu.edu
○ use gpuavail to see if the gpu partition is busy
○ check to see if your job walltime overlaps with a scheduled

maintenance
■ s

PENDING Jobs

55

maintenance

 The scheduled 11 hour ACES maintenance will start in:

 2 days 6 hours 41 minutes

 Scheduled jobs will not start if they overlap with this maintenance window.

A 3-day job submitted at the time of the above message will remain
queued and will not start until after the maintenance is complete.

gpuavail
sinfo

https://hprc.tamu.edu

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

● Look in the stderr output file for an out of memory error message.
○ could occur in only one index of a job array

○ Increase the amount of SBATCH memory in your job script, and resubmit the job.
● If you see an 'Out of disk space' or 'No space left on device' error,

○ check your file and disk quotas using the showquota command.
■ showquota

○ reduce the number of files you have generated.
■ delete any nonessential or temporary files.
■ use $TMPDIR in your command if software supports a temporary directory.
■ create and download a .tar.gz package of completed projects and delete the

original directory to free up disk space.
○ request a temporary increase in file and/or disk quota for your project.

Debugging COMPLETED Jobs

slurmstepd: error: Exceeded job memory limit at some point.

56

showquota

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

hprc.tamu.edu
 The portal allows users to do the following:

● Browse files on the the ACES filesystem.
● Access the ACES Unix command line.

○ runs on login node; limit your processes to 8 cores
○ Compose and launch job scripts from the terminal.

● Launch interactive GUI apps with the VNC app.
● Monitor and stop running jobs and interactive sessions.
● Request software installation and quota increases.
● Create and launch jobs using a GUI composer.

57

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 58

Portal: Drona Composer GUI

Select customizable
environments. Form fields

are updated based on
Environment selected.

Specify modules for the
job environment

Complete the desired
Slurm job parameters

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 59

Portal: Drona Composer GUI

Add your commands to the
template.txt editable script

and click "Submit Job"

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 60

Portal: Drona Job History

Check pending, running
and completed jobs

within a given timeframe

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

61

https://hprc.tamu.edu

HPRC Helpdesk:
help@hprc.tamu.edu
Phone: 979-845-0219

Take our short course survey!

https://u.tamu.edu/hprc_shortcourse_survey

Help us help you. Please include details in your request for support, such as, Cluster (ACES,
FASTER, Grace, Launch), NetID (UserID), Job information (JobID(s), Location of your jobfile,
input/output files, Application, Module(s) loaded, Error messages, etc), and Steps you have
taken, so we can reproduce the problem.

https://hprc.tamu.edu/
https://u.tamu.edu/hprc_shortcourse_survey

