Texas A&M HPRC Short Course Series Quantum Mechanics Simulations of Spectra

James Mao

High Performance Research Computing DIVISION OF RESEARCH

Outline

1. Grace Basic

- File uploading/downloading
- VNC: GaussView

2. Theory and practice

- IR/Raman
- UV/Vis
- NMR
- 3. Future suggestion

Grace Portal

- Grace: <u>https://hprc.tamu.edu/</u>
- OnDemand
 - Files
 - Clusters:
 \$ cd \$SCRATCH
 \$ cp -r /scratch/training/QM_spectra/ ./
 - Interactive Apps -> VNC

TAMU HPRC OnDemand (Grace) Apps - Files - Jobs - Clusters - Interactive Apps - Chatbot - Dashboard - Utilities -

Grace Portal

OnDemand

- Interactive Apps -> VNC
- VNC: CPU only

\	N I	$\boldsymbol{\sim}$
v	IN	
v		\sim

1

1

7

Account

Email

directory.

This field is optional.

Number of cores (max 48)

Total GB Memory (max 360)

This app will launch a vnc job on Grace for remote visualization.

Node type	
CPU only	~
select a GPU node for software that supports GPU usage.	
Number of hours (max 168)	

email address must be provided if you want to receive an email when the session starts.

Launch

* The VNC session data for this session can be accessed under the data root

□ I would like to receive an email when the session starts

Grace Portal

- VNC: GaussView
 - \$ ml Gaussian/g16_C01
 - \$ gv &

💷 🍖	GaussView 6.1.	1		
File Edit Tools B	uilder View Calculat	e <u>R</u> esults	Windows	Help
* 💠 😂 🔒 불		1 🖧 🕶 🗙	901	»]] 🗛 »
] 🛀 🔘 >R 💈 🙀	Carbon Tetrahedral	30	- =	»] 🞝 »
📙 🎯 🛵 🔻 (Default	Scheme)	• »]	() »] 🧔	」» ∐ 🗗 »
Builder Fragm	ent: Carbon Tet	rahedral		
) 			_	
	G1:M1:V1 - Ne	w		. E ×
0 atoms, 0 elec	ctrons, neutral, 🔃	Build Se	lect Place	ment

- Frequency calculations are valid only at stationary points on the potential energy surface: must be performed on optimized structures.
- Must use the same method and basis set as produced the optimized geometry.
- Only fundamental transitions are predicted, so no overtones and combination bands are included.

- Freq calculations: Energy derivative with respect to ...
 - Frequencies (Force constants): nuclear position & nuclear position
 - Infrared intensities: nuclear position & electric field
 - Raman intensities: nuclear position
 & electric field & electric field

	1
	PIU
Frequencies	 666.4883
Red. masses	 12.8774
Frc consts	 3.3703
IR Inten	 32.7950
	1
	PIU
Frequencies	 666.4883
Red. masses	 12.8774
Frc consts	 3.3703
IR Inten	 32.7950
Raman Activ	 0.0000
Depolar (P)	 0.0000

Depolar (U) -- 0.0000

- Example: CO₂
- Submit Job
 - Modify g16.sub ("task=")
 - \$ sbatch g16.sub
- GaussView: File -> Open...

File	Edit Tools Builder	View Cal	culate
袍	New Molecule Group	Ctrl+N	D
+	Add to Molecule Group	Ctrl+A	
B	Open	Ctrl+0	
	Becent Files		
	Related Files	1	
	<u>R</u> efresh		
	Save	Ctrl+S	
	Save Temp Files		
	<u>C</u> onvert Files		
	Directory		
-	Print	Ctrl+P	
M	Save Image		
陆	Save Movie		2
8≣	Preferences		
1	Exit		

• Results -> Vibrations ...

total P	1		G1:M1:V1 - Vibratio	ns 🔄 🖃
Ha	armonic			
	Mode # /	Frequency	Infrared	
1	1	666.49	32.7950	
2	2	666.49	32.7950	
3	3	1375.54	0.0000	
4	4	2435.93	618.7222	
An	imate Vibratio	n:) Start Anima	ation	Save Movie •
An Re Di	imate Vibratio peats: Endle splacement Ar	n: Start Anima Start Anima Frames nplitude: nent Vectors	ation s per Cycle: 48 Scale:	Save Movie Frame Delay (msec): 20 x 1.00
An Re Di	imate Vibratio peats: Endle splacement Ar how Displacer how Displacer	Start Anima Start Anima ess Frames nplitude: nent Vectors erivative Unit Vec	s per Cycle: 48 Scale:	Save Movie Frame Delay (msec): 20 X 1.00 Save Structure
An Re Di S	imate Vibratio speats: Endle splacement Ar show Displacer how Dipole De fanual Displac	Start Anima Start Anima SS Trames nplitude: nent Vectors erivative Unit Vec ement:	sper Cycle: 48 Scale: ctor	Save Movie Frame Delay (msec): 20 X 1.00 X 1.00 Save Structure

- Plots -> Properties...
- "Invert Axis"
- Half-Width: 50cm⁻¹

Plots •	
✓ IK Spectrum	
🛓 Print	Ctrl+P
Save Data	Ctrl+S
Save Picture	Ctrl+E
Properties	
Mixture Spectra.	a+
Close	
0 - J	E

IR Sp	pectrum
Plot Title Appearan	nce Numbers
X-Axis	
Units: cm-1 •	Invert Axis
Origin: 0	cm ⁻¹ Current
Fixed Bange:	4000
,	1.000
Y-Axis	
Units: M-1 cm-1 💌 l	🗖 Invert Axis
Origin: 0	M ⁻¹ cm ⁻¹ Current
Fixed Range: 0	2500
R Peak Half-Width at Half	Height: 4 cm ⁻¹
Hide Plot on Initial Show	wing
That The off find a short	
	Help

CO₂ Spectra

- IR: 669, 2324cm⁻¹, 2360cm⁻¹
- Raman: 1278cm⁻¹, 1385cm⁻¹
- Combination: 3600cm⁻¹, 3728cm⁻¹

Freq

- The vibrational frequencies produced by ab initio programs are often multiplied by a scale factor to better match experimental vibrational frequencies
 - calculations are approximate
 - potential energy surface is not harmonic
 - https://comp.chem.umn.edu/freqscale/index.html
- Isotope
 - Deuterium
- 0 1

H(iso=2) -3.37789 0.83512 -0.00000 H(iso=2) -2.66989 0.83512 -0.00000

UV/Vis Spectra

- ZINDO: semi-empirical
- TD-DFT: time-dependent DFT
- CIS: configuration interaction singles: same as TD-HF with TDA approximation
- EOM-CC (equation-of-motion coupled cluster): EOM-CCS, EOM-CC2, EOM-CCSD, EOM-CC3, EOM-CCSDT, ...

UV/Vis Spectra

- Keyword: td
- Peak Position: Excitation energies
- Peak Height: Oscillator strength

- Position:
- Height: Oscillator strength

Excited State 1: Singlet-A 5.8003 eV 213.75 nm f=0.0012 <S**2>=0.000 16 -> 17 0.70462 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. Excited State 2: Singlet-A 7.7413 eV 160.16 nm f=0.0512 <S**2>=0.000 15 -> 17 0.22800 16 -> 18 0.66133

- Example: acetic acid
- File-> Open...: acetic_acid_TDDFT.out

• Adjust Half-Width at Half Height

- Vertical transition energies: the difference between excited state and ground state energies computed on a given geometry.
- Adiabatic energies: the difference of total energies of the ground state and excited state at their respective minima.
- 0-0 energies: adiabatic energies corrected for zero-point vibrational energies.

- Chemical shielding tensor
- Shielding tensor depends on gauge origin if basis set is not complete.
- Chemical (NMR) shifts

$$\delta = \frac{\sigma_{\rm iso, ref} - \sigma_{\rm iso}}{1 - \sigma_{\rm iso, ref}} \approx \sigma_{\rm iso, ref} - \sigma_{\rm iso}$$

TMS: Tetramethylsilane

- 1. Geometry optimization of TMS.
- 2. Geometry optimization of your molecule.
- 3. NMR calculations for both TMS and your molecule using same method/basis set.
- 4. Calculate chemical shifts.

6	H Isotr	copic =	31.7906	Ani	sotropy =	9.3036↓
XX=	32.5880	YX=	-1.9680	ZX=	4.5529↓	
XY=	-1.6772	YY=	30.1957	ZY=	-1.6772↓	
XZ=	4.5529	YZ=	-1.9680	ZZ =	32.5880↓	

- NMR shifts are quite dependent on the conformer you choose. A conformer search and a Boltzmann weighting might be necessary!
- Solvent effect.

- Example: Acetaldehyde (2.2ppm, 9.8ppm)
- File-> Open...: Acetaldehyde_nmr.out

Future QM Course: Suggestion

- Other Software: ORCA, GAMESS, Psi4, ADF, ...
- Analysis:
 - Atomic charges
 - Energy decomposition analysis
 - AIM
 - NBO
 - ONIOM

Email: xjamesmao@tamu.edu Office: Blocker 218B Phone: 979.458.8416

