
Jian Tao
jtao@tamu.edu

Fall 2024 HPRC Short Course

04/22/2025

ACES: Rust
Introduction to Rust Programming Language

Introduction to Rust

Part I. Getting Started with
ACES (~15 mins)

Part II. Rust - What and
Why? (~15 mins)

Part IV. Advanced Topics in
Rust (~30 mins)

Part III. Basics of Rust
(~60 mins)

01

02

03

04

Part I. Get Started
with ACES

HPRC Short Course: Introduction to Composable Computing ACES and FASTER

https://hprc.tamu.edu/training/intro_composable.html

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Portal

Open OnDemand (OOD) is an
advanced web-based graphical
interface framework for HPC users

HPRC Portal YouTube tutorials

ACES Portal portal-aces.hprc.tamu.edu
is the web-based user interface for the ACES cluster

https://www.youtube.com/c/TexasAMHPRC/search?query=portal
http://portal-aces.hprc.tamu.edu

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Shell Access via the Portal

Get a shell terminal
right in your browser

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

HPC for AI

- Built on Disaggregated Hardware

- Composable Hardware Platform

- Composable GPU/Accelerator

- Composable Memory - Optane

- Modern Storage: NVMe-oF

- Open Platform

Common HPC

- Built on Converged Hardware

- Static Hardware Design

- Fixed GPU/Accelerator

- Fixed Memory

- Storage: SATA and SAS

- Vendor Lock

Next Generation HPC/AI Platform Supports Composable Accelerators and Memory

6

Composable HPC Architectures for AI

< PAST

FUTURE >

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Composability

GPU
Server pool

Accelerator
pool (GPUs,
FPGA, etc.)

Storage
and
memory
pool (SSDs)

Traditional Server
Configuration

Composable Resources

Liqid
Fabric

Composable Server Configuration
(can be recomposed)GPU

GPU

GPU

SSD

SSD

GPU

GPU GPU

GPU SSD

SSD

SSDGPU

GPU GPU

GPU

FPGA

FPGA

SSDFPGA

SSDGPU GPU

GPU

GPU GPU GPU

GPU GPU

GPU GPU GPU GPU

GPU GPU GPU GPU GPU GPU

SSD

https://hprc.tamu.edu/kb/User-Guides/ACES

https://hprc.tamu.edu/kb/User-Guides/ACES

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

HPRC’s
Composable Clusters

● FASTER – First large-scale
composable CPU/GPU system

● ACES – Composability for
mixed-resource workflows

Focusing on ACES today

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

NSF ACES
Accelerating Computing for Emerging Sciences

Our Mission:
● NSF ACSS CI test-bed
● Offer an accelerator testbed for

numerical simulations and AI/ML
workloads

● Provide consulting, technical
guidance, and training to researchers

● Collaborate on computational and
data-enabled research.

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES In Action

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Configuration

Composable
PCIe Gen5

NDR InfiniBandLustre System
2.54 PB usable

Management
Nodes (4)

Data
Transfer

Nodes (2)

Login
Nodes (3)

SPR
Nodes (12)

Composable
PCIe Gen4

SPR
Nodes (13)

Composable
PCIe Gen4

SPR
Nodes (12)

Composable
PCIe Gen4

SPR
Nodes (13)

SPR
Nodes (15)

Composable
PCIe Gen5

SPR
Nodes (15)

Composable
PCIe Gen5

SPR
Nodes (15)

Composable
PCIe Gen5

SPR
Nodes (15)

Ice Lake Nodes (15)
Development

Hosts

Intel PVCIntel PVC Intel PVCIntel PVC NVIDIA H100

NVIDIA H100

Intel PVC Intel PVC Intel PVC

Optane SSD Optane SSD Optane SSD

Intel FPGA BittWare FPGANextSilicon

NVIDIA A30

Composable
PCIe Gen4

NEC VE
Node

Graphcore
Bow

POD16

Graphcore
Colossus

POD16

BittWare FPGA

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES System Description
Component Quantity Description

Sapphire Rapids Nodes:
Compute Nodes
Data Transfer Nodes
Login & Management
Nodes

110 nodes
2 nodes
5 nodes

96 cores per node, dual Intel Xeon 8468 processors
512 GB DDR5 memory
1.6 TB NVMe storage
Compute: NVIDIA Mellanox NDR 200 Gbps InfiniBand adapter
DTNs & Login & Management nodes: 100 Gbps Ethernet adapter

Ice Lake
Login & Management Nodes 2 nodes

64 cores per node, dual Intel Xeon 8352Y processors
512 GB DDR4 memory
1.6 TB NVMe storage
NVIDIA Mellanox NDR 200 Gbps InfiniBand adapter

PCIe Gen4 Composable
Infrastructure 50 SPR nodes Dynamically reconfigurable infrastructure that allows up to 20 PCIe cards

(GPU, FPGA, etc.) per compute node

PCIe Gen5 Composable
Infrastructure 60 SPR nodes Dynamically reconfigurable infrastructure that allows up to 16 H100s or 14

PVCs per compute node

NVIDIA InfiniBand (IB)
Interconnect 110 nodes Two leaf and two spine switches in a 2:1 fat tree topology

DDN Lustre Storage 2.5 PB usable HDR IB connected flash and disk storage for Lustre file systems

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Accelerators
Component Quantity Description

Graphcore IPU 32 16 Colossus GC200 IPUs, 16 Bow IPUs. Each IPU group hosted with a CPU server
as a POD16 on a 100 GbE RoCE fabric

FPGAs:
 Intel PAC D5005
 BittWare IA-840F

 2
 3

Accelerator with Intel Stratix 10 GX FPGA and 32 GB DDR4
Accelerator with Agilex AGF027 FPGA and 64 GB of DDR4

NextSilicon Coprocessor 2 Reconfigurable accelerator with an optimizer continuously evaluating
application behavior.

NEC Vector Engine 8 Vector computing card (8 cores and HBM2 memory)

Intel Optane SSD 48 18 TB of SSDs addressable as memory w/ MemVerge Memory Machine.
NVIDIA GPUs:
 H100
 A30

 30
 4

For HPC, DL Training, AI Inference
For AI Inference and Mainstream Compute

Intel PVC GPUs 120 Intel GPUs for HPC, DL Training, AI Inference

Refer to our Knowledge Base for more:
https://hprc.tamu.edu/kb/User-Guides/ACES/Hardware/

https://hprc.tamu.edu/kb/User-Guides/ACES/Hardware/

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

System Software Stack
Function Component Version

Cluster Management xCAT 2.16.4

Primary OS Red Hat Enterprise Linux 8.9

HPC Scheduler Slurm 22.05.11

InfiniBand Subnet Manager UFM 6.12

OFED Mellanox OFED 23.10-2.1.3

Storage Client Lustre 2.12.9_ddn38

Software Management Lmod 8.7

Software Build Framework EasyBuild 4.9.2

Web Portal Software Open OnDemand 3.0

Data Movement Software Globus Connect Server 5.4

Job Reporting Software Open XDMoD 10.5

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Accelerator Access Summary
Component Access node or partition

BittWare IA-840F FPGA Slurm --partition=bittware

Intel PAC D5005 FPGA Slurm --partition=d5005

Intel GPU Max 1100 (PVC) Slurm --partition=pvc

Intel Optane SSD Slurm --partition=memverge

NextSilicon Coprocessor Slurm --partition=nextsilicon

NVIDIA A30 GPUs Slurm --partition=gpu

NVIDIA H100 GPUs Slurm --partition=gpu

Graphcore Bow IPUs Interactive ssh poplar2

Graphcore Colossus IPUs Interactive ssh poplar1

NEC Vector Engine Interactive ssh dss

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Job Scripts on ACES: Slurm
#!/bin/bash
#NECESSARY JOB SPECIFICATIONS
#SBATCH --job-name=my_job
#SBATCH --time=2-00:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G
#SBATCH --partition=gpu
#SBATCH --gres=gpu:h100:2
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

load required module(s)
module purge
module load GCC/13.1.0

./my_program.py

These parameters describe the
resources needed for your program
to the job scheduler (Slurm)

Script to execute
(In this case, set up environment and
launch an executable)

Most of the ACES accelerators will
be specified with either a partition
or gres argument

Using Rust Module on ACES

Step 1. Find the module to be loaded
$ module spider rust
...
 Description:
 Rust is a systems programming language that runs
blazingly fast, prevents segfaults, and guarantees thread
safety.

 Versions:
 ...
 Rust/1.78.0
 Rust/1.81.0
 Rust/1.82.0
...

$ module spider Rust/1.82.0
...
You will need to load all module(s) on any one of the lines
below before the "Rust/1.82.0" module is available to load.

 GCCcore/13.3.0
...

Step 2. Load the module
$ module load GCCcore/13.3.0 Rust/1.82.0

Step 3. Test Rust Compiler
$ rustc --version
rustc 1.82.0-nightly (f6e511eec 2024-10-15) (built
from a source tarball)

Part II.
Rust - What
and Why?

fn main() {
 greet();
 let result = add(5, 10);
 println!("The sum of 5 and 10 is: {}", result);
 let word = String::from("hello");
 let length = calculate_length(&word);
 println!("The length of '{}' is {}.", word, length);
}

fn greet() {
 println!("Hello, World!");
}

fn add(a: i32, b: i32) -> i32 {
 a + b
}
fn calculate_length(s: &String) -> usize {
 s.len()
}

main function
the entrance of a
rust program

Rust functions
handling various
tasks

Rust Code Example: A First Look

Rust is a general-purpose programming language emphasizing performance, type
safety, and concurrency.

▪ Created by Graydon Hoare as a personal project while working at Mozilla
Research in 2006

▪ Officially sponsored by Mozilla in 2009

▪ First stable release in May 2015

▪ Latest stable release v1.86.0 as of Apr 10, 2025

▪ https://rust-lang.org

▪ "A language empowering everyone to build reliable and efficient software."

https://www.rust-lang.org/

Major features of Rust:
● Safe: memory and thread safety guaranteed at compile time
● Fast: designed for high performance
● General: supporting different programming patterns
● Memory control: Efficient memory management through

ownership system without garbage collection overhead
● Concurrent: Built-in support for safe concurrent programming

with race condition prevention
● Productive: Developer-friendly environment with helpful error

messages, type inference, and robust tooling

Mostly importantly, for many of developers, Rust is the language of
choice for security-focused development.

"Pretty much like C/C++ with
some strict rules to help
compilation time error
checks." --an anonymous
Rust user on the first
impression of Rust.

● DHS/CISA Report (2023): The Case for

Memory Safe Roadmaps - Why Both C-Suite

Executives and Technical Experts Need to

Take Memory Safe Coding Seriously

● Whitehouse Report (2024): Fact Sheet: ONCD

Report Calls for Adoption of Memory Safe

Programming Languages and Addressing the

Hard Research Problem of Software

Measurability

● DARPA TRACTOR Program (2024):
Eliminating Memory Safety Vulnerabilities
Once and For All - DARPA initiates a new
program to automate the translation of the
world’s highly vulnerable legacy C code to the
inherently safer Rust programming language

https://www.darpa.mil/program/translating-all-c-to-rust
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.cisa.gov/sites/default/files/2023-12/The-Case-for-Memory-Safe-Roadmaps-508c.pdf
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/memory-safety-fact-sheet/
https://www.darpa.mil/news-events/2024-07-31a
https://www.darpa.mil/news-events/2024-07-31a
https://www.darpa.mil/news-events/2024-07-31a
https://www.darpa.mil/news-events/2024-07-31a
https://www.darpa.mil/news-events/2024-07-31a

Rust Python C++
Memory
Management No garbage collector Automatic garbage

collection
Manual memory
management

Concurrency Concurrency with
ownership rules

Limited by Global Interpreter
Lock (GIL) Manual control over threads

Error Handling Explicit error handling Uses exceptions for error
handling

Exception-based error
handling

Performance Comparable to C++
Slower due to dynamic
typing and interpreted
nature.

Highly optimized
performance

Standard Library Minimalistic Comprehensive standard
library

Extensive STL with a wide
range of utilities.

Metaprogramming Trait-based generics Supports dynamic typing but
lacks static template

Template metaprogramming
with complex syntax

Type System Strong, static typing Dynamic typing at runtime Strong, static typing

Safety Memory-safe by design Less emphasis on safety Prone to memory safety
issues

Learning Curve Steeper learning curve Gentler learning curve Moderate to steep learning
curve

Rust v.s. Python & C/C++

VsCode

● VsCode has Rust
plugins that supports
the development of
Rust.

Visual Studio Code

https://code.visualstudio.com/

Rust IDE
● RustRover is an

Integrated
Development
Environment (IDE) for
Rust by JetBrains.

RustRover: Rust IDE by JetBrains

https://www.jetbrains.com/rust/

Rust
Playground

● An online platform to write,
run, and share short Rust
programs.

● Ideal for trying out Rust
code quickly without
needing to install anything.

Rust Playground

https://play.rust-lang.org/

Part III. Basics of
Rust

https://nostarch.com/rust-programming-language-2nd-edition

Basic Data Types

The basic types of Rust include int, float, bool, and char.
1. Integer Types: Used to represent whole numbers.

● Signed: i8, i16, i32, i64, i128, isize (size depends on the architecture)
● Unsigned: u8, u16, u32, u64, u128, usize (size depends on the architecture)

2. Floating-Point Types: Used for decimal numbers.
● f32 (32-bit floating point)
● f64 (64-bit floating point, default)

3. Boolean Type: Represents a truth value.
● bool (can be either true or false)

4. Character Type: Represents a single Unicode scalar value.
● char (4 bytes, supports characters like 'a', '∞', etc.)

Compound Data Types

Compound types group multiple values into one type.

● Enum: encapsulate multiple values and different types

of data within their variants

● Tuples: Can store multiple values of different types.

Example: (i32, f64, bool) stores an integer, a float, and

a boolean.

● Arrays: Fixed-size collections of elements of the same

type. Example: [i32; 5] is an array of five 32-bit integers.

Compound Data Types - Enum

● Enums in Rust allow one to define a type that can take on a

limited set of variants, making it easier to model state.

enum Direction {
 North,
 South,
 East,
 West,
}

Custom Data Types - I

● In Rust,
structures (or
structs) are
custom data
types that allow
you to group
together related
data under one
name.

struct Point {
 x: i32,
 y: i32,
}

let p1 = Point { x: 10, y: 20 };

println!("Point x: {}, y: {}", p1.x,
p1.y);

Custom Data Types - II

● struct in Rust is Similar to
class in C++ or Python,
but without methods for
inheritance. More like
struct in C.

● A fundamental part of
Rust's type system for
modeling more complex
data.

struct Point {
 x: i32,
 y: i32,
}

let mut p2 = Point { x: 5, y: 10 };
p2.x = 15; // Now x is 15

Custom Data Types - Method Syntax

● To implement
methods for the Point
struct in Rust, one
can implement
functions within an
impl block.

struct Point {
 x: i32,
 y: i32,
}

impl Point {
 pub fn move_by(&mut self, dx: i32, dy: i32)
{
 self.x += dx;
 self.y += dy;
 }
}
fn main() {
 let mut p2 = Point { x: 5, y: 10 };
 p2.move_by(3, 4);
 println!("Point x: {}, y: {}", p2.x, p2.y);
}

Naming Rules for Variables - I

● Variable names must begin with a letter or underscore.

let age = 25;
let _temp = 30;

● Names can include any combinations of letters,
numbers, underscores, and exclamation symbol. Some
unicode characters could be used as well.

Naming Rules for Variables - II

● There is no explicitly defined maximum length for
variable names.

● Rust is case sensitive. The variable name A is different
from the variable name a.

● Variable names should be descriptive.

● Avoid leading double underscores.

Variable - Mutability

 All Rust variables are immutable by default. Use mut to make a
variable mutable.

let age = 35;
age = 36;
...
error[E0384]: cannot assign twice to immutable variable `age`
 --> src/main.rs:3:5
 |
2 | let age = 35;
 | --- first assignment to `age`
3 | age = 36;
 | ^^^^^^^^ cannot assign twice to immutable variable
 |
help: consider making this binding mutable
 |
2 | let mut age = 35;
 | +++
...

Variable - Mutability

let mut age = 35;
age = 36;

● Immutability promotes safer and more predictable code.

● Immutable data can be safely shared across threads without

needing locks, improving performance in concurrent

programs.

Variable - Type Inference

● Rust automatically infers types, but you can also specify them
explicitly.

let mut age: i32 = 35;
age = 40.5;

error[E0308]: mismatched types
 --> src/main.rs:4:11
 |
2 | let mut age: i32 = 46;
 | --- expected due to this type
3 | println!("{age}");
4 | age = 234.6;
 | ^^^^^ expected `i32`, found floating-point number

Variable - Shadow

● Shadowing allows you to declare a new variable with the same
name as a previous variable. The new variable shadows the
previous one, making the earlier variable inaccessible.

fn main() {

 let age = 35;

 println!("age = {}", age);

 let age = age + 1; // Shadows the previous 'age'

 println!("age = {}", age);

 let age = "Shadowed as a string"; // Shadows again with a different type

 println!("age = {}", age);

}

Primitive Data Structure

● Array: Fixed-size collection of elements of the same type.

let arr = [1, 2, 3, 4, 5]; // Array of size 5

● Slice: Dynamically sized view into a contiguous sequence (e.g., part
of an array).

let slice = &arr[1..3]; // Slice of the array from index 1 to 2

Built-in Data Structure in std:: collections

Category Data Structure Description

Sequences Vec Growable array (dynamic vector).

Sequences VecDeque Double-ended queue (deque).

Sequences LinkedList Doubly linked list.

Maps HashMap Unordered key-value pairs with fast lookup.

Maps BTreeMap Ordered key-value pairs (sorted by keys).

Sets HashSet Unordered collection of unique values.

Sets BTreeSet Ordered collection of unique values (sorted).

Miscellaneous BinaryHeap Priority queue implemented with a binary heap.

 Comments in Rust

Single-line comments:

// This is a comment
let x = 5; // This is also a comment

Multi-line comments:
/*
This is a multi-line comment.
It spans multiple lines.
*/
let y = 10; // This is also a comment

Use comments to explain your code.

 Semicolons

Semicolon Usage:
● End of Statements
● Suppressing Expression Results

let x = 5; // Every statement ends with ;

println!("x = {}", x); // Every statement ends with ;

{

 x + 1 // No semicolon, so this value is returned

}

+ Addition
- Subtraction/Negative
* multiplication
/ division
% mod

Arithmetic Operators

Arithmetic Expressions Samples

fn main() {
 let sum = 5 + 3;
 let difference = 10 - 4;
 let product = 6 * 7;
 let quotient = 20.0 / 3.0;

 println!("Sum: {}", sum);
 println!("Difference: {}", difference);
 println!("Product: {}", product);
 println!("Quotient: {:.2}", quotient);
}

== equal to
!= not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Relational Operators

* Rust allows overloading these operators for custom types by
implementing traits from the std::cmp module:
● PartialEq for == and !=
● PartialOrd for <, >, <=, and >=

Boolean and Bitwise Operators

&& Logical and
|| Logical or
! Logical not
^ Bitwise XOR (Exclusive OR)
| Bitwise OR
! Negate
& Bitwise And
>> Right shift
<< Left shift

NaN and Inf

● NaN is not equal to any value, including itself.

○ Operations involving NaN generally result in

NaN.

○ To check if a value is NaN, you can use the

.is_nan() method

● Inf is infinity of type Float64.

○ Inf is equal to itself and greater than

everything else except NaN.

○ -Inf is equal to itself and less then everything

else except NaN.

let x = f64::NAN;

println!("{}", x.is_nan());

let y = f64::INFINITY;
let z = f64::NEG_INFINITY;

println!("{}",
y.is_infinite());

Mathematical Constants
Constant Description Example

std::f64::consts::PI π (Pi) let pi = std::f64::consts::PI;

std::f64::consts::E Euler's number (e) let e = std::f64::consts::E;

std::f64::consts::SQRT_2 Square root of 2 let sqrt2 = std::f64::consts::SQRT_2;

std::f64::consts::FRAC_1_PI 1/π let frac_1_pi = std::f64::consts::FRAC_1_PI;

std::f64::consts::FRAC_2_PI 2/π let frac_2_pi = std::f64::consts::FRAC_2_PI;

std::f64::consts::FRAC_PI_2 π/2 let frac_pi_2 = std::f64::consts::FRAC_PI_2;

std::f64::consts::FRAC_PI_3 π/3 let frac_pi_3 = std::f64::consts::FRAC_PI_3;

std::f64::consts::FRAC_PI_4 π/4 let frac_pi_4 = std::f64::consts::FRAC_PI_4;

std::f64::consts::LN_2 Natural log of 2 let ln_2 = std::f64::consts::LN_2;

std::f64::consts::LN_10 Natural log of 10 let ln_10 = std::f64::consts::LN_10;

std::f64::consts::LOG2_E Log base 2 of e let log2_e = std::f64::consts::LOG2_E;

std::f64::consts::LOG10_E Log base 10 of e let log10_e = std::f64::consts::LOG10_E;

Built-in Math Libraries
Category Functions

Basic Arithmetic +, -, *, /, %

Powers and Roots .powi(n), .powf(f), .sqrt(), .cbrt()

Exponential and
Logarithmic

.exp(), .exp2(), .ln(), .log10(), .log2(), .ln_1p()

Trigonometric .sin(), .cos(), .tan()

Inverse Trigonometric .asin(), .acos(), .atan(), .atan2(y)

Hyperbolic Functions .sinh(), .cosh(), .tanh()

Inverse Hyperbolic .asinh(), .acosh(), .atanh()

Rounding Functions .ceil(), .floor(), .round(), .trunc(), .fract()

Miscellaneous Functions .abs(), .signum(), .recip(), .hypot(y), .clamp(min, max)

Expressions & Statements

fn main() {
 // The literal `5` is an expression
 let x = 5;
 // `x + 2` is an expression
 let y = x + 2;
 // Function call `double(y)` is an
expression
 let z = double(y);
 println!("x: {}, y: {}, z: {}", x, y, z);
}

// `n * 2` is an expression
fn double(n: i32) -> i32 {
 n * 2
}

● Rust programs are built

with expressions and

statements.

○ Expressions evaluate

to a value.

○ Statements perform

actions but do not

return a value.

Blocks as Expressions

fn main() {
 let y = {
 let x = 3;
 x + 1
 };

 println!("y = {}", y);
}

● A Block '{...}' in Rust can
act as an expression.

● The last expression inside
the block determines the
block's value.

● Adding a semicolon turns
an expression into a
statement, which discards
its result.

Controlling Blocks in Rust

● Rust provides several constructs to control
the flow of execution:
● Conditional statements: if, else if,

else, and match.
● Looping constructs: loop, while,

and for.
● These blocks can be used to manage data

flow, decision-making, and repetition in
business processes.

Start

End

Process 3

Process 1

if
Condition Process 2

Process 4

Yes

No

Conditional Statements - if

● Conditional statements allow

you to execute code based

on certain conditions.

● Rust supports:

○ if and else for basic

conditionals.

○ match for pattern

matching and more

complex control flow.

if condition {
 // Code executed if the condition is true
}

fn main() {
 let number = 5;

 if number > 0 {
 println!("The number is positive");
 }
}

Conditional Statements - if-else

● The if-else statement

lets you define

alternative actions when

the condition is false.

● if-else can be used as

an Expression

if condition {
 // Code executed if the condition is true
} else {
 // Code executed if the condition is false
}

fn main() {
 let number = -3;
 if number > 0 {
 println!("The number is positive");
 } else {
 println!("The number is not positive");
 }

let positive = if number >0 { "Yes" } else {
"No" };
 println!("Is the number positive ? {}",
positive);
}

Conditional Statements - else if

● The else if statement lets

you chain multiple conditions

using else if.

if condition1 {
// Code executed if condition1 is
true
} else if condition2 {
// Code executed if condition2 is
true
} else {
// Code executed if all conditions
are false
}

fn main() {
 let number = 0;

 if number > 0 {
 println!("The number is
positive");
 } else if number == 0 {
 println!("The number is
zero");
 } else {
 println!("The number is
negative");
 }
}

Conditional Statements - match

● The match statement in Rust

allows for more complex

branching based on pattern

matching.

● It’s similar to a switch

statement in other languages

but more powerful.

● You can match multiple patterns

using the pipe (|) symbol.

match value {
 pattern1 => action1,
 pattern2 => action2,
// `_` acts as a catch-all pattern
(optional)
 _ => default_action,
}

fn main() {
 let num = 1;
 match num {
 1 | 2 | 3 => println!("Number
is between one and three"),
 _ => println!("Number is
something else"),
 }
}

Conditional Statements - match with enums

● The match statement usually used together with enums.

enum Direction {
 North,
 South,
 East,
 West,
}
fn main() {
 let heading = Direction::North;
 match heading {
 Direction::North => println!("Heading North"),
 Direction::South => println!("Heading South"),
 Direction::East => println!("Heading East"),
 Direction::West => println!("Heading West"),
 }
}

Iterative Logic in Rust

● Loops (loop, while, and for) are used to
repeat actions, such as processing
multiple items or retrying operations.

● Rust provides three types of loops:
○ loop: Infinite loop, must be

explicitly broken.
○ while: Repeats while a condition is

true.
○ for: Iterates over a collection or a

range.

loop {
 // Code that runs
infinitely unless break is
called
}

while condition {
 // Code that runs while the
condition is true
}

for variable in
collection_or_range {
 // Code that runs for each
element in the collection or
range
}

Iterative Logic with loop

● The loop statement creates
an infinite loop.

● You can use break to exit
the loop when a condition is
met.

● You can return values from a
loop using break with a
value.

fn main() {

 let mut counter = 0;

 let result = loop {
 counter += 1;
 if counter == 10 {
 break counter * 2;
 }
 };

 println!("The result is {}",
result); // Output: The result is 20
}

Iterative Logic with while

● The while loop runs as

long as a condition is

true.

● Like while statements

in other languages.

fn main() {
 let mut number = 3;

 while number != 0 {
 println!("{}!", number);
 number -= 1;
 }

 println!("Liftoff!");
}

Iterative Logic with for

● The for loop iterates over a

range or an iterator, making it

ideal for looping over

collections like arrays or

vectors.

fn main() {
 for i in 1..4 {
 println!("i = {}", i);
 }
}

fn main() {
 let arr = [10, 20, 30];
 for element in arr.iter()
{
 println!("Element:
{}", element);
 }
}

Using .enumerate() in Loops

● The .enumerate()

method returns both the

index and the value of

each item in an iterator.

fn main() {
 let numbers = [100, 200, 300];

 for (index, value) in
numbers.iter().enumerate() {
 println!("Index: {}, Value:
{}", index, value);
 }
}

Comparison of Loop Types

Description Use Case

loop Infinite loop that must be
explicitly broken

Use when you need an infinite or manually
controlled loop

while Loops while a condition is true Use when you don’t know how many
iterations are needed

for Iterates over collections or
ranges

Use when iterating over collections or
ranges

Definition of Functions - I
● Functions are reusable blocks of code that

perform specific tasks.

● Defined using the fn keyword.

● Every Rust program has at least one function:

main.

● Functions use snake_case for naming (all

lowercase, words separated by underscores).

● Rust does not support optional or default

arguments in functions directly, but it supports

Option<T> type.

fn main() {
 println!("Hello, world!");
 another_function(42);
}

fn another_function(x: i32) {
 println!("x = {x}");
}

Definition of Functions - II

● Functions can take parameters, which are
variables passed into the function.

● Parameters must have a type specified (e.g.,
i32).

● Multiple parameters can be passed,
separated by commas.

● Functions can return values.
● The return type is specified after the arrow

(->).
● The last expression in the function block is

implicitly returned (no need for return).

fn main() {
 println!("Hello, world!");
 let x =
another_function(42);
 println!("returned x =
{x}");
}

fn another_function(x: i32) ->
i32 {
 println!("x = {x}");
 x // equivalent to return
x;
}

Anonymous Functions - Closure I
Rust supports anonymous functions or
functions without a name through a
feature called closures.
● Defined using vertical pipes (|) to

enclose the parameters, followed by
the closure body.

● Capture variables from the scope in
which they are defined.

● Assigned to variables and passed
around as arguments to other
functions.

let closure_name = |parameters|
{
 // closure body
};

fn main() {
 let name =
String::from("Alice");

 let greet = ||
println!("Hello, {}!", name);

 greet();
}

Anonymous Functions - Closure II
Rust supports anonymous functions
or functions without a name through
a feature called closures.
● A closure can have zero or

more parameters.
● Rust can infer the types of the

parameters and return values of
closures, though you can
specify them if needed.

fn main() {
// A closure without a parameter
 let print_text = ||
println!("Hello from Closure!");

print_text();
}

fn main() {
// A closure with a parameter
 let add_one = |x: i32| x + 1;
 let result = add_one(5);

println!("Result = {}",
result);
}

Function of Function - I

● Rust allows defining higher-order

functions by passing or returning

both regular functions and

closures.

● This flexibility allows Rust to

support functional programming

patterns alongside its systems

programming capabilities.

fn add_one(x: i32) -> i32 {
 x + 1
}

fn do_twice(f: fn(i32) -> i32,
arg: i32) -> i32 {
 f(f(arg))
}

fn main() {
 let result =
do_twice(add_one, 5); // Pass
`add_one` as an argument
 println!("The result is: {}",
result);
}

Function of Function - II

● Function pointers

(fn) are used for

regular functions,

while closures use

traits like Fn,

FnMut, or

FnOnce.

// F is any type that implements the Fn trait
fn do_twice<F>(f: F, arg: i32) -> i32
where F: Fn(i32) -> i32,
{
 f(f(arg))
}

fn main() {
// Define a closure that adds 2
 let closure = |x| x + 2;
 let result = do_twice(closure, 5);
 println!("The result is: {}", result);
}

Function of Function - II

● One can return

closures using trait

objects (e.g.,

Box<dyn Fn()>)

when necessary.

fn returns_closure() -> Box<dyn Fn(i32) ->
i32> {
 Box::new(|x| x + 1) // Return a closure
that adds 1
}

fn main() {
 let closure = returns_closure();
 let result = closure(5);
 println!("The result is: {}", result);
// Output: The result is: 6
}

Part IV. Advanced
Topics of Rust

● Ownership & Borrowing

● Lifetimes

● Error Handling

● Traits & Trait Objects

● Generics

● Standard Libraries

Ownership

● Rust's memory
management system is built
around two key concepts:
ownership and borrowing.

● Ownership
○ Each value has a

single owner
○ Only one owner at a

time
○ Automatic cleanup

fn main() {
// s owns the String
 let s1 = String::from("hello");
// ownership has been transferred to s1
 let s2 = s1; // let s2 = s1.clone();
 //println!("{}", s1);

 let x = 5;
// x is copied because integers implement the
Copy trait
 makes_copy(x);
 println!("{}", x);
}

fn makes_copy(some_integer: i32) {
 println!("{}", some_integer);
}

Slice Type

● Slices enables

referencing a contiguous

sequence of elements in

a collection rather than

the whole collection.

fn main() {
 let arr = [10, 20, 30, 40, 50];
 let slice = &arr[1..4];
 println!("Slice: {:?}", slice); //
Output: [20, 30, 40]
}

Immutable Borrowing

● Borrowing allows references
to a value without
transferring ownership.
○ Immutable Borrowing

(&T)
○ Mutable Borrowing

(&mut T)

fn main() {
 let mut num = 42;

 let borrowed_immutable = # // Immutable
borrow
 println!("Immutable borrow: {}",
borrowed_immutable);

 let borrowed_mutable = &mut num; // Mutable
borrow
 *borrowed_mutable += 10;
 println!("Mutable borrow: {}",
borrowed_mutable);

 // println!("Immutable borrow again: {}",
borrowed_immutable);
}

Mutable Borrowing

fn main() {
 let mut s = String::from("hello"); // Create a mutable String with
the value "hello"

 change(&mut s); // Pass a mutable reference of the string `s` to
the `change` function
}

fn change(some_string: &mut String) {
 some_string.push_str(", world"); // Modify the string by appending
", world" to it
}

● Both the original declaration and borrowing need to be mutable.

Lifetimes

● A lifetime refers to the duration
for which a reference is valid.

● Lifetimes are closely tied to
scopes. A reference must not
outlive its scope.

● In Rust, lifetimes ensure that
references do not outlive the
data they point.

● Lifetimes are crucial for
memory safety.

fn main() {
 let r;
 {
 let x = 5;
 r = &x; // Error: `x`
does not live long enough
 }
 println!("r: {}", r);
}

Lifetimes - Annotations

● Syntax: Lifetimes are denoted

using apostrophes ('a, 'b,

etc.).

● Sometimes, different

parameters may have different

lifetimes.

fn longest1<'a>(x: &'a str, y: &'a
str) -> &'a str {
 if x.len() > y.len() { x } else
{ y }
}

fn longest2<'a, 'b>(x: &'a str, y:
&'b str) -> &'a str {
 if x.len() > y.len() { x } else
{ y }

}

Lifetimes - Elision Rules

● Rust can infer lifetimes in
certain cases to reduce
verbosity.

● Elision Rules:
○ Each input reference gets

its own lifetime parameter.
○ If there is exactly one input

lifetime, it is assigned to all
output lifetimes.

fn main() {
 let r;
 {
 let x = 5;
 r = &x; // Error: `x`
does not live long enough
 }
 println!("r: {}", r);
}

Lifetimes - Structs

When structs hold
references, their lifetimes
must be annotated.

struct ImportantExcerpt<'a> {
 part: &'a str,
}

fn main() {
 let novel = String::from("Call me
Ishmael.");
 let first_sentence =
novel.split('.').next().expect("Could not
find a '.'");
 let excerpt = ImportantExcerpt {
part: first_sentence };
 println!("{}", excerpt.part);
}

Error Handling - Result & Panic!

● Recoverable Errors:
Handled using the
Result<T, E> enum.

● Unrecoverable Errors:
Handled using the
panic! macro where
continuing execution
would be unsafe or
nonsensical.

fn main() {
 panic!("crash and burn");
}

enum Result<T, E> {
 Ok(T),
 Err(E),
}

Error Handling - Result Example

● The Result enum is
part of Rust's
standard library and
is widely used across
many Rust programs
for handling errors in
a type-safe manner.

fn divide(dividend: f64, divisor: f64) -> Result<f64,
String> {
 if divisor == 0.0 {
 Err(String::from("Division by zero"))
 } else {
 Ok(dividend / divisor)
 }
}

fn main() {
 match divide(10.0, 2.0) {
 Ok(result) => println!("Result: {}", result),
 Err(error) => println!("Error: {}", error),
 }

 match divide(10.0, 0.0) {
 Ok(result) => println!("Result: {}", result),
 Err(error) => println!("Error: {}", error),
 }
}

Traits in Rust

● Traits define shared
behavior across
types.

● Similar to interfaces
in other languages.

● Traits allow you to
write generic and
reusable code.

struct NewsArticle {
 headline: String,
 author: String,
 content: String,
}

impl Summary for NewsArticle {
 fn summarize(&self) -> String {
 format!("{}, by {}", self.headline, self.author)
 }
}

struct Tweet {
 username: String,
 content: String,
}

impl Summary for Tweet {
 fn summarize(&self) -> String {
 format!("{}: {}", self.username, self.content)
 }
}

Implementation Traits

● Traits are defined using
the trait keyword.

● Define methods without
implementation inside the
trait.

● Use impl to provide
implementations of the
trait methods.

● Traits can contain
multiple methods.

// Define the Greet trait
trait Greet {
 fn say_hello(&self);
}

// Define the Person struct
struct Person {
 name: String,
}

// Implement the Greet trait for Person
impl Greet for Person {
 fn say_hello(&self) {
 println!("Hello, my name is {}", self.name);
 }
}

fn main() {
 let john = Person { name: String::from("John")
};
 john.say_hello();
}

Trait Objects

● dyn keyword followed
by the trait name is
used to create a trait
object.

● Trait objects must be
used behind some kind
of pointer, such as
&dyn Trait,
Box<dyn Trait>, or
Rc<dyn Trait>.

fn notify(item: &dyn Summary) {
 println!("Breaking news! {}",
item.summarize());
}

Here, &dyn Summary is a reference to a
trait object. Rust will perform dynamic
dispatch to call the correct implementation
of the summarize function at runtime.

Generics in Rust

● Generic Functions: Functions that can accept parameters

of any type.

● Generic Structs: Structs that can store data of any type.

● Generic Enums: Enums that can hold values of different

types.

● Trait Bounds: Constraints on generics to ensure they

implement specific traits.

Generics in Rust allow one to write flexible, reusable code that works with different
types while maintaining type safety. Rust's generics are similar to C++ templates.

Generics Struct
struct Point<T> {
 x: T,
 y: T,
}

fn main() {
 let int_point = Point { x: 5, y: 10 };
 let float_point = Point { x: 1.0, y: 4.0
};

 println!("int_point: ({}, {})",
int_point.x, int_point.y);
 println!("float_point: ({}, {})",
float_point.x, float_point.y);
}

A struct Point that

can hold coordinates

of any type.

Generics Enum
//enum Result<T, E> {
// Ok(T),
// Err(E),
//}

fn divide(a: i32, b: i32) -> Result<i32, &'static str>
{
 if b == 0 {
 Err("Division by zero")
 } else {
 Ok(a / b)
 }
}

fn main() {
 match divide(10, 2) {
 Ok(result) => println!("Result is {}", result),
 Err(err) => println!("Error: {}", err),
 }
}

The Result enum is

a common example

of generics in Rust. It

can handle success

(Ok(T)) or failure

(Err(E)).

Rust Standard Library

The Rust Standard Library (std) provides a comprehensive set of modules and utilities

that serve as the foundation for Rust programs.

● Collection of core utilities, data
structures, and functions.

● Provides tools for systems
programming, concurrency,
networking, and more.

● Designed to be fast, safe, and
efficient.

● A foundation for building complex
Rust applications.

std::io: Input/output operations.
std::fs: File system operations.
std::thread: Concurrency with threads.
std::time: Time management.
std::collections: Data structures.
std::env: Environment handling.
std::sync: Synchronization utilities.
...

Basic Input and Output with std::io

● Handles reading
from and writing to
standard input,
output, and files.

● Provides
stdin(),
stdout(), and
stderr() for
console interaction.

use std::io::{self, Write};

fn main() {
 print!("Enter your name: ");
 io::stdout().flush().unwrap();

 let mut name = String::new();
 io::stdin().read_line(&mut name).unwrap();
 println!("Hello, {}!", name.trim());
}

File Operations with std::fs

● Create, read, write,
and manage files
and directories.

● Common
functions:
File::create,
read_to_string
, write.

use std::fs;

fn main() {
 let content = "Hello, Rust!";

 fs::write("hello.txt",
content).expect("Unable to write file");

 let read_content =
fs::read_to_string("hello.txt").expect("Unable
to read file");

 println!("{}", read_content);
}

Concurrency with std::thread

● Enables
multithreading with
lightweight
threads.

● Functions: spawn
to create new
threads, join to
wait for
completion.

use std::thread;

fn main() {
 let handle = thread::spawn(|| {
 for i in 1..5 {
 println!("Thread says: {}", i);
 }
 });
 for i in 1..5 {
 println!("Main says: {}", i);
 }
 handle.join().unwrap();
}

Managing Time with std::time

● Functions for
working with
system time and
durations.

● Useful for delays,
performance
measurement, etc.

use std::thread;
use std::time::Duration;

fn main() {
 println!("Sleeping for 2 seconds...");
 thread::sleep(Duration::from_secs(2));
 println!("Done!");
}

Data Structures in std::collections

● Includes Vec,
HashMap,
HashSet,
LinkedList,
and more.

● Used to store and
manage data
effectively.

use std::collections::HashMap;

fn main() {
 let mut scores = HashMap::new();
 scores.insert("Alice", 10);
 scores.insert("Bob", 20);

 for (player, score) in &scores {
 println!("{}: {}", player, score);
 }
}

Environment Management with std::env

● Functions to
retrieve
environment
variables,
command-line
arguments.

● Common methods:
args, var,
set_var.

use std::env;

fn main() {
 let args: Vec<String> =
env::args().collect();
 println!("Command-line arguments: {:?}",
args);

 env::set_var("MY_VAR", "Hello,
Environment!");
 println!("MY_VAR: {}",
env::var("MY_VAR").unwrap());
}

Synchronization with std::sync

● Tools for managing
data safely across
threads.

● Includes Mutex,
Arc (atomic
reference count),
RwLock.

use std::sync::{Arc, Mutex};
use std::thread;

fn main() {
 let counter = Arc::new(Mutex::new(0));
 let mut handles = vec![];

 for _ in 0..10 {
 let counter = Arc::clone(&counter);
 let handle = thread::spawn(move || {
 let mut num = counter.lock().unwrap();
 *num += 1;
 });
 handles.push(handle);
 }

 for handle in handles {
 handle.join().unwrap();
 }
 println!("Result: {}", *counter.lock().unwrap());
}

Using Error Handling in the Standard Library

● The standard
library provides
Result and Option
for handling errors.

● Result<T, E> is
used for error
handling, while
Option<T> is for
optional values.

fn divide(a: f64, b: f64) -> Result<f64, &'static
str> {
 if b == 0.0 {
 Err("Cannot divide by zero")
 } else {
 Ok(a / b)
 }
}

fn main() {
 match divide(10.0, 2.0) {
 Ok(result) => println!("Result: {}", result),
 Err(error) => println!("Error: {}", error),
 }
}

Online Resources

● The Rust Programming Language
● Programming Rust
● Rust for Rustaceans
● GitHub - rust-lang/rustlings: :crab: Small exercises to

get you used to reading and writing Rust code!
● Welcome to Comprehensive Rust
● Rust on Exercism
● Let's Get Rusty - YouTube
● Rust Events

https://doc.rust-lang.org/book/
https://www.oreilly.com/library/view/programming-rust-2nd/9781492052586/
https://nostarch.com/rust-rustaceans
https://github.com/rust-lang/rustlings
https://github.com/rust-lang/rustlings
https://google.github.io/comprehensive-rust/
https://exercism.org/tracks/rust
https://www.youtube.com/c/LetsGetRusty
https://foundation.rust-lang.org/events/

Acknowledgments

99

● The slides are created based on the materials from Rust official website.

● Support from Texas A&M Institute of Data Science (TAMIDS), and Texas

A&M High Performance Research Computing (HPRC).

● Support from NSF OAC Award #2019129 - MRI: Acquisition of FASTER -

Fostering Accelerated Sciences Transformation Education and Research

● Support from NSF OAC Award #2112356 - Category II: ACES -

Accelerating Computing for Emerging Sciences

https://www.rust-lang.org/
https://tamids.tamu.edu/
https://hprc.tamu.edu/
https://hprc.tamu.edu/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2019129&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112356

HPRC Survey

HPRC Survey

https://docs.google.com/forms/d/e/1FAIpQLSensgCZI15u9jwKR7wGL1c59BTojSJK3fwwKXHLLrONviKRFw/viewform

