ACES: GPU Programming

Introduction to CUDA

Jian Tao
jtao@tamu.edu
Spring 2025 HPRC Short Course

04/22/2025

(A AID.J UNIVERSITY OF
TACL - I ILLINOIS

TEXAS ADVANCED ngh Performan;e URBANA-CHAMPAIGN
COMPUTING CENTER Research Computlng

DIVISION OF RESEARCH

Introduction to CUDA Programming

Part I. Getting Started with
ACES (~30 mins)

Part Il. GPU as an
Accelerator (~30 mins)

Q&A and Break
(10 mins)

Part IV. CUDA C/C++ Basics
(~50 mins)

Part lll. Running CUDA Code
on ACES (~30 mins)

Part |. Get Started
with ACES

NSF ACES

Accelerating Computing for Emerging Sciences

Our Mission:
e NSF Advanced Computing Systems &
Services (ACSS) Cl test-bed
Offer an accelerator testbed for
numerical simulations and Al/ML

workloads
Provide consulting, technical / x ‘ E S

guidance, and training to researchers
Collaborate on computational and
data-enabled research.

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

A High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Portal

ACES OnDemand Portal

Home User Services Resources Research Policies Events Training About

e

- - .
0 s —— - ™

3 ’r‘ﬁ/ ‘:{.‘_‘1]) = Ld Terra Portal

; Grace Portal

FASTER Portal

Quick Links

New User Information FASTER Portal (ACCESS)

Accounts
Apply for Accounts ACES Portal (ACCESS)
Manage Accounts

User Consulting
Training
Knowledge Base

Launch Portal (ACCESS)

ACES Portal portal-aces.nhprc.tamu.edu
is the web-based user interface for the ACES cluster

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

HPRC Portal YouTube tutorials

\ OnDemand provides an integrated, single access point for all of your HPC resources

Vs

Open OnDemand (OOD) is an
advanced web-based graphical @ SnDemand OnDemnd versio 300
interface framework for HPC users

}.&Fd High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

https://www.youtube.com/c/TexasAMHPRC/search?query=portal
http://portal-aces.hprc.tamu.edu

Shell Access via the Portal

ACES OnDemand Portal Files ¥ Jobs ~

Get a shell terminal
right in your browser

Interactive Apps ~

>_aces Shell Access

ACCELERATING COMPUTING
FOR EMERGING SCIENCES

Affinity Groups ~

Dashboard ~

=)

Host: login.aces

p—

Warning: Permanently added 'login.aces,10.71.1.13' (ECDSA) to the list of known hosts.
sokoolioRolRRIIRIRIKIK ORI IRHAOKRRK IR IOKRAAIOKAAK

This computer system and the data herein are available only for authorized

purposes by authorized users. Use for any other purpose is prohibited and may

result in disciplinary actions or criminal prosecution against the user. Usage

may be subject to security testing and monitoring. There is no expectation of

privacy on this system except as otherwise provided by applicable privacy laws.

Refer to University SAP 29.01.03.M0.02 Acceptable Use for more information.
sokicioliclRiiclibiolioliolisiiiolioiciioioRkioioRioioicliokolRRRRIRIoR R

Last login: Mon Feb 12 13:11:13 2024 from 10.71.1.6

Texas A&M University High Performance Research Computing

Website:

Consulting:

ACES Documentation:
FASTER Documentation:
Grace Documentation:
Terra Documentation:
YouTube Channel

help@hprc.tamu.edu (preferred) or (979) 845-0219

ekl kool kil ikl RolRookok

- Unauthorized use of HPRC resources is prohibited and subject to
criminal prosecution.

- Use of HPRC resources in violation of United States export control
laws and regulations is prohibited. Current HPRC staff members are
US citizens and legal residents.

- Authorized users must also adhere to ALL policies at:

KKK KKK K KK KX
XK KKK KKK KR

selokoiolokkiololioilolokioioloioloiiolokiioloiiolok kil kilololoioloioioloiioloilolookoloookok

We are still troubleshooting issues for various compute nodes that were
reconfigured for PCIe fabric connectivity to the H10@ and PVCs.

To see these messages again, run the motd command.
Your current disk quotas are:
Disk Disk Usage Limit File Usage Limit
/home/u. jw123527 169M 10.0G 499 10000
/scratch/user/u.jw123527 28.16 1.0T 102472 250000
Type 'showquota' to view these quotas again.
[u.jw123527@aces-login3 ~1$

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Composability

Traditional Server
Configuration

Composable Resources

GPU
GPU

FPGA
FPGA

GPU GPU @ SSD
GPU GPU

GPU GPU SSD
GPU GPU

Server pool

Accelerator
pool (GPUs,
FPGA, etc)

Storage
and
memory
pool (SSDs)

< LIQID

- -

Composable Server Configuration
(can be recomposed)

FPGA @ SSD = SSD

GPU GPU @ GPU GPU SSD

GPU GPU GPU GPU GPU GPU GPU

GPU GPU GPU GPU GPU GPU GPU

T

[https:/hprc.tamu.edu/kb/User-Guides/ACES]

High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

https://hprc.tamu.edu/kb/User-Guides/ACES

NSF ACES

Accelerating Computing for Emerging Sciences

Our Mission:
e NSF ACSS Cl test-bed
e Offer an accelerator testbed for
numerical simulations and Al/ML
workloads

Provide consulting, technical
guidance, and training to researchers / N (E S

Collaborate on computational and e tLeraTinG commuTinG

FOR EMERGING SCIENCES

data-enabled research.

A High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES In Action

}.\Fd High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Configuration

Ice Lake Nodes (15) Data
Management
Development Nodes (4) Transfer
Hosts Nodes (2)

Login
Nodes (3)

Graphcore
Bow
POD16

Lustre System e
2.54 PB usable R Graphcore

Colossus
POD16

SPR SPR SPR SPR
Nodes (15) Nodes (15) Nodes (15) Nodes (15)

SPR SPR SPR SPR
Nodes (12) Nodes (13) Nodes (12) Nodes (13)
| | |

Composable Composable Composable Composable } [Composable} [Composable} [Composable } Composable

PCle Gen4 PCle Gen4 PCle Gen4 PCle Gen4 PCle Gen5 PCle Gen5 PCle Gen5 PCle Gen5

[Intel PVC] [Intel PVC] Intel PVC Intel PVC Intel PVC Intel PVC] Intel PVC NVIDIA H100
Optane SSD Optane SSD NVIDIA A30 NVIDIA H100

Intel FPGA BittWare FPGA

BittWare FPGA
A High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356 10

ACES System Description

Sapphire Rapids Nodes: 96 cores per node, dual Intel Xeon 8468 processors
Compute Nodes 110 nodes 512 GB DDR5 memory
Data Transfer Nodes 2 nodes 1.6 TB NVMe storage
Login & Management 5 nodes Compute: NVIDIA Mellanox NDR 200 Gbps InfiniBand adapter
Nodes DTNs & Login & Management nodes: 100 Gbps Ethernet adapter

64 cores per node, dual Intel Xeon 8352Y processors
Ice Lake 5 nodes 512 GB DDR4 memory
Login & Management Nodes 1.6 TB NVMe storage

NVIDIA Mellanox NDR 200 Gbps InfiniBand adapter

PCle Gen4 Composable Dynamically reconfigurable infrastructure that allows up to 20 PCle cards
50 SPR nodes
Infrastructure (GPU, FPGA, etc.) per compute node

PCle Gen5 Composable Dynamically reconfigurable infrastructure that allows up to 16 H100s or 14
60 SPR nodes
Infrastructure PVCs per compute node

NVIDIA InfiniBand (IB)

110 nodes Two leaf and two spine switches in a 2:1 fat tree topology
Interconnect

DDN Lustre Storage 2.5 PB usable HDR IB connected flash and disk storage for Lustre file systems

EEI High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

ACES Accelerators

16 Colossus GC200 IPUs, 16 Bow IPUs. Each IPU group hosted with a CPU server

Graphcore IPU 32 as a PODI16 on a 100 GbE RoCE fabric

FPGAs:

Intel PAC D5005 Accelerator with Intel Stratix 10 GX FPCA and 32 GB DDR4
BittWare |IA-840F Accelerator with Agilex AGF027 FPGA and 64 GB of DDR4

Reconfigurable accelerator with an optimizer continuously evaluating

NextSilicon Coprocessor . .
application behavior.

NEC Vector Engine Vector computing card (8 cores and HBM2 memory)

Intel Optane SSD 18 TB of SSDs addressable as memory w/ MemVerge Memory Machine.
NVIDIA GPUs:

H100 For HPC, DL Training, Al Inference
A30 For Al Inference and Mainstream Compute

Intel PVC GPUs 120 Intel GPUs for HPC, DL Training, Al Inference

Refer to our Knowledge Base for more:
https:/hprctamu.edu/kb/User-Guides/ACES/Hardware/

EEI High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

https://hprc.tamu.edu/kb/User-Guides/ACES/Hardware/

Accelerator Access Summary
__ Component | Access | __nodeorpartition ___

BittWare |IA-840F FPGA Slurm --partition=bittware
Intel PAC D5005 FPGA Slurm --partition=d5005
Intel GPU Max 1100 (PVC) Slurm --partition=pvc

Intel Optane SSD Slurm --partition=memverge
NextSilicon Coprocessor Slurm --partition=nextsilicon
NVIDIA A30 GPUs Slurm --partition=gpu

NVIDIA H100 GPUs Slurm --partition=gpu
Graphcore Bow IPUs Interactive ssh poplar2
Graphcore Colossus IPUs Interactive ssh poplarl

NEC Vector Engine Interactive ssh dss

EEI High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Job Scripts on ACES: Slurm

#!/bin/bash

#NECESSARY JOB SPECIFICATIONS
#SBATCH --job-name=my job
#SBATCH --time=2-00:00:00
#SBATCH --nodes=1

#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=96
#SBATCH --mem=488G

#SBATCH --partition=gpu) ¢
#SBATCH --gres=gpu:hl100:2
#SBATCH --output=stdout.%x.%j
#SBATCH --error=stderr.%x.%j

load required module (g)
module purge

module load GCC/13.1.0

./my program.py

These parameters describe the
resources needed for your program
to the job scheduler (Slurm)

Most of the ACES accelerators will
be specified with either a partition
or gres argument

Script to execute
> (In this case, set up environment and
launch an executable)

}.&Fd High Performance Research Computing | hprc.tamu.edu | NSF Award #2112356

Part Il. GPU as an
Accelerator

15

GPU Accelerator

16

NVIDIA Tesla B200 with 208 Billion Transistors

Announced and released in early 2025 was the Blackwell-based B200 accelerator. Built on
TSMC'’s 4NP process, the B200 features 208 billion transistors and delivers up to 90 teraflops of
FP64 performance, 20 petaflops of Al inference with FP4 precision, and incorporates NVIDIA's

6th-generation Tensor Cores. It includes 192GB of HBM3e memory with an impressive 8TB/s

memory bandwidth. 17

Add GPUs: Accelerate Science Applications

Application Code

Compute-Intensive
Functions
<€« Rest of Sequential
CPU Code

OPU

Use GPU to
Parallelize

o

18

3 Ways to Accelerate Applications

~

\.

Applications

~

J

r

-

Libraries

~

,

“Drop-in”
Acceleration

4 ™)
OpenACC

Directives

r

- J

Easily Accelerate
Applications

-

Programming

Languages

~

,

Maximum
Flexibility

19

3 Ways to Accelerate Applications

Applications]
r N \
L OpenACC Programming
or— Directives Languages
- J y
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility

Libraries: Easy, High-Quality Acceleration

Using libraries enables GPU acceleration without in-depth
knowledge of GPU programming

Many GPU-accelerated libraries follow standard APls, thus
enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions
encountered in a broad range of applications

NVIDIA libraries are tuned by experts

21

NVIDIA CUDA-X GPU-Accelerated Libraries

CUDA Math Libraries

GPU-accelerated math libraries lay the foundation for compute-intensive applications in areas such as molecular dynamics, computational fluid
dynamics, computational chemistry, medical imaging, and seismic exploration.

cuBLAS cuFFT cuRAND

GPU-accelerated basic linear algebra (BLAS) library. GPU-accelerated library for Fast Fourier Transform GPU-accelerated random number generation.

implementations.
Learn More > Learn More >

Learn More >

CcuSOLVER cuSPARSE cuTENSOR
GPU-accelerated dense and sparse direct solvers. GPU-accelerated BLAS for sparse matrices. GPU-accelerated tensor linear algebra library.
Learn More > Learn More > Learn More >

cuDSS CUDA Math API AmgX

GPU-accelerated standard mathematical function APIs. GPU-accelerated linear solvers for simulations and implicit

GPU-accelerated direct sparse solver library. unstructured methods.

Learn More >

>
Learn More > Learn More >

CUDA-X GPU-Accelerated Libraries | NVIDIA Developer 22

https://developer.nvidia.com/gpu-accelerated-libraries

CUDA-accelerated Application with Libraries

e Step 1: Substitute library calls with equivalent CUDA library calls
saxpy (..) — cublasSaxpy (..)

e Step 2: Manage data locality

- with CUDA: cudaMalloc (), cudaMemcpy (), etc.
- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

* Step 3: Rebuild and link the CUDA-accelerated library

snvcc myobj.o —1 cublas

23

Explore the CUDA (Libraries) Ecosystem

e CUDA Tools and

Ecosystem described

in detail on NVIDIA
Developer Zone.

<A NVIDIA. DEVELOPER

ESOURCES

Tools & Ecosystem

| GPU-Accelerated

Libraries

Application accelerating can be as
easy as calling a library function.

Debugging Solutions
Powerful tools can help debug
complex parallel applications in
intuitive ways.

Accelerated Web Services
Micro services with visual and
intelligent capabilities using deep
learning

Language and APIs

GPU acceleration can be accessed
from most popular programming
languages

Data Center Tools
Software Tools for every step of the
HPC and Al software life cycle

Cluster Management
Managing your cluster and job
scheduling can be simple and intuitive.

NVIDIA CUDA Tools & Ecosystem

HOME BLOG FORUMS DOCS DOWNLOADS TRAINING Q

Performance Analysis
Tools

Find the best solutions for analyzing
your application's performance profile

Key Technologies

Learn more about parallel computing
technologies and architectures.

24

https://developer.nvidia.com/tools-ecosystem

3 Ways to Accelerate Applications

Applications

J

Libraries

“Drop-in”
Acceleration

OpenACC

Directives

r

Easily Accelerate
Applications

.

Programming
Languages

~\

J

Maximum
Flexibility

25

OpenACC Directives

CPU GPU

(

b(ogram myscience
. serial code ..
'Sacc kernels

do k = 1,nl
do i = 1,n2
. parallel code .,r
enddo
enddo

!Sacc end kernels

End Program myscience

OpenACC
compiler
Hint

Simple Compiler hints

Compiler Parallelizes
code

Works on many-core
GPUs & multicore CPUs

26

OpenACC OpenACC

The Standard for GPU Directives

* Easy: Directives are the easy path to accelerate compute
intensive applications

* Open: OpenACCis an open GPU directives standard, making
GPU programming straightforward and portable across
parallel and multi-core processors

 Powerful: GPU Directives allow complete access to the
massive parallel power of a GPU

27

3 Ways to Accelerate Applications

Applications
(-)
. . OpenACC Programmin
Libraries Pen” J J
Directives Languages
. J
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

28

Learn More

These languages are supported on all CUDA-capable GPUs.
You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++
http://developer.nvidia.com/cuda-toolkit

Thrust C++ Template Library
http://developer.nvidia.com/thrust

CUDA Fortran
https://developer.nvidia.com/cuda-fortran

CuPy (Python)
https://developer.nvidia.com/pycuda

MATLAB
http://www.mathworks.com/discovery/
matlab-gpu.html

Mathematica
http://www.wolfram.com/mathematica/

new-in-8/cuda-and-opencl-support/

29

http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/discovery/matlab-gpu.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/thrust
https://developer.nvidia.com/cuda-fortran
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
https://developer.nvidia.com/pycuda

Part lll. Running CUDA Code on ACES

<3

NVIDIA.
CUDA

30

Running CUDA Code on ACES

load CUDA module
Sml CUDA/12.3.2

copy sample code to your scratch space
Star -zxvf cuda.exercise.tgz

compile CUDA code

S$Scd CUDA

$cd hello world

$nvcc hello world host.cu
$./a.out

edit job script & submit your GPU job
Ssbatch aces_cuda run.sh

31

Part IV. CUDA C/C++ BASICS

<3

NVIDIA.
CUDA

What is CUDA?

* CUDA Architecture
— Used to mean “Compute Unified Device Architecture”

— Expose GPU parallelism for general-purpose computing
— Retain performance

« CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming
— Straightforward APIs to manage devices, memory etc.

33

A Brief History of CUDA

® Researchers used OpenGL APIs for general purpose
computing on GPUs before CUDA.

e [n 2007, NVIDIA released first generation of Tesla GPU for
general computing together their proprietary CUDA
development framework.

® Current stable version of CUDA is 12.8 Update 1 (as of Apr

2025).

34

Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

o Feot
. \n;e cs:f BN

: s\'—a\a’m\“w‘

35

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global_ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS};
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

I/ Read input elements into shared memory
templiindex] = in[gindex];
if (threadidx.x < RADIUS) {
temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex +

BLOCK_SIZE];
Il Synchronize (ensure all the data is available)
__syncthreads();
Il Apply the stencil
int result =
for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += templlindex + offset];
I Store the result
outlgindex] = result;
}
void fill_ints(int *x, int n) {
fil_n(x, n, 1);
}
int main(void) {
int *in, *out; I/ host copies of a, b, ¢
int*d_in, *d_out; // device copies of a, b, ¢

int size = (N + 2*RADIUS) * sizeof(int):

I/ Alloc space for host copies and setup values
in = (int “)malloc(size); fill_ints(in, N +2"RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

I/ Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

I/ Copy to device
_in, in, size, (ToDevice);
i_out, out, size, HostToDevice);

J/ Launch stencil_1d() kernel on GPU
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out +

RADIUS);
I/ Copy result back to host
d_out, size, DeviceToHost);
J/ Cleanup
free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;
}

~ parallel function

~ serial code

] parallel code

- serial code

36

Simple Processing Flow

CPU Memory

1. Copy input data from CPU memory
to GPU memory

37

Simple Processing Flow

o>

CPU
CPU Memory

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance

Simple Processing Flow

e

Y
N

RERRRRRRRNENN

[T
i
AT

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance
Copy results from GPU memory to
CPU memory

DRAM

39

Hello World!

main () {
printf ("Hello World!'\n");
0;
}

o Standard C that runs on the host

e NVIDIA compiler (nvcc) can be
used to compile programs with no
device code

Output:

$ nvcc hello world.cu
$./a.out
$ Hello World!

40

Hello World! with Device Code

mykernel () {

main () |
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n") ;
0;
}

= Two new syntactic elements...

Hello World! with Device Code

~_global void mykernel (void) {
}

* CUDA C/C++ keyword global indicates a function that:

— Runs on the device
— Is called from host code
e nvcc separates source code into host and device components

— Device functions (e.g. mykernel ()) processed by NVIDIA
compiler

— Host functions (e.g. main ()) processed by standard host
compiler

* gcc, icc, etc.

42

Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host code to device
code

— Also called a “kernel launch”
— We’'ll return to the parameters (1, 1) in a moment

e That’s all that is required to execute a function on the GPU!

43

Hello World! with Device Code

mykernel (

main () {
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n");
0;

 mykernel () does nothing!

) {

Output:

Snvce hello.cu
S./a.out
Hello World!

44

Parallel Programming in CUDA C/C++

« But wait... GPU computing is about
massive parallelism!

* We need a more interesting example...

« We’ll start by adding two integers and
build up to vector addition

45

Addition on the Device

* Asimple kernel to add two integers

add (*a, *b, *c) {
*c = *a + *b;

}
e As before is a CUDA C/C++ keyword
meaning
— add () Will execute on the device
— add() Will be called from the host

46

Addition on the Device
* Note that we use pointers for the variables

add (*a, *b, *c) {
*c = *a + *b;

}
* add() runs on the device, so a, b, and ¢ must
point to device memory

* We need to allocate memory on the GPU.

47

Memory Management

* Host and device memory are separate entities
Device pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

e Simple CUDA API for handling device memory

— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()

48

Unified Memory

Software: CUDA 6.0 in 2014

Hardware: Pascal GPU in 2016

Unified Memory

49

Unified Memory

A managed memory space where all processors see a
single coherent memory image with a common address
space.

Memory allocation with cudaMallocManaged ().

Synchronization with cudaDeviceSynchronize ().

Eliminates the need for cudaMemcpy ().
Enables simpler code.

Hardware support since Pascal GPU.

50

Addition on the Device: add ()

e Returning to our adqa() kernel

add (*a, *b, *c) {

*c = *a + *b;

* Let’s take a look at main()...

51

Addition on the Device: main ()

int main(void) {
int a, b, c¢;
int *d_a, *d b, *d c;

int size = sizeof (int);

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

52

Addition on the Device: main ()

cudaMemcpy (d_a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

add<<<1l,1>>>(d a, d b, d c);
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
return O;

53

Moving to Parallel

* GPU computing is about massive parallelism

— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1M, 1 >>>();

* Instead of executing add () once, execute N
times in parallel

54

Vector Addition on the Device

 With add () running in parallel we can do vector addition
 Terminology: each parallel invocation of add () is referred to as a
block

— The set of blocks is referred to as a grid

— Each invocation can refer to its block index using blockIdx.x

~_global wvoid add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

 Byusing blockIdx. x toindex into the array, each block handles a

different element of the array. -

Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
c[blockIdx.x] a[blockIdx.x] + b[blockIdx.x];

* On the device, each block can execute in parallel:

Block 0 Block 1 Block 2 Block 3

c[0] = a[0] + b[0]; c[l] = a[l] + b[1l]; c[2] = a[2] + b[2]; c[3] = al[3] + b[3];

56

Vector Addition on the Device: add ()

e Returning to our parallelized aada() kernel

~_global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* Let’s take a look at main()...

o7

Vector Addition on the Device: main ()

main (void) ({

*d_a, *d_b, *d_c;

size = () ;
((**)&d _a, size);
((**)&d b, size);
((**)&d c, size);
a = (*) (size); random ints(a, N);
b (*) (size); random_ints(b, N);

c = (*) (size);

Vector Addition on the Device: main ()

(d_a, a, size, cudaMemcpyHostToDevice) ;
(d_ b, b, size, cudaMemcpyHostToDevice) ;

add<<<i,1>>>(d_a, d b, d c);
(c, d ¢, size, cudaMemcpyDeviceToHost) ;

(a); (b) ; (c);
(d_a); (d_b); (d_c);

return O0;

59

Vector Addition with Unified Memory

__global void VecAdd(int *ret, int a, int b) {
ret[blockIdx.x] = a + b + blockIdx.x;
}

int main() {
int *ret;
cudaMallocManaged (&ret, 1000 * sizeof (int));
VecAdd<<< 1000, 1 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf ("%d: A+B = %d\n", i, ret[i]);

cudaFree (ret) ;

return O0;

60

Vector Addition with Managed Global Memory

device =~ managed = int ret[1000];

__global void VecAdd(int *ret, int a, int b) {
ret[blockIdx.x] = a + b + blockIdx.x;

}

int main() {
VecAdd<<< 1000, 1 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf("%d: A+B = %d\n", i, ret[i]):

return O;

61

Hierarchy of Threads

Key Programming Abstractions

Three key abstractions that are exposed to CUDA
programmers as a minimal set of language
extensions:

e a hierarchy of thread groups
e shared memories

e barrier synchronization

63

Glossary

« Thread is an abstract entity that represents
the execution of the kernel, which is a small
program or a function.

e Grid is a collection of Threads. Threads in a
Grid execute a Kernel Function and are
divided into Thread Blocks.

* Thread Block is a group of threads which
execute on the same multiprocessor (SMX).
Threads within a Thread Block have access
to shared memory and can be explicitly
synchronized.

Gnrd

Block (G 0)

Blodk (1, 0)

Block (2, 0)

Block (@ 1)

Blodk (1, 1)

% (2 1)

Block (1, 1)

Thread Hierarchy - |

1D, 2D, or 3D threads can form 1D,
2D, or 3D thread blocks.

1D, 2D, or 3D blocks can form 1D,
2D, or 3D grid of thread blocks

 The number of threads per block
and the number of blocks per grid
are specified in the <<<. . .>>>
syntax.

Host

Grid 1

> Block
(0,0)

Block
(1,0)

@1

Block” |

Block

\
(1,1 |

’ '
2, -
Grid2 |,/
< '

4
Block (1. 1

65

Thread Hierarchy - li

e Each block within the grid can be
identified by an index accessible within
the kernel through the built-in

3-component vector blockIdx.

Gnrd

Block (G 0)

Blodk (1, 0)

Block (2. 0)

Block (Q 1)

Blodk (1, 1)

% (2 1)

* The dimension of the thread block is
accessible within the kernel through
the built-in 3-component vector

Block (1, 1)

blockDim.

66

Thread Index and Thread ID

1D

thread ID is the same as the index of a thread

2D
for a two-dimensional block of size (blockDim.x, blockDim.y),
the thread ID of a thread of index (x, y) is (x +y * blockDim. x)

3D

for a three-dimensional block of size (blockDim.x, blockDim.y,
blockDim. z), the thread ID of a thread of index (x, y, z) is

(x+ y*blockDim.x + z*blockDim.x * blockDim.y)

67

Indexing Arrays with Blocks and Threads

* Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x
0/1/2/3|4/5/6/7/012345867

\ A
Y Y

blockIdx.x = 2 blockIdx.x = 3

e WithblockDim.x threads/block, the thread is given by:
index = threadIdx.x + blockIdx.x * blockDim.x;

68

Indexing Arrays: Example

 Which thread wi

| operate on the red element?

‘012345

819/10/11/12/13/14 /15|16

17

18

19 2022 23|24|25|26

2728|2930 31]

threadIdx.x = 5

S

0

1

2

3

467012

34567’

int index

\

% J
blockIdx.x = 2

threadIdx.x + blockIdx.x * blockDim.x;

5 +
21

2 *

8

69

Handling Arbitrary Vector Sizes

» Typical problems are not friendly multiples of

« Avoid accessing beyond the end of the arrays:

VecAdd (*A, *B, *C, n) {
index = threadIdx.x + blockIdx.x *
if (index < n)
C[index] = A[index] + B[index];

}
Update the kernel launch:M = blockDim.x
VecAdd<<k< , M>>>(A, B, C,) ;

70

Why Bother with Threads?

 Threads seem unnecessary
— They add a level of complexity
— What do we gain?

* Threads within a block can cooperate by sharing
data through shared memory

* by synchronizing their execution to coordinate
memory accesses with _ syncthreads ()

71

Managing Devices

72

Coordinating Host & Device

* Kernel launches are asynchronous

— Control returns to the CPU immediately

* CPU needs to synchronize before consuming the results

cudaMemcpy ()

cudaMemcpyAsync ()

cudaDeviceSynchronize ()

Blocks the CPU until the copy is complete. Copy
begins when all preceding CUDA calls have
completed

Asynchronous, does not block the CPU

Blocks the CPU until all preceding CUDA calls have
completed

73

Reporting Errors

* All CUDA API calls return an error code (cudakrror t)
— Error in the API call itself or
— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:
cudaError t cudaGetLastError (void)

* Get a string to describe the error:

char *cudaGetErrorString(cudaError t)
printf ("$s\n",cudaGetErrorString (cudaGetLastError())) ;

74

Device Management

* Application can query and select GPUs

cudaGetDeviceCount (int *count)

cudaSetDevice (int device)

cudaGetDevice (int *device)

cudaGetDeviceProperties (cudaDeviceProp *prop, int device)

 Multiple threads can share a device

* Asingle thread can manage multiple devices

Select current device: cudasetDevice (i)
For peer-to-peer copies: cudaMemcpy (...)

' requires OS and device suppo7ré

More Resources

You can learn more about CUDA at

— CUDA Programming Guide (docs.nvidia.com/cuda)

— CUDA Zone —tools, training, etc.
(developer.nvidia.com/cuda-zone)

— Download CUDA Toolkit & SDK
(www.nvidia.com/getcuda)

— Nsight IDE (Eclipse or Visual Studio)
(www.nvidia.com/nsight)

76

http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-zone
http://www.nvidia.com/getcuda
http://www.nvidia.com/nsight

Acknowledgments

Educational materials from NVIDIA Deep Learning Institute via its

University Ambassador Program.

Support from Texas A&M Institute of Data Science (TAMIDS), and Texas
A&M High Performance Research Computing (HPRC).

Support from NSF OAC Award #2019129 - MRI: Acquisition of FASTER -
Fostering Accelerated Sciences Transformation Education and Research
Support from NSF OAC Award #2112356 - Category II: ACES -
Accelerating Computing for Emerging Sciences

77

https://www.nvidia.com/en-in/training/
https://tamids.tamu.edu/
https://hprc.tamu.edu/
https://hprc.tamu.edu/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2019129&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112356

HPRC Survey

I T

HPRC Survey

HPRC Survey

78

https://docs.google.com/forms/d/e/1FAIpQLSensgCZI15u9jwKR7wGL1c59BTojSJK3fwwKXHLLrONviKRFw/viewform

