
High Performance Research Computing | hprc.tamu.edu

Intermediate Linux

Wesley Brashear

1

February 16, 2024

1

High Performance Research Computing | hprc.tamu.edu

Overview
● Text Processing

○ GUIs and vi
○ sed
○ awk
○ grep

● Bash Scripting
○ Basics: Syntax and Constructs
○ External Inputs
○ bc

● Customizing the Environment
○ Environment Variables
○ PATH
○ Important Bash Files

2

High Performance Research Computing | hprc.tamu.edu

Accessing Grace: via SSH
● SSH command is required for accessing Grace:

− On campus: ssh userNetID@grace.hprc.tamu.edu
− Off campus:

● Set up and start VPN (Virtual Private Network): u.tamu.edu/VPnetwork
● Then: ssh userNetID@grace.hprc.tamu.edu

− Two-Factor Authentication enabled for CAS, VPN, SSH
● SSH programs for Windows:

− MobaXTerm (preferred, includes SSH and X11)
− PuTTY SSH
− Windows Subsystem for Linux

● SSH programs for MacOS:
− Terminal

Login sessions that are idle for 60 minutes will be closed automatically
Processes run longer than 60 minutes on login nodes will be killed automatically.

Do not use more than 8 cores on the login nodes!
Do not use the sudo command.

https://hprc.tamu.edu/kb/Helpful-Pages/#ssh

3

http://u.tamu.edu/VPnetwork

High Performance Research Computing | hprc.tamu.edu

Accessing Grace: via HPRC Portal
● HPRC homepage: https://hprc.tamu.edu/
● Select ‘Grace Portal’ in Portal tab dropdown:

4

https://hprc.tamu.edu/

High Performance Research Computing | hprc.tamu.edu

Accessing Grace: via HPRC Portal
● Log in to CAS
● Select ‘>_grace Shell Access’ from Clusters dropdown:

5

High Performance Research Computing | hprc.tamu.edu

Accessing Grace: via HPRC Portal

6

High Performance Research Computing | hprc.tamu.edu

Practice Files

● Log in to Grace now
○ ssh (enable X11 forwarding) or through the portal

● Change to your SCRATCH directory

● Copy the practice files and change directories

7

cd $SCRATCH

cp -r /scratch/training/Intermediate_Linux .
cd Intermediate_Linux

High Performance Research Computing | hprc.tamu.edu

Text Processing
Students will be able to use vi (vim) to view, edit and save
text files. Students will also be able to understand
common uses of sed, awk, and grep.

8

High Performance Research Computing | hprc.tamu.edu 9

Text Processing - GUI

● Files can be edited through the Files tab on the Open
OnDemand Portal

● If you access Grace through terminal with X11 enabled:

gedit filename

emacs filename

High Performance Research Computing | hprc.tamu.edu

Two modes:
• insert mode

○ for typing in text
○ all keystrokes are interpreted as text
○ i command initiates insert mode

• command mode
○ for navigating the file and editing
○ all keystrokes are interpreted as commands
○ Esc returns the user to command mode

vi Editor
• vi filename # opens (creates) a file using vi
• vi -R filename # opens a file using vi in read-only mode
• view filename # same as vi -R filename

10

High Performance Research Computing | hprc.tamu.edu

vi Editor - Practice
● Create a file:

● vi starts in command mode:

11

vi example.txt

High Performance Research Computing | hprc.tamu.edu

● press to enter insert mode

● Type a few sentences over several lines:

12

i

mode line, position

part of
document
showing

vi Editor - Practice

High Performance Research Computing | hprc.tamu.edu

vi Commands
To exit a file or save press Esc
● ZZ or :wq or :x save the file and exit
● :w filename - save the file with the name filename
● :w! force save
● :q or :q! quit without saving
● :q quits a file when there have been no changes
● :q! quits the file regardless of changes

Try writing something, then close the file you created!

13

High Performance Research Computing | hprc.tamu.edu

Moving around in the file
• h, l (or space), j and k - left, right, down and up
• G move to end of file
• nG go to line n
• CTRL + f Scroll down a full screen
• CTRL + b scroll up a full screen
• 0 (zero) Move to start of current line
• w move forward one word
• b move back one word
• e move to the end of the word

vi Commands

Open the file you created in vi to practice these commands

14

High Performance Research Computing | hprc.tamu.edu

vi Commands
Commands that take you into insert mode

○ i insert text to the left of the cursor
○ I insert text at the beginning of the line
○ a insert text to the right of the cursor
○ A insert text at the end of the line
○ o open a line below the cursor
○ O open a line above the cursor
○ R overwrite text to the right of the cursor
○ cw change a word with new text - the cursor must be at the

beginning of the word

15

Open the file you created in vi to practice these commands

High Performance Research Computing | hprc.tamu.edu

vi Commands - Practice
● Open a new file named “HelloWorld.sh”

● Change vi to insert mode and type:

● Then save and exit the file.

● Type - Do you see the file you created?

● Type - You should see:

● Type - You should see:

16

ls

more HelloWorld.sh #!/bin/bash
echo Hello World

bash HelloWorld.sh Hello World

#!/bin/bash
echo Hello World

High Performance Research Computing | hprc.tamu.edu

vi Commands
Editor commands that keep you in command mode
● x delete a single character at the cursor
● dd delete the entire current a line
● ndd delete n lines
● dw delete a word
● dG delete to the end of the file
● D delete to the end of the line
● ra replace current character with a (a = character, number, etc.)
● u undo last command (only 1 undo on most unix machines. Most

new versions of vi (vim) have multiple undo and redo (Ctrl-r) capability)
● nyy yank n (n is a number) lines to memory
● p (lowercase p) put the yanked lines below the cursor
● P (uppercase P) put the yanked lines above the cursor

17

High Performance Research Computing | hprc.tamu.edu

vi Commands
Miscellaneous commands

○ /name search forward for name
○ ?name search backward for name
○ :1,$ s/pattern1/pattern2/g

■ from line 1 to the bottom find and substitute pattern1 for pattern2
■ you could also use :% s/pattern1/pattern2/g

● % and 1,$ mean the entire file
● the g means that all occurrences of pattern1 will be substituted in a line and

not just the first one
○ :e filename exits to the file filename

18

High Performance Research Computing | hprc.tamu.edu

vi Commands
Miscellaneous commands

○ ma marks that line and stores the position in the variable a
○ :'a,. y x yanks the lines between the mark a and where the cursor

is (.) and stores it in the variable x
○ :pu x puts the lines stored in x into the file where the cursor is
○ :r filename read file named filename and insert after current line
○ :set all lists all of the settings
○ :set number displays line numbers

19

High Performance Research Computing | hprc.tamu.edu

vi Commands - Practice
● Open the file named “environment.txt”:

● Search for “OMP_NUM_THREADS”:

● Remove the highlight from the search:

● Replace the “1” after the equals sign to “2”:

20

vi environment.txt

/OMP_NUM_THREADS

move cursor over “1”
x # deletes char at current position
a # open insert mode after cursor
2 # type in the new value
ESC # exit insert mode

:noh

High Performance Research Computing | hprc.tamu.edu

vi Commands - Practice
● Search backward for “PWD=”

● Change the path to contain your username:

● Search backward again for “USER=” and delete this line without
entering insert mode:

21

?PWD=

cw # Change word (erase current word and go into insert mode)
yourUserName # Type in new variable name
ESC # Exit insert mode

?USER= # search backwards for “USER=”
dd # delete this line

High Performance Research Computing | hprc.tamu.edu

vi Commands - Practice
● Wait! Undo that last delete

● Copy that line and the next two lines and paste them on the end of the
file:

22

u # undo last dd command

3yy # “3 lines yanked” should appear on the bottom left
G # Move the cursor to the bottom of the file
p # lowercase p pastes the yanked lines below the cursor

High Performance Research Computing | hprc.tamu.edu

vi Commands - Practice
● Move the cursor to the beginning of the file

● Search for all occurrences of “username” and replace with “hprc_user”

● List all of the vi settings:

● Show the line numbers in vi:

● Save the document and exit: or

23

1 G # Navigate to first line

:1,$ s/username/hprc_user/g

:set all

:set number

:x :wq

High Performance Research Computing | hprc.tamu.edu

GNU sed - Stream EDitor (sed)
A stream editor is used to perform basic transformations on text
read from a file or a pipe.
● Useful one-line scripts for sed: http://sed.sourceforge.net/sed1line.txt
● Online manual: https://www.gnu.org/software/sed/manual/
● Common uses

○ sed -n '4,6p' filename
■ print out line 4 to line 6 (without –n, all lines will be printed and

lines 4 to 6 will be printed twice)
○ sed '2,4d' filename

■ delete line 2 to line 4 (output will contain lines 1, 5-10)
○ sed '3,$d' filename

■ delete line 3 to the last line of the file (output will contain lines 1
and 2)

24

Try these commands on the file labeled “sed_example.txt”

http://sed.sourceforge.net/sed1line.txt
https://www.gnu.org/software/sed/manual/

High Performance Research Computing | hprc.tamu.edu

GNU sed - Stream Editor
● s substitute

○ sed 's/pattern1/pattern2/g' filename
■ find pattern1 and replace it with pattern2 for all instances of

pattern1, output is set to stdout (g can be left off to only
replace the first instance on each line)

○ sed 's/pattern1/pattern2/g' filename > filename2
■ output is set to filename2

○ sed –i 's/pattern1/pattern2/g' filename
■ modifies the file in-place (changes the original file)

○ sed 's/^/pattern1/' filename

■ insert pattern1 at the beginning of each line of a file
○ sed 's/$/pattern1/' filename

■ insert pattern1 at the end of each line of a file

25

Try these commands on the file labeled “sed_example.txt”

High Performance Research Computing | hprc.tamu.edu

sed - Practice
● In this practice we will use the file sed_ex02.txt.
● Make the following changes to the text file using sed

commands:
○ cp sed_ex02.txt tmp.txt create a copy of the file on

which to work.
○ Replace all instances of “vegetables“ with “vim”.
○ Delete the 1st line of the file.
○ Delete the now 2nd line of the file.
○ Delete the now fourth line of the file.
○ Print lines 1 to 4 and save to a file output.txt.
○ Examine the contents of output.txt

26

High Performance Research Computing | hprc.tamu.edu

GNU AWK
awk is used to search files for lines (or other units of text) that contain
certain patterns and then do something (print, manipulate, etc).
awk options '/search pattern/ {action}' input-file > output-file

• Delimiters (Field Separator, FS)
• Default is white space

• Search patterns
• awk '/pattern/' filename

• Variables
• fields are stored in variables based on the FS
• $0 the entire line
• $1 1st field
• $2 2nd field

peach fruit 8
tomato vegetable 5
zucchini vegetable 4

$1 $2 $3

shopping_list.txt

27

High Performance Research Computing | hprc.tamu.edu

GNU AWK
• Variables

• NR number of records
• NF Number of Fields in a record
• RS Specifies the record separator

• Print statement
• awk '/pattern/ {print $0}' filename
• awk '/pattern/ {print $1 "," $2}' filename>outputfilename.txt

• printf statement for more control over the print format
• https://www.gnu.org/software/gawk/manual/html_node/Printf-Examples.html

• Pre-processing/Post-processing
• BEGIN
awk 'BEGIN {print "Shopping List"} { print $1, $2 }' sample.txt

• END
awk 'END { print NR }' sample.txt

• FS Specifies the field separator
• OFS Specifies the Output field separator
• ORS Specifies the Output record separator

28

https://www.gnu.org/software/gawk/manual/html_node/Printf-Examples.html

High Performance Research Computing | hprc.tamu.edu

GNU AWK - Practice

● Print the 1st column of the tmp.txt file created during the last
practice.

● What does it say?

29

High Performance Research Computing | hprc.tamu.edu

Searching File Contents - grep
grep search-pattern filename - searches the file filename for the pattern
search-pattern and shows the results on the screen (prints the results to standard out).

○ grep Energy run1.out

● searches the file run1.out for the word Energy
● grep is case sensitive unless you use the -i flag

○ grep Energy *.out

● searches all files in all directories in the current one that end in
.out

○ grep "Total Energy" */*.out

● You must use quotes when you have blank spaces. This
example searches for Total Energy in every file that ends in .out in
each directory of the current directory

○ grep –R "Total Energy" Project1

● Searches recursively all files under Project1 for the pattern Total Energy

30

High Performance Research Computing | hprc.tamu.edu

Searching File Contents - grep
● grep -A N 'search' filename

○ Outputs N lines after each line containing the search term.

● grep -B N 'search' filename
○ Outputs N lines before each line containing the search term.

● grep -v 'search' filename
○ Outputs lines that do not contain the search term.

● grep -c 'search' filename
○ Provides the number of lines containing the search term(s)

31

High Performance Research Computing | hprc.tamu.edu

Searching File Contents - egrep

 egrep 'pattern1|pattern2|etc' filename

○ searches the file filename for all patterns (pattern1, pattern2, etc) and
prints the results to the screen.

○ The | character is called a pipe and is normally located above the return
key on the keyboard.

○ egrep 'Energy|Enthalpy' *.out

● searches for the word Energy or Enthalpy in every file that ends in .out
in the current directory.

32

High Performance Research Computing | hprc.tamu.edu

grep & egrep Hands-on Practice

● Use grep to count the number of lines containing either 'min'
or 'max' in the file ex03.txt.

● Using only grep, print only the line after the line containing
‘love’ in the file ex02.txt

33

High Performance Research Computing | hprc.tamu.edu

Bash Scripting
Learning Objective:
Understand conditions, loops and write bash scripts for
simple tasks

34

High Performance Research Computing | hprc.tamu.edu

Basic Shell Scripting
A shell script is a text file that contains one or more linux commands that can
be run as a single batch of commands.
Shell scripts can be used to automate routine tasks.
It is good practice to name shell scripts with: .sh

#!/bin/bash
=========== script header
Description, Revision history, License

VARIABLE ASSIGNMENT
CURRENTUSER=$(whoami)
SHOW MESSAGES
grep $CURRENTUSER /etc/passwd

shebang, indicates the shell

The shell ignores blank and
commented-out lines.
It is a good practice for
developers to include info
about the script in the header.

To store the output of a
command in a variable, use
MYVAR=$(command)

body

To run the script
• run with bash script.sh
• add executable permission to the script file (chmod u+x script.sh)

and run with ./script.sh
35

High Performance Research Computing | hprc.tamu.edu

Basic Constructs for Bash Scripting
• Conditionals:

If something is true, do something and if it is false, do
something else

if < some test >
then
 commands
elif < some test >
then
 other commands
else
 commands
 fi

#!/bin/bash
#

i=1
if [$i –eq 1] ; then
 echo i is equal to 1
 else
 echo i does not equal 1
 echo i equals $i
 fi

36

https://www.gnu.org/software/bash/manual/html_node/Conditional-Constructs.html

High Performance Research Computing | hprc.tamu.edu

Integer Comparison Operators
-eq is equal to if ["$a" -eq "$b"]

-ne is not equal to if ["$a" -ne "$b"]

-gt is greater than if ["$a" -gt "$b"]

-ge is greater than or equal to if ["$a" -ge "$b"]

-lt is less than if ["$a" -lt "$b"]

-le is less than or equal to if ["$a" -le "$b"]

< is less than
(within double parentheses) (("$a" < "$b"))

<= is less than or equal to
(within double parentheses) (("$a" <= "$b"))

> is greater than
(within double parentheses) (("$a" > "$b"))

>= is greater than or equal to
(within double parentheses) (("$a" >= "$b"))

37

High Performance Research Computing | hprc.tamu.edu

String Comparison Operator
== True if $a starts with an "z" (pattern

matching). [[$a == z*]]

True if $a is equal to z* (literal matching). [[$a == "z*"]]

!= is not equal to ["$a" != "$b"]

< is less than, in ASCII alphabetical order if [["$a" < "$b"]] or
if ["$a" \< "$b"]

> is greater than, in ASCII alphabetical order if [["$a" > "$b"]] or
if ["$a" \> "$b"]

-z string is null, that is, has zero length if [-z "$s"]

-n string is not null if [-n "$s"]

38

High Performance Research Computing | hprc.tamu.edu

Basic Constructs for Bash Scripting

Case Constructs #!/bin/bash
#
month='June'
case $month in
 Jan)
 mnum='01'
 ;;
 Feb)
 mnum='02'
 ;;
 ….
 Dec)
 mnum ='12'
 ;;
esac

case var in
 case1)
 <commands>
 ;;
 case2)
 <commands>
 ;;
*)
 commands;;
esac

* symbol defines the default case, usually in the final pattern.

39

https://www.gnu.org/software/bash/manual/html_node/Looping-Constructs.html#Lhttps://www.gnu.org/software/bash/manual/html_node/Conditional-Constructs.htmlooping-Constructs

High Performance Research Computing | hprc.tamu.edu

Practice: Conditionals
● Create a shell script that checks if the current day on the system

belongs to the first, middle or last part of the month.
● If it is within the first 10 days of a month, print (echo) "We are

within the first 10 days of the month."
● Otherwise, check if it is less than or equal to 20 and echo "We are

within the middle 10 days of the month."
● If none of the previous conditions are met, return "We are within

the last few days of the month."
● Hint: To obtain current day of month, use the command date +%d

(there is a space before +)

40

High Performance Research Computing | hprc.tamu.edu

Bash Scripts with User Arguments
• Command line arguments

• Read input during script execution.

• Accept data that has been redirected into the Bash script via STDIN.

#!/bin/bash

shell script exercise

my_name=$1

echo "Howdy $my_name"

[user@host ~]bash my_name.sh Amy

[user@host ~]Howdy Amy

#!/bin/bash
Ask the user for emails
read -p "Username: " uservar
read -sp "Password(hidden): " passvar
echo
echo Thank you $uservar we now have your info

[user@host ~]bash info.sh
Username: Stan
Password(hidden):
[user@host ~]Thank you
Stan we now have your info

41

High Performance Research Computing | hprc.tamu.edu

Basic Constructs for Bash Scripting

Loops: Do something over and over until a
specific condition changes, and then stop.

#!/bin/bash

#

i=1

while [$i –le 100] ; do

 echo i equals $i

 ((i++))

 done

while [<some test>] ; do
 <commands>
 done

for var in <list> ; do
 <commands>
 done

42

#!/bin/bash

for file in *.log ; do

 head –n1 $file

 done

https://www.gnu.org/software/bash/manual/html_node/Looping-Constructs.html#Looping-Constructs

High Performance Research Computing | hprc.tamu.edu

Practice: Loops

• Write a simple number-guessing game in a script called guess.sh.
When the script is launched, a random number between 1 and 10 is
generated and stored in the variable RANDOMNUM. The script then
will expect input from the user. If the guess is incorrect, it will
continue to ask the user for an input until the user guesses the
number correctly. (Hint: to generate a random number between 1
and 10, use the command shuf –i1-10 –n1)

• Change the permissions on files ending with .sh to 755 using
a for loop or run bash guess.sh

43

High Performance Research Computing | hprc.tamu.edu

bc - Basic Calculator
● bc is a command line calculator which can be useful for quick calculations.

○ Allows for arithmetic operations in bash scripts.

● Addition/subtraction Example:

● Exponential Example:

● Assign value of calculation to variable example:

● Variables can be used in calculations:
○ What value do you get?

44

echo "13+3" | bc

echo "10^3" | bc

x=`echo "12+5" | bc`
echo $x

echo "$x+100" | bc

High Performance Research Computing | hprc.tamu.edu

bc - Practice

● Create a bash script that defines a variable i as 1.
● Then add a loop that adds (i+2) to i, 12 times.

○ Print i each step of the loop.
● What is the final number?

45

High Performance Research Computing | hprc.tamu.edu

Customizing the Environment

46

High Performance Research Computing | hprc.tamu.edu

Bash Environment Variables
● Environment variables store information that is used across different

processes in a Linux system.

● Use all caps for Bash Environment variable. A-Z 0-9 _
● Use lowercase for the variables that you create. a-z 0-9 _

○ HOME Pathname of current user’s home directory
○ PATH The search path for commands.

● Use the echo command to see the contents of a variable.

echo $HOME

47

High Performance Research Computing | hprc.tamu.edu

The Search PATH
● The shell uses the PATH environment variable to locate commands typed at the

command line.
● The value of PATH is a colon-separated list of full directory names.
● The PATH is searched from left to right. If the command is not found in any of the listed

directories, the shell returns an error message.
● If multiple commands with the same name exist in more than one location, the first

instance found according to the PATH variable will be executed.

● Add a directory to the PATH for the current Linux session.

export PATH=$PATH:/home/netid/bin

/usr/lib64/qt-3.3/bin:/sw/local/bin:/usr/local/bin:/usr/bin:/usr/loca
l/sbin:/usr/sbin:/usr/lpp/mmfs/bin:/home/netid/.local/bin

echo $PATH

48

High Performance Research Computing | hprc.tamu.edu

Customizing the Environment
Two important files for customizing your Bash Shell environment:

● .bashrc (pronounced dot bashrc)

○ contains aliases, shell variables, paths, etc.

○ executed (sourced) upon starting a non-login shell.

● .bash_profile (dot bash_profile)

○ also can contain aliases, shell variables, paths, etc

○ normally used for terminal settings

○ executed (sourced) upon login

○ if .bash_profile doesn't exist, the system looks for .profile (dot profile)

● . .bashrc (or source .bashrc)

○ Executes the commands in the .bashrc file

49

High Performance Research Computing | hprc.tamu.edu

Get the aliases and functions
if [-f ~/.bashrc]; then
 . ~/.bashrc
fi

User specific environment and startup programs
PATH=$PATH:$HOME/.local/bin:$HOME/bin
export PATH

Personal aliases
alias h="history|more"
alias m="more"

User specific functions
function cc() { awk -f cc.awk "$@".log>"$@".cc ; }

.bash_profile File Contents

50

A line that begins with a # is a comment.

Enable settings in .bashrc

Syntax to set a global variable:
export var_name=value

Specify PATH for all sessions

Add personal aliases

If you type cc test at the prompt, the
following command will be executed:
awk -f cc.awk test.log > test.cc

Syntax to create a function:
function name() { command ; }

High Performance Research Computing | hprc.tamu.edu

Practice: Alias and $PATH
● Add a new alias in your .bash_profile under your home directory named simple

that executes the command: echo I succeeded in creating a simple alias.
● Activate your new alias.
● Type simple at the prompt to use your new alias.
● Make a directory named myapps in your home directory.
● Create a file (your choice of a name) in myapps with the following content:

○ echo I succeeded in adding myapps to my path
● Change the permissions of filename to allow execution (replace filename with the

name that you used.
● Run filename by typing filename (you should get an error message).
● Add myapps directory to your PATH with export in your current session.
● Run filename by typing: filename

51

High Performance Research Computing | hprc.tamu.edu

Solution: Alias and $PATH

● Add a new alias in your .bash_profile file named simple that executes the
command: echo I succeeded in created a simple alias

● active your new alias.

● Type simple at the prompt to use your new alias.

52

. .bash_profile

echo 'alias simple="echo I succeeded in creating a simple alias" '>> .bash_profile

simple

High Performance Research Computing | hprc.tamu.edu

Solution: Alias and $PATH
● Make a directory named myapps in your home directory.

● Create a file (your choice of a name) in myapps with the following content:
○ echo I succeeded in adding myapps to my path

53

cd myapps
echo "echo I succeeded in adding my apps to my path" >> filename

cd
mkdir myapps

High Performance Research Computing | hprc.tamu.edu

Solution: Alias and $PATH
● Change the permissions of filename to allow execution (replace filename

with the name that you used).

● Run filename by typing filename (you should get an error message).

● Add myapps directory to your PATH with export in your current session.

● Run filename by typing: filename

54

filename

export PATH=$PATH:/home/username/myapps/

chmod u+x filename

bash: filename: command not found

filename

High Performance Research Computing | hprc.tamu.edu

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu
Phone: 979-845-0219

Help us help you. Please include details in your request for support, such as, Cluster
(Faster, Grace, Terra, ViDaL), NetID (UserID), Job information (Job id(s), Location of your
jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and
Steps you have taken, so we can reproduce the problem.

55

https://hprc.tamu.edu/

