HIGH PERFORMANCE RESEARCH COMPUTING

HPRC Primer Grace

February 2, 2024

High Performance Research Computing DIVISION OF RESEARCH

Grace Hardware

Grace is a 925-node Intel cluster from Dell with an InfiniBand HDR-100 interconnect, A100 GPUs, RTX 6000 GPUs and T4 GPUs. The 925 nodes are based on the Intel Cascade Lake processor.

48 cores/node

3TB Large Memory-80 cores/nodes Login Nodes: 10 GbE TAMU network connection

Resource	Count
Login Nodes	5
384GB memory general compute nodes	800
GPU - A100 nodes with 384GB memory	100
GPU - RTX 6000 nodes with 384GB memory	9
GPU - T4 nodes with 384GB memory	8
3TB Large Memory	8

For more information: <u>https://hprc.tamu.edu/kb/User-Guides/Grace/</u>

Accessing Grace: Setup

• If off-campus:

Set up and start VPN (Virtual Private Network): <u>u.tamu.edu/VPnetwork</u>

- Two-Factor Authentication required
- Today we'll access Grace via the online Portal, but you can also use ssh.
- See https://hprc.tamu.edu/kb/User-Guides/Grace/Access/ for more details.

Accessing Grace via the Portal

Access the HPRC portals through most web browsers:

- 1. Go to <u>portal.hprc.tamu.edu</u> or use the <u>Portal dropdown menu</u> on the HPRC homepage: <u>https://hprc.tamu.edu/</u>
- 2. Choose Grace Portal

https://hprc.tamu.edu/kb/User-Guides/Grace/Access/

Accessing Grace via the Portal

https://hprc.tamu.edu/kb/User-Guides/Grace/Access/

Hands-On Activity - 2 Minutes

Try to access a *shell** on Grace now, either through <u>portal.hprc.tamu.edu</u> or <u>hprc.tamu.edu</u>

*(also called *terminal* or *command line*)

What message do you see when you login?

Remember Grace has 5 login nodes. Which one does your command prompt say you got?

File Systems and User Directories

Directory	Environment Variable	Space Limit	File Limit	Intended Use
/home/\$USER	\$HOME	10 GB	10,000	Small to modest amounts of processing.
/scratch/user/\$USER	\$SCRATCH	1 TB	250,000	Temporary storage of large files for on-going computations. Not intended to be a long-term storage area.

\$SCRATCH is shared between the FASTER and Grace clusters.

View file usage and quota limits using the command:

showquota

Do NOT share your home or scratch directories. Request a group directory for sharing files.

https://hprc.tamu.edu/kb/User-Guides/Grace/Filesystems_and_Files/

Portal: Grace Dashboard

Easily view Cluster utilization, Storage Quotas, & Allocation Balances

Quota and file limit increases will only be considered for scratch directories

Hands-On Activity - 2 Minutes

1. Please try to access dashboard now through the portal.

2. Check your quotas both on the command line and on the dashboard.

showquota

Software

- See the Software Knowledge Base page <u>https://hprc.tamu.edu/kb/Software/</u> for instructions and examples
- Search for software modules on <u>https://hprc.tamu.edu/software/grace/</u>
- License-restricted software
 Contact <u>help@hprc.tamu.edu</u>

ast Updated: Mon Jun 27 12	States Software Modules Orace Software Modules 224:16 CDT Grace cluster is listed in the table. Click on any software package name to get more information such as the available versions, additional documentation if available			
Show 10 * entries	Search: numpy			
Name	Jescription			
awkward	'Awkward Array is a library for nested, variable-sized data, including arbitrary-length lists, records, mixed types, and missing data, using NumPy-like idioms.'			
bcolz	boolz provides columnar, chunked data containers that can be compressed either in memory and on disk. Column storage allows for efficiently querying tables, as well as for cheap column addition and removal. It is based on NumPy, and uses it as the standard data container to communicate with boolz objects, but it also comes with support for import/keyport facilities tr/form HDF/PyTobles tables and pandes dataformes."			
Bottleneck	Fast NumPy array functions written in C'			
FablO	FablO is an I/O library for images produced by 2D X ray detectors and written in Python. FablO support images detectors from a dozen of companies (including Mar, Destris, ADSC, Hamamatsu, Oxford), for a total of 20 different file formats (ike CBF, EDF, TIFF,) and offers on unified interface to their headers (as a python dictionary) and datasets (as a numpy ndarray of integers or floats)."			
jax	Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more			
mkl_fft	NumPy-based Python interface to Intel(R) MKL FFT functionality			
netcdf4-python	Python/numpy interface to netCDF.			
numba	Numba is an Open Source NumPy-aware optimizing compiler for Python sponsored by Continuum Analytics, Inc. It uses the remarkable LUVM compiler infrastructure to compile Python syntax to machine code.			
numexpr	The numexpr package evaluates multiple-operator array expressions many times faster than NumPy can. It accepts the expression as a string, analyzes it, rewrites it more efficiently, and compiles it on the fly into code for its internal virtual machine (VM). Due to its integrated just-in-time (JT) compiler, it does not require a compiler at runnine. ¹			
numpy	NumPy is the fundamental package for scientific computing with Python. It contains among other things: a powerful N-dimensional array object, sophisticates (broadcasting) functions, tools for integrating C/C++ and Fortran code, useful linear algebra, Fourier transform, and random number capabilities. Besides its abvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to samlessly and speedivi integrates with a wide varies of databases. ¹			

- Contact HPRC (can use the dashboard) for software installation help/request
 - User can install software in their home/scratch directory
 - Do NOT run the sudo command when installing software

Software: Application Modules

- Installed applications are made available with the module system
- Grace uses a *software hierarchy* inside the module system
- In this hierarchy, the user loads a compiler which then makes available Software built with the currently-loaded compiler

Software: Modules and Toolchains

- Toolchains are what we call groups of compilers & libraries
- There's a variety of toolchains available on the clusters:
 o intel/2022a
 - o iomkl/2020a
 - foss/2022a

• GCCcore/11.3.0

• Module management:

module spider module purge (more than just these versions)

 \leftarrow search for modules and their dependencies

 \leftarrow removes all loaded modules

Remember: module load

module purge

1. Please search for and load the following module:

OpenMPI/4.1.4

(Tip) Type this to show which compiler needs to be loaded:
 module spider OpenMPI/4.1.4
 (Tip) And check that it's been loaded with:
 module list

2. Next remove (unload) all your current modules.

Computing on HPRC Clusters

Two sets of nodes on our clusters:

- Login nodes: log in, perform basic commands, write job scripts, and send job scripts to...
- **Compute nodes**: executes jobs, sends results back to you

Contains batch manager job parameters along with Unix and software commands.

Batch Jobs on HPRC Clusters

AM

Check your Service Unit (SU) Balance

myproject

- 1SU = 1 core-hour (GPUs are more expensive per-hour!)
- List the SU Balance of your Account(s) with:

List of YourNetID's Project Accounts Default | Allocation |Used & Pending SUs| Balance Account FΥ ΡI N 10000.00 10000.00 Doe, John 1228000223136 0.00 2023 1428000243716 2023 Y 5000.00 -71.06 4928.94 Doe, Jane -0.91 N 5000.00 1258000247058 2023 4999.09 Doe, Jane

Run myproject -d <Account#> to change default project account

(replace <Account#> with your number!)

Run myproject -h to see more options

https://hprc.tamu.edu/kb/User-Guides/AMS/Service_Unit/ https://hprc.tamu.edu/kb/User-Guides/AMS/UI/

SUs in the Grace Dashboard

The same functionality can be found in the Dashboard:

High Performance Research Computing | hprc.tamu.edu

Hands-On Activity - 2 Minutes

1. Use **myproject** to check the SU balance of your accounts.

2. Use the dashboard the check the same information.

Sample Job Script Structure

#!/bin/bash

```
##NECESSARY JOB SPECIFICATIONS
#SBATCH --export=NONE
#SBATCH --get-user-env=L
#SBATCH --job-name=JobExample1
#SBATCH --time=01:30:00
#SBATCH --time=01:30:00
#SBATCH --ntasks=1
#SBATCH --mem=2G
#SBATCH --output=stdout.%j
```

```
##OPTIONAL JOB SPECIFICATIONS
#SBATCH --account=123456
#SBATCH --mail-type=ALL
#SBATCH --mail-user=email_address
```

```
# load required module(s)
```

```
module purge
module load GCCcore/11.3.0 Python/3.10.4
```

Run your program
python my_program.py

These *parameters* describe your job to the Slurm job scheduler. The lines starting with #SBATCH are NOT comments! See the <u>Knowledge Base</u> for more info

Account number to be charged

Whatever commands or scripts you want to run. Here, we set up the modules we need for our environment and run a python program.

(We will practice with job files in a few slides)!

Submit a Job and Check Job Status

Hands-On Activity

- 1. Navigate to /scratch/training/Intro-to-Grace
- 2. Copy hello_world.job to your home directory
- Return to your home directory and submit the job file using sbatch.
- 4. Check that the job is running in a Slurm queue with **squeue**.
- 5. When your job completes, check the contents of the output file.

Hands-On Activity

Linux command line tools

Portal file navigator

Then submit and check on the command line with **sbatch** and **squeue**.

Batch Queues

- Job submissions are auto-assigned to batch queues based on the resources requested (e.g. number of cores/nodes and walltime limit)
- Use **sinfo** to check their status:

[kromero2001@grace5 ~]\$ sinfo					
PARTITION	AVAIL	TIMELIMIT	JOB_SIZE	NODES(A/I/O/T)	CPUS(A/I/0/T)
short*	up	2:00:00	1-32	431/259/110/800	18789/14283/5328/384
medium	up	1-00:00:00	1-128	431/259/110/800	18789/14283/5328/384
long	up	7-00:00:00	1-64	431/259/110/800	18789/14283/5328/384
xlong	up	21-00:00:00	1-32	431/259/110/800	18789/14283/5328/384
vnc	up	12:00:00	1-32	98/3/16/117	849/3999/768/5616
gpu	up	4-00:00:00	1-32	98/3/16/117	849/3999/768/5616
bigmem	up	2-00:00:00	1-4	1/6/1/8	18/542/80/640
staff	up	infinite	1-infinite	529/262/126/917	19638/18282/6096/440
special	up	7-00:00:00	1-infinite	529/262/126/917	19638/18282/6096/440
gpu-a40	up	<u>1</u> 0-00:00:00	1-15	3/12/0/15	12/708/0/720

For the NODES and CPUS columns:

A = Active (in use by running jobs) O= Offline (unavailable for jobs) I = Idle (available for jobs) T = Total

https://hprc.tamu.edu/kb/User-Guides/Grace/Batch/#batch-queues

Job Submission and Tracking

Slurm queue command	Description
<mark>sbatch</mark> jobfile1	Submit jobfile1 to batch system
<mark>squeue</mark> [-u user_name] [-j job_id]	List jobs
scancel job_id	Kill a job
<pre>sacct -X -j job_id</pre>	Show information for a job (can be when job is running or recently finished)
sacct -X -S YYYY-HH-MM	Show information for all of your jobs since YYYY-HH-MM
lnu job_id	Show resource usage for a job
pestat -u \$USER	Show resource usage for a running job
<pre>seff job_id</pre>	Check CPU/memory efficiency for a job

https://hprc.tamu.edu/kb/Helpful-Pages/Batch-Translation/

Need Help?

First check the <u>FAQ</u>

- <u>Grace User Guide</u>
- Email your questions to help@hprc.tamu.edu

Help us help you -- when you contact us, tell us:

- Which Cluster you're using
- Your username
- Job id(s) if any
- Location of your jobfile, input/output files
- Application used if any
- Module(s) loaded if any
- Error messages
- Steps you have taken, so we can reproduce the problem

Continued Learning

Intro to HPRC Video Tutorial Series

HPRC's Knowledge Base

High Performance Research Computing DIVISION OF RESEARCH

Thank you. Any questions?

