Tutorial: Introduction to Containers for Scientific Container-Native Workflows: **Charliecloud** on **ACES**

Richard Lawrence 10/29/2024

High Performance Research Computing DIVISION OF RESEARCH

developed for

Outline

- Overview of Containers
- Overview of Charliecloud
- Getting Started
- Scientific Container Image Sources
- Working with Images
- Working with Containers
- Scientific Use Cases on ACES
 - Tensorflow
 - LAMMPS
 - Clara Parabricks

Learning Resources

- Slides on the course web page <u>https://hprc.tamu.edu/training/aces_containers.html</u>
- HPRC Knowledge Base
 <u>https://hprc.tamu.edu/kb/Software/CharlieCloud/</u>
- HPRC on YouTube <u>https://www.youtube.com/c/TexasAMHPRC</u>
- Charliecloud Documentation
 <u>https://hpc.github.io/charliecloud/</u>
- ACCESS Links

https://support.access-ci.org/ci-links

Overview of Containers

What Are Containers?

- A container is a process (*) that has its own view of local resources:
 - Filesystem
 - User IDs
 - Network etc.
- Example: this container
 (** on the right) sees the

 image instead of the
 physical filesystem

Why Use Containers?

• Shareability:

- Share your container image file by uploading to a public repository
- Use images shared by others
- Portability:
 - Use images on any computer with the same architecture (x84-64)
- Reproducibility:
 - Container users are largely unaffected by changes to the cluster environments

What Goes In Container Images?

- Unlike in VMs, the OS Kernel is not duplicated
- Container images are smaller than VM images

Ā M

Popular Container Runtimes

Instant deployment to users on different devices!

Overview of Charliecloud

Charliecloud

• A lightweight, fully-unprivileged container solution

Charliecloud Features

- Charliecloud is a container runtime and an image builder
- Charliecloud can read and convert Docker images
- Filesystem inside container is isolated
- User inside container is isolated
- Works with high-performance cluster technologies

Read more in the Charliecloud manual on github <u>https://hpc.github.io/charliecloud/</u>

Charliecloud on ACES

- Charliecloud is available from our module system
 - execute module load charliecloud
- Charliecloud images can be large on disk. Be aware of your storage quota.
- Some container activities may be too cpu-intense for the *shared* login node. Be courteous to others and use a compute node for large image operations.
- Some container activities may be too I/O-intense for the *shared* network filesystem. Be courteous to others and use a local filesystem for large image operations.

Getting Started

ACES Portal

Accessing ACES via the Portal (ACCESS)

ALLOCATIONS SUPPORT OPERATIONS METRICS	Q = Login	
		If you had an XSEDE account, please enter your XSE username and password for ACCESS login. ACCESS ID
Consent to Attribute Release	~	
TAMU ACES ACCESS OIDC requests access to the following information. If you do not approve this request, do not proceed. • Your ClLogon user identifier • Your name • Your mail address		ACCESS Password
Your username and affiliation from your identity provider		LOGIN
Select an Identity Provider ACCESS CI (XSEDE)	- 0	
Remember this selection O		Register for an ACCESS ID Forgot your password?
		Need Help?
Select the Identity Provider appropriate for your account.		Log-in using your ACCES

ising your ACCESS or institutional credentials.

Get a Shell on ACES

Click on "Clusters" menu → _aces Shell Access

Success!

Welcome to the ACES login node.

Set Up Your Environment

```
cd $SCRATCH
mkdir ch_tutorial
cd ch_tutorial
pwd
```

export TRAINING=/scratch/training/charliecloud
ls \$TRAINING

```
module load charliecloud
module list
```


Your First Image

The charliecloud image tool helps you build and organize your images.

ch-image --help

Let's fetch a small, basic linux distro: Almalinux. ch-image pull almalinux:8 ch-image list

The image is in your personal temporary local image repository. echo \$CH_IMAGE_STORAGE ls \$CH_IMAGE_STORAGE/img/

Your First Container

The ACES login node has Red Hat Enterprise linux installed. cat /etc/redhat-release

The charliecloud-run tool launches containers out of existing images.

ch-run --help

Let's launch a bash shell, investigate, and stop the container. ch-run almalinux:8 bash cat /etc/redhat-release exit

Container Image Sources

Popular Repositories

The most common repository is:

• Docker Hub

Others repositories include:

- Singularity Hub
- Singularity Library
- NVIDIA GPU Cloud
- Quay.io
- BioContainers

See

https://hprc.tamu.edu/kb/Software/Singularity/Examples/#popular-repositories

Docker Hub Example

Docker Hub repositories are named in the form <group>/<name> similar to GitHub.

Each image within a repository has a <tag> that describes how and when it was built.

This example is jupyter/scipy-notebook:latest

plore jupyter	/scipy-notebook					
	iupvter/sci	pv-noteboo	k 🖲 Sponsored	IOSS ☆		Pulls 50M
	By Jupyter Project • []	Indated 3 days ago				
Jpyter	Scientific Jupyter Not https://github.com/ju	ebook Python Stack fr pyter/docker-stacks	om			
	Image Artifact					
Overview Tak	js st → Filter Ta	igs	Q			
TAG	35 St - Filter Ta	igs	Q docker pull juj	pyter/sci	py-noteb.	-
TAG latest Last pushed 3 de DIGEST	gs st → Filter Ta	igs	Q docker pull ju	pyter/sci	py-noteb.	
TAG Int by Newer TAG Intest Last pushed 3 di DIGEST f45db12ab764	gs st → Filter Ta	igs OS/ARCH linux/amd64	Q docker pull ju	pyter/sci	py-noteb. DMPRESSEI	- E D SIZE © 1.24 GB
Dverview Ta Int by Newes TAG Intest Last pushed 3 di DIGEST f45db12ab764 611294263f76	gs st ▼ Filter Ta	os/ARCH linux/amd64 linux/arm64/v8	Q docker pull ju	pyter/sci, CC	py-noteb. DMPRESSEI	- 1 D SIZE © 1.24 GB 1.16 GB
Dverview Ta Int by Newes TAG Intest Last pushed 3 di DIGEST f45db12ab764 611294263f76 TAG Intest	st	os/ARCH linux/amd64 linux/arm64/v8	Q docker pull ju	pyter/sci	py-noteb. DMPRESSEI	- E D SIZE O 1.24 GB 1.16 GB

Docker Hub Pull Exercise

The <source> argument for an image pull looks like

- <url>/<group>/<name>[:<tag>]
- No url is needed for this exercise because Docker Hub is the default repository for Charliecloud

Therefore the pull command based the previous slide is:

ch-image pull jupyter/scipy-notebook:latest

(Download now or copy from \$TRAINING; we will need this later)

Backup copy at /scratch/training/charliecloud/jupyter-scipy-notebook-2023.sqfs

Clara Parabricks for GPU from NVIDIA

Performance Comparison Germline End-To-End Secondary Analysis

Data was generated using publicly available data (https://precision.fda.gov/challenges/truth) for NA12878, deprecating the data to 30X coverage. For the 22-minute runtime, DGX A100 with 320G memory was used. The native GATK4.1 numbers were generated using 32 vCPU (3.1 GHz Intel Xeon° Platinum 8175M) using 320Gb RAM.

NVIDIA Product Sheet:

https://resources.nvidia.com/en-us-genomics-ug-ep/healthcare-genomics-?lx=M-s96l&ncid=em-nurt-521116&mkt_tok=MTU2LU9GTi03NDIAAAGG5gOCuzMHKWvhCg5ODJ9NTi9KCxm57Lx jd5DcahRJvhUUc-g_yTLDcNVB3HBmOyWbGWigpg4yq1h3SK9QNOLnbLU6cm8VhMCHmup4BGcunnUvwRCy#cid=ix09_em-nurt_en-us

NVIDIA Repository Example

Navigate to catalog.ngc.nvidia.com and search "Clara Parabricks".

=	NGC Catalog		③ Welcome Guest 👒			
↑	Containers > NVIDIA Parabricks NVIDIA Parabricks		Get Container ~			
٥		Overview Tags Layers Security Scanning Related C	4.3.2-1 © SIGNED			
۲	~		Copy the latest tag's image path below:			
32		What is NVIDIA Parabricks?	nvcr.io/nvidia/clara/clara-parabricks:4.3.2-1 🗋			
dh.	PARABRICKS	NVIDIA Parabricks is an accelerated compute frame	<u>View all tags</u>			
	Fosturos	industry, primarily supporting analytical workflows fur	Drivy trivy and somatic matation accession			

Private repositories need a url in addition to the image name. <url>.../<group>/<name>[:<tag>] Click the "Get Container" button on the Tags tab and copy the path.

Working with Images

Image Formats

- Charliecloud container images come in two main formats:
 - 1. Directory
 - 2. Single file. HPRC supports the squashfs filesystem format for single file images. (more about that on a later slide)
- The ch-convert tool copies images into different formats ch-convert --help

Directory Image Format

- The image name should end in /.
- Directory images are writable.
- Directory read/write operation are slow, so put directory images on the high-speed /tmp filesystem.
- Images in \$CH_IMAGE_STORAGE are also directory images, but you refer to them by name without the trailing slash.

Convert to Directory Exercise

Convert our image in the cache to a directory image.

mkdir /tmp/\$USER
ch-convert jupyter/scipy-notebook:latest /tmp/\$USER/jupyter/

What did we make?

ls /tmp/\$USER/jupyter/

Note: /tmp is a local disk that's specific to this login node.

Editing Images Exercise

Directory images can be modified by adding the --write flag to ch-run. Any changes you make will be saved.

```
ch-run --write /tmp/$USER/jupyter/ bash
mkdir /scratch
exit
```

Are the changes still there?
 ch-run /tmp/\$USER/jupyter/ bash
 ls

Squashfs Image Format

- Squashfs is an open-source file format for filesystem images
- The whole filesystem becomes one single file
- The image name should end in .sqfs
- Squashfs images are read-only.
- Squashfs read operations are fast, so put squashfs images on the network filesystem /scratch.

Convert to Squashfs Exercise

Make sure you are still in your ch_tutorial directory in \$SCRATCH pwd

Then convert

ch-convert /tmp/\$USER/jupyter/ jupyter.sqfs

Are your changes still there? ch-run jupyter.sqfs /bin/bash ls exit

Working with Containers

Mounting your Scratch Space

- The option -b is used to mount the /scratch filesystem outside the container over the empty /scratch directory inside the container.
- The option -c is used to set the starting working directory in the container.

```
ch-run -b /scratch -c $SCRATCH jupyter.sqfs bash
pwd
ls
exit
```


Working with Variables

Some containers come with environment variables that are needed in order for the application to function properly. The --set-env option is used to turn those on.

```
ch-run --set-env jupyter.sqfs python
>>> import numpy
>>> print(numpy)
>>> exit()
```

Python with Numpy was installed in a Conda environment. It requires the PYTHONPATH variable to function.

Interactive Graphical Computing

Containerized Jupyter Notebook

Backup copy at

/scratch/training/charliecloud/jupyter-scipy-notebook-2023.sqfs

...Continued

High Performance Research Computing | hprc.tamu.edu

Ā M

Containerized Scientific Applications

Machine Learning with **†** TensorFlow

۹ 🖶	Search Docker Hub	Explore	Pricing	Sign In	Sign up
Explore	ntel/intel-optimized-tensorflow-avx512				
inte	intel/intel-optimiz By Intel Corporation • Updated a m Containers with TensorFlow* optim Image	zed-tensorflow-avx512 Second P onth ago nized with oneAPI Deep Neural Network Library (oneDNN) an	ublisher	☆ <u>4</u>	Pulls 10K+

Pull this intel-optimized image and convert it to Squashfs

ch-image pull intel/intel-optimized-tensorflow-avx512 ch-convert intel/intel-optimized-tensorflow-avx512 intel-tensorflow.sqfs

TensorFlow in Container

Run the container and import TensorFlow:

```
ch-run intel-tensorflow.sqfs python
Python 3.10.6 ...
>>> import tensorflow as tf
...
>>> print("TensorFlow version:", tf.__version__)
TensorFlow version: 2.13.0
>>> exit()
```

Backup copy at
/scratch/training/charliecloud/intel-tensorflow.sqfs

LAMMPS Molecular Dynamics on GPUs

- LAMMPS is a classical MD code
- <u>https://www.lammps.org/</u> has a cool animated logo.
- NVIDIA provides GPU-ready container images for lammps. <u>https://catalog.ngc.nvidia.com/orgs/hpc/containers/lammps</u>

LAMMPS on H100 GPUs

• This specific build works with H100 GPUs

ÅΜ

\leftrightarrow \rightarrow C $rightarrow$ catalog.ngc.nvidia.com/orgs/hpc/cor	tainers/lammps/tags G	< 3	* * 🗖	B :	
© NVIDIA . NGC CATALOG			Welcome (Guest \vee	
Catalog > Containers > LAMMPS			Get Contair	ier 🗸	
	Overview Tags Layers Security Scanning Related Collections				4
	Search tags patch_15Jun2023 08/09/2023 11:34 AM 561:38 MB 2 Architectures nvcr.io/hpc/lammps:patch_15Jun2023		Ē	× ~	
Description					

Using GPUs with Charliecloud

- Need to "inject" two things into the container 1.nvidia libraries and executables
 2.the nvidia runscript
- Tools needed to do the injection
 - a. NVIDIA nvidia-container-cli tool
 - b. charliecloud ch-fromhost tool
- On ACES:
 - nvidia-container-cli is provided as a module
 - *Compute nodes* with GPUs have the nvidia libraries
 - We have a copy of the runscript in \$TRAINING

Get to a Compute Node

```
Return to login node if necessary
exit
(All on one line):
srun --partition=gpu --gres=gpu:h100:1
--reservation=charliecloud -n 16 --pty bash
```

Does the compute node have GPUs? nvidia-smi

Set Up Your Environment

Set up your environment again; yes it's necessary export TRAINING=/scratch/training/charliecloud cd \$SCRATCH/ch_tutorial module load charliecloud nvidia-container-cli WebProxy

Build a GPU-ready image

(on compute node):

ch-image pull nvcr.io/hpc/lammps:patch_15Jun2023 ch-convert nvcr.io/hpc/lammps:patch_15Jun2023 \$TMPDIR/lammps ch-fromhost --nvidia \$TMPDIR/lammps ch-fromhost -d / -p \$TRAINING/runscript \$TMPDIR/lammps ch-convert \$TMPDIR/lammps lammps.sqfs

Note: \$TMPDIR is a location in /tmp that's specific to compute nodes.

LAMMPS in Container

We can now test the container:

ch-run --set-env lammps.sqfs -- /runscript mpirun lmp -h

Notes: mpirun is used to execute LAMMPS to work around a problem with srun. 1mp is the LAMMPS executable

Backup copy at /scratch/training/charliecloud/lammps_nv_patch_15Jun2023.sqfs

LAMMPS on GPUs

Now that we know the container works, we can run a benchmarking example provided by LAMMPS:

cp \$TRAINING/in.lj.txt .
cp \$TRAINING/benchmark.sh .

(all on one line)
 ch-run --set-env -b "\$PWD:/host_pwd" -c /host_pwd
 lammps.sqfs -- /runscript bash benchmark.sh

Backup copy at /scratch/training/charliecloud/lammps_nv_patch_15Jun2023.sqfs

Genomic Analyses with NVIDIA's Clara Parabricks

- GPU-accelerated version of common bioinformatics pipeline
- Works with both RNA-seq and WGS data
- NVIDIA provides images that containers easily integrate with Charliecloud
- Today's exercise will focus on completing the first portion of the pipeline

Genomic Analyses with NVIDIA's Clara Parabricks

Performance Comparison

Germline End-To-End Secondary Analysis

Data was generated using publicly available data (https://precision.fda.gov/challenges/truth) for NA12878, deprecating the data to 30X coverage. For the 22-minute runtime, DGX A100 with 320G memory was used. The native GATK4.1 numbers were generated using 32 vCPU (3.1 GHz Intel Xeon* Platinum 8175M) using 320Gb RAM.

Get to a Compute Node (reminder)

Reminder: if you aren't on a compute node, (all on one line)

srun --mem=240G --time=01:00:00 --gres=gpu:h100:1

--partition=gpu --cpus-per-task=48

--reservation=charliecloud --pty bash -i

Followed by:

module load charliecloud nvidia-container-cli WebProxy

Genomic Analyses Example Files

Make a subdirectory cd \$SCRATCH/ch_tutorial mkdir ch_parabricks cd ch_parabricks

Copy the example material cp \$TRAINING/sample* . cp \$TRAINING/Homo* . ls

Build a GPU-ready Clara Parabricks Image

Pull the parabricks image from NVIDIA using Charliecloud: (all on one line)

ch-image pull nvcr.io/nvidia/clara/clara-parabricks:4.1.1-1 parabricks-4.1.1-1

Build the GPU-ready image

ch-convert parabricks-4.1.1-1 \$TMPDIR/parabricks4.1 ch-fromhost --nvidia \$TMPDIR/parabricks4.1 ch-convert \$TMPDIR/parabricks4.1 parabricks4.1.sqfs

NVIDIA's Clara Parabricks in Container

• Now we are ready to run Parabricks!

```
(all on one line)
ch-run -b "$PWD:/mnt/1" -c "mnt/1" parabricks4.1.sqfs
    pbrun fq2bam -- --ref Homo_sapiens_assembly38.fasta
        --in-fq sample_1.fastq.gz sample_2.fastq.gz --out-bam test.bam
```


Acknowledgements

This work was supported by

- the National Science Foundation (NSF), award numbers:
 - 2112356 ACES Accelerating Computing for Emerging Sciences
 - 1925764 SWEETER SouthWest Expertise in Expanding, Training, Education and Research
 - 2019129 FASTER Fostering Accelerated Scientific Transformations, Education, and Research
- Staff and students at Texas A&M High-Performance Research Computing.
- ACCESS CCEP pilot program, Tier-II

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu Phone: 979-845-0219

<u>https://u.tamu.edu/hprc_shortcourse_survey</u>

Help us help you. Please include details in your request for support, such as, Cluster (ACES, FASTER, Grace, Launch), NetID (UserID), Job information (JobID(s), Location of your jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and Steps you have taken, so we can reproduce the problem.

