
Introduction to Fortran 90

Jian Tao

PVFA & TAMIDS & HPRC
Texas A&M University

jtao@tamu.edu

Texas A&M HPRC Short Course

November 1, 2024 College Station

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

1 Introduction

2 Basics of Fortran 90 Language

3 Program Structure

4 Control Constructs

5 Input and Output in Fortran

6 Online Resources for Fortran

7 Hands-on Exercise

8 HPRC Short Course Survey

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Introduction

Section 1

Introduction

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Introduction

Hello World in Fortran

Source code helloworld.f90

program hello
print *, ’Hello␣World!’

end program hello

Compile and run

$gfortran -o helloworld helloworld.f90
$./ helloworld
Hello World!

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Introduction

What is Fortran?

Fortran (formerly FORTRAN, derived from FORmula TRANslation)
is a general-purpose, imperative programming language that is
especially suited to numeric computation and scientific computing.
Originally developed by IBM in the 1950s for scientific and
engineering applications.
Widely used in computationally intensive areas such as numerical
weather prediction, finite element analysis, etc.
It has been a popular language for high-performance computing and
is used for programs that benchmark and rank the world’s fastest
supercomputers.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Introduction

History of Fortran

FORTRAN — first released by IBM in 1957
FORTRAN II — released by IBM in 1958
FORTRAN IV — released in 1962, standardized
FORTRAN 66 — appeared in 1966 as an ANSI standard
FORTRAN 77 — appeared in 1977, structured features
Fortran 90 — 1992 ANSI standard, free form, modules
Fortran 95 — a few extensions
Fortran 2003 — object oriented programming
Fortran 2008 — a few extensions

The correct spelling of Fortran for 1992 ANSI standard and later
(sometimes called Modern Fortran) is “Fortran”. Older standards are
spelled as “FORTRAN”.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Section 2

Basics of Fortran 90 Language

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Hardware and Software

A computing system is built from hardware and software

The hardware
is the physical medium and contains CPU, memory, keyboard, display,
disks, ethernet interfaces etc.

The software
is a set of computer programs and contains operating system, compilers,
editors, Fortran programs, etc.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Fortran Compiler

Compiler - from Wikipedia
A compiler is a computer program (or a set of programs) that transforms
source code written in a programming language (the source language) into
another computer language (the target language), with the latter often
having a binary form known as object code. The most common reason for
converting source code is to create an executable program.

The FORTRAN team led by John Backus at IBM introduced the first
unambiguously complete compiler in 1957.

Some popular Fortran compilers
GNU Fortran(gfortran), Intel Fortran(ifort), G95(g95), IBM(xlf90),
Cray(ftn), Portland Group Fortran (pgf90)

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Fortran Source Code

Fortran 90 and later versions support free format source code.
Fortran source code is in ASCII text and can be written in any text
editor.
Fortran source code is case insensitive. PROGRAM is the same as
Program and pRoGrAm.
Use whatever convention you are comfortable with and be consistent
throughout.
Comments in Fortran 90 source code start with an exclamation mark
(!) except in a character string. Comments help to enhance the
readability of your code.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Variables

Variables are the fundamental building blocks of any program
A variable name may consist of up to 31 alphanumeric characters and
underscores, of which the first character must be a letter.
There are no reserved words in Fortran.
Variable names must begin with a letter and should not contain a
space.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Variable Types

Intrinsic data types
INTEGER: exact whole numbers
REAL: real, franctional numbers
COMPLEX: complex, fractional numbers
LOGICAL: boolean values
CHARACTER: strings

Users can define additional types.
REAL is a single-precision floating-point number.
FORTRAN provides DOUBLE PRECISION data type for double
precision REAL. This is obsolete but is still found in many programs.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Explicit and Implicit Typing

Implicit typing of variables

ABCDEFGH︸ ︷︷ ︸
real

integer︷ ︸︸ ︷
IJKLMN OPQRSTUVWXYZ︸ ︷︷ ︸

real

IMPLICIT DOUBLE PRECISION (a-h,o-z)

it is highly recommended to explicitly declare all variable and avoid
implict typing using the statement.

IMPLICIT NONE

the IMPLICIT statement must precede all variable declarations.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Contants - I

Integer

242, -2341, 290223

Real (single precision)

1.03, 3.51e23 , -8.201

Real (double precision)

1.03d0 , 3.51d23 , -8.201d0

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Constants - II

Complex (single precision)

(1.0 ,0.0) , (-2.5e-5, 3.0e-6)

Complex (double precision)

(1.0d0 ,0.0d0), (-2.5d-5, 3.0d-6)

Logical

.True., .False.

Character

"Hello␣World!", "Is␣pi␣3.1415926?"
Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Variable Declarations - I

Numerical variables

INTEGER :: i, j = 2
REAL :: a, b = 4.d0
COMPLEX :: x, y

Constant variables

INTEGER , PARAMETER :: j = 2
REAL , PARAMETER :: pi = 3.14159265
COMPLEX , PARAMETER :: ci = (0.d0 ,1.d0)

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Variable Declarations - II

Logical variables

LOGICAL :: l, flag=.true.

Character variables
The length of a character variable is set with LEN, which is the maximum
number of characters (including space) the variable will store. By default,
LEN=1 thus only the first character is saved in memory if LEN is not
specified.

CHARACTER(LEN =10) :: a
CHARACTER :: ans = ’yes’ ! stored as ans=’y’

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Array Variable

Arrays (or matrices) hold a collection of different values at the same time.
Individual elements are accessed by subscripting the array. Fortran arrays
are defined with the keyword DIMENSION(lower bound: upper bound)

Arrays

INTEGER , DIMENSION (1:106) :: atomic_number
REAL , DIMENSION(3, 0:5, -10:10) :: values
CHARACTER(LEN=3), DIMENSION (12) :: months

In Fortran, arrays can have up to seven dimensions. Fortran arrays are
column major.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

KIND Parameter for Variables

Fortran 90 introduced KIND parameters to parameterize the
selection of different possible machine representations for each
intrinsic data types.
The KIND parameter is an integer which is processor dependent.
There are only 2(or 3) kinds of reals: 4-byte, 8-byte (and 16-byte),
respectively known as single, double (and quadruple) precision.
The corresponding KIND numbers are 4, 8 and 16 for most compilers.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Operators

Arithmetic Operators

+,-,*,/,**

Relational Operators

==, <. <=, >, >=, /=

Logical Operators

.AND., .OR., .NOT., .EQV., .NEQV.

Character Concatenation Operator

//

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Operators Evaluations

All operator evaluations on variables is carried out from left-to-right.
Arithmetic operators have a highest precedence while logical
operators have the lowest precedence
The order of operator precedence can be changed using parenthesis,
’(’ and ’)’
A user can define his/her own operators.
Extra parenthesis could be added to enhance readability and avoid
mistakes.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Expressions

An expression is a combination of one or more operands, zero or more
operators, and zero or more pairs of parentheses.

Arithmetic expressions

y + 1.0 - x, sin(x) + y

Relational expressions

a .and. b, c .neqv. d

Character expressions

’hello’ // ’world’, ’ab’ // ’xy’

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Statements

A statement is a complete instruction. Statements may be classified into
two types: executable and non-executable.

Executable statements are those which are executed at runtime.
Non-executale statements provide information to compilers.
If a statement is too long, it may be continued by the ending the line
with an ampersand (&).
Max number of characters (including spaces) in a line is 132 though
it’s standard practice to have a line with up to 80
Multiple statements can be written on the same line provided the
statements are separated by a semicolon.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Intrinsic Functions - I

Fortran provides many commonly used functions, called intrinsic functions.

Numerical functions

ABS(A), CEILING(A), FLOOR(A), MAX(A,B),
MIN(A,B), MOD(I,J), SQRT(A), EXP(A), LOG(A),
LOG10(A), INT(A), REAL(A), DBLE(A),
CMPLX(A[,B]), AIMAG(A)

Math functions

SIN(A), COS(A), TAN(A), ASIN(A),
ACOS(A), ATAN(A), ATAN2(A,B), SINH(A),
COSH(A), TANH(A)

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Basics of Fortran 90 Language

Intrinsic Functions - II

Character functions

LEN(S), LEN_TRIM(S), LGE(S1 ,S2), LGT(S1,S2),
LLE(S1 ,S2), LLT(S1 ,S2), ADJUSTL(S),
ADJUSTR(S), REPEAT(S, N), SCAN(S, C), TRIM(S)

Array functions

SIZE(A[,N]), SUM(A[,N]), PRODUCT(A[,N]),
TRSNSPOSE(A), DOT_PRODUCT(A,B), MATMUL(A,B),
CONJG(X)

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Section 3

Program Structure

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Program - I

Typical Fortran program structure

PROGRAM program -name
IMPLICIT NONE
[specification part]
[execution part]
[subprogram part]

END PROGRAM program -name

The PROGRAM statement (optional) gives a name to the program. The
first character of the name must be a letter. Use the IMPLICIT NONE
statement to avoid implicit typing rules. The END statement terminates
the program and returns control to the computer’s operating system.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Program - II

A Fortran program consists of one or more program units: PROGRAM,
SUBROUTINE, FUNCTION, MODULE

The unit containing the PROGRAM attribute is often called the
main program or main.
The main program should begin with the PROGRAM keyword (not
required, but recommended).
A Fortran program should contain only one main program and one or
more subprogram units such as SUBROUTINE, FUNCTION and
MODULE.
Every program unit, must end with a END keyword.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

An Example

Temperature Conversion between Fahrenheit and Celsius

program temp
implicit none
real :: tempC , tempF

! Convert 10C to fahrenheit
tempF = 9.0 / 5.0 * 10.0 + 32.0

! Convert 40F to celsius
tempC = 5.0 / 9.0 * (40.0 - 32.0)
call display(tempc , tempF)

end program temp

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Subroutines - I

Typical Fortran subroutine structure

SUBROUTINE subroutine -name(dummy arguments)
IMPLICIT NONE
[specification part]
[execution part]
[subprogram part]

END SUBROUTINE subroutine -name

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Subroutines - I

Typical Fortran subroutine structure

SUBROUTINE subroutine -name(dummy arguments)
IMPLICIT NONE
[specification part]
[execution part]
[subprogram part]

END SUBROUTINE subroutine -name

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Subroutines - II

CALL Statement:
The CALL statement evaluates its arguments and transfers control to
the subroutine
Upon return, the next statement is executed.

SUBROUTINE Statement:
The SUBROUTINE statement declares the procedure and its
arguments.
These are also known as dummy arguments.

The subroutine’s interface is defined by
The subroutine statement itself
The declarations of its dummy arguments
Anything else that the subroutine uses

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

A Subroutine Example

Calcuate the sum of input variables

SUBROUTINE calc(a,b,c, sum)
IMPLICIT NONE
real :: a,b,c,sum
sum = a + b + c
return

END SUBROUTINE calc

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Functions

Fortran functions operate on the same principle as subroutines. The only
difference is that function returns a value and does not involve the call
statement.

Calculate the sum of the input variables

FUNCTION calc(a,b,c)
IMPLICIT NONE
real :: a,b,c,calc
calc = a + b + c

END FUNCTION calc

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Recursive Functions

In Fortran 90, recursive procedures call themselves and must be declared
explicitly. The recursive function declarations must contain a result
keyword, and one type of declaration refers to both the function name and
the result variable.

Calcuate the factorial

RECURSIVE FUNCTION fact(i) result(i_fact)
integer :: i, i_fact
if (i > 0) then

i_fact = i * fact(i - 1)
else

i_fact = 1
end if
END FUNCTION fact

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Program Structure

Modules

A module is a program unit whose functionality can be exploited by other
programs which attaches to it via the USE statement.

Example of module

MODULE PRECISION
IMPLICIT NONE
integer , parameter :: dp = 8

END MODULE PRECISION

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Section 4

Control Constructs

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Control Constructs

A Fortran program is executed sequentially. Control Constructs change the
sequential execution order of the program.

Conditionals: IF, IF-THEN-ELSE
Switches: SELECT/CASE
Loops: DO
Branches: GOTO (obsolete in Fortran 95/2003, use CASE instead)

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Conditionals

IF construct

if (expression) statement

IF THEN ELSE construct

if (expression 1) then
executable statements

else if (expression 2) then
executable statements

else
executable statements

end if

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Conditionals - IF Example

IF construct

if (value < 0) value = 0

When the if statement is executed, the logical expression is evaluated.
If the result is true, the statement following the logical expression is
executed; otherwise, it is not executed.
The statement following the logical expression cannot be another if
statement. Use the if-then-else construct instead.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Conditionals - IF-THEN-ELSE Example

IF THEN ELSE construct

if (x < 50) then
GRADE = ’F’

else if (x >= 50 .and. x < 60) then
GRADE = ’D’

else if (x >= 60 .and. x < 70) then
GRADE = ’C’

else if (x >= 70 .and. x < 80) then
GRADE = ’B’

else
GRADE = ’A’

end if

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Switches

SELECT CASE construct

[case_name :] select case (expression)
case (selector)

executable statement
case (selector)

executable statement
case default

executable statement
end select [case_name]

The value of the expression in the select case should be an integer or a
character string. The case name is optional.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Switches - Example I

Character case selector

select case (traffic_light)
case ("red")

print *, "Stop"
case ("yellow")

print *, "Caution"
case ("green")

print *, "Go"
case default

print *, "Illegal␣value:␣", traffic_light
end select

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Switches - Example II

Integer case selector

select case (score)
case (50 : 59)

GRADE = "D"
case (60 : 69)

GRADE = "C"
case (70 : 79)

GRADE = "B"
case (80 :)

GRADE = "A"
case default

GRADE = "F"
end select

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Loops - DO

DO construct

[do name:] do loop_control
execution statements

end do [do name]

The do loop name is optional. To exit the do loop, use the EXIT or
CYCLE statement.

The EXIT statement causes termination of execution of a loop.
The CYCLE statement causes termination of the execution of one
iteration of a loop.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Loops - DO Example

Factorial with DO construct

program factorial1
implicit none
integer(KIND =8) :: i,factorial , n=6
factorial = n
do i = n-1,1,-1

factorial = factorial * i
end do
write(*,’(i4,a,i15)’) n,’!=’,factorial

end program factorial1

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Loops - DO WHILE

If a condition is to be tested at the top of a loop, a do ... while loop can
be used

DO WHILE construct

[do name:] do while (expression)
executable statements

end do [do name]

The loop only executes if the logical expression is .TRUE.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Control Constructs

Loops - DO WHILE Example

DO WHILE example

finite: do while (i <= 100)
i = i + 1
inner: if (i < 10) then

print *, i
end if inner

end do finite

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

Section 5

Input and Output in Fortran

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

Simple I/O

Any program needs to be able to read input and write output to be useful
and portable.

Simple output with PRINT

print *, <var1 > [, <var2 > [, ...]]

Simple input with READ

read *, <var1 > [, <var2 > [, ...]]

The * indicates that the data is unformatted.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

Example with Simple I/O

Interactive hello world via I/O

PROGRAM hello
IMPLICIT NONE
character(len =100) :: your_name
print *, ’Your␣Name␣Please ’
read *, your_name
print *, ’Hello␣’, your_name

END PROGRAM hello

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

I/O with Unit Number

Files are identified by some form of file handle, in Fortran called the unit
number.

The default unit number 5 is associated with the standard input,
Unit number 6 is assigned to standard output.

Read and write through unit number

read(unit ,*)
write(unit ,*)

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

File Operations - I

Fortran provides functions to open, read, write, inquire, and close files. A
file may be opened with the statement

OPEN([UNIT=]un , FILE=fname [, options])
READ(un , options)varlist
WRITE(un, options)varlist
INQUIRE ([UNIT=]un , options)
CLOSE ([UNIT=]un [, options])

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

File Operations - II

If data is read/written from/to standard input/output, then
the unit number can also be replaced with *.
use alternate form for reading and writing i.e. the READ *, and
PRINT start mentioned earlier.
If data is unformatted i.e. plain ASCII characters, the option to
WRITE and READ command is *.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

Formatted I/O

A formatted data description must adhere to the generic form: nCw.d
n is an integer constant that specifies the number of repititions
(default 1 can be omitted),
C is a letter indicating the type of the data variable to be written or
read,
w is the total number of spaces allocated to this variable, and,
d is the number of spaces allocated to the fractional part of the
variable. Integers are padded with zeros for a total width of w
provided d ≤ w .
The decimal (.) and d designator are not used for integers, characters
or logical data types.

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

FORMAT Statement - I

In the simplest form, the format is enclosed in single quotes and
parentheses as argument to the keyword.

print ’(I5 ,5F12.6)’, i, a, b, c, z ! complex z
write(6, ’(2E15.8)’) arr1 , arr2
read(5, ’(2a)’) firstname , lastname

If the same format is to be used repeatedly or it is complicated, the
FORMAT statement can be used. The FORMAT statement must be
labeled and the label is used in the input/output statement to reference it

label FORMAT(formlist)
PRINT label , varlist
WRITE(un, label) varlist
READ(un , label) varlist

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Input and Output in Fortran

FORMAT Statement - II

The FORMAT statements can occur anywhere in the same program unit.
Most programmers list all FORMAT statements immediately after the
type declarations before any executable statements.

Format statement examples

10 FORMAT(I5 ,5F12 .6)
20 FORMAT (2E15 .8)
100 FORMAT (2a)
print 10, i, a, b, c, z ! complex z
write (6 ,20) arr1 , arr2
read (5 ,100) firstname , lastname

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Online Resources for Fortran

Section 6

Online Resources for Fortran

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

Online Resources for Fortran

Online Resources

Fortran Wiki - http://fortranwiki.org/
Learn Fortran - https://www.learnfortran.com/
Fortran-Lang - https://fortran-lang.org/
GNU Fortran - https://gcc.gnu.org/fortran/
Fortran90.org - https://www.fortran90.org/
Fortran-Lang
Fortran Standards Documents (ISO) - https://wg5-fortran.org/

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

http://fortranwiki.org/
https://www.learnfortran.com/
https://fortran-lang.org/
https://gcc.gnu.org/fortran/
https://www.fortran90.org/
https://wg5-fortran.org/

Hands-on Exercise

Section 7

Hands-on Exercise

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

HPRC Short Course Survey

Section 8

HPRC Short Course Survey

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

HPRC Short Course Survey

HPRC Short Course Survey

URL - https://u.tamu.edu/hprc_shortcourse_survey

Jian Tao Texas A&M HPRC Short Course November 1, 2024 College Station

https://u.tamu.edu/hprc_shortcourse_survey

	Introduction
	Basics of Fortran 90 Language
	Program Structure
	Control Constructs
	Input and Output in Fortran
	Online Resources for Fortran
	Hands-on Exercise
	HPRC Short Course Survey

