HIGH PERFORMANCE RESEARCH COMPUTING

- HPRC Primer Introduction to Grace: An HPRC Resource

August 30, 2024

High Performance Research Computing

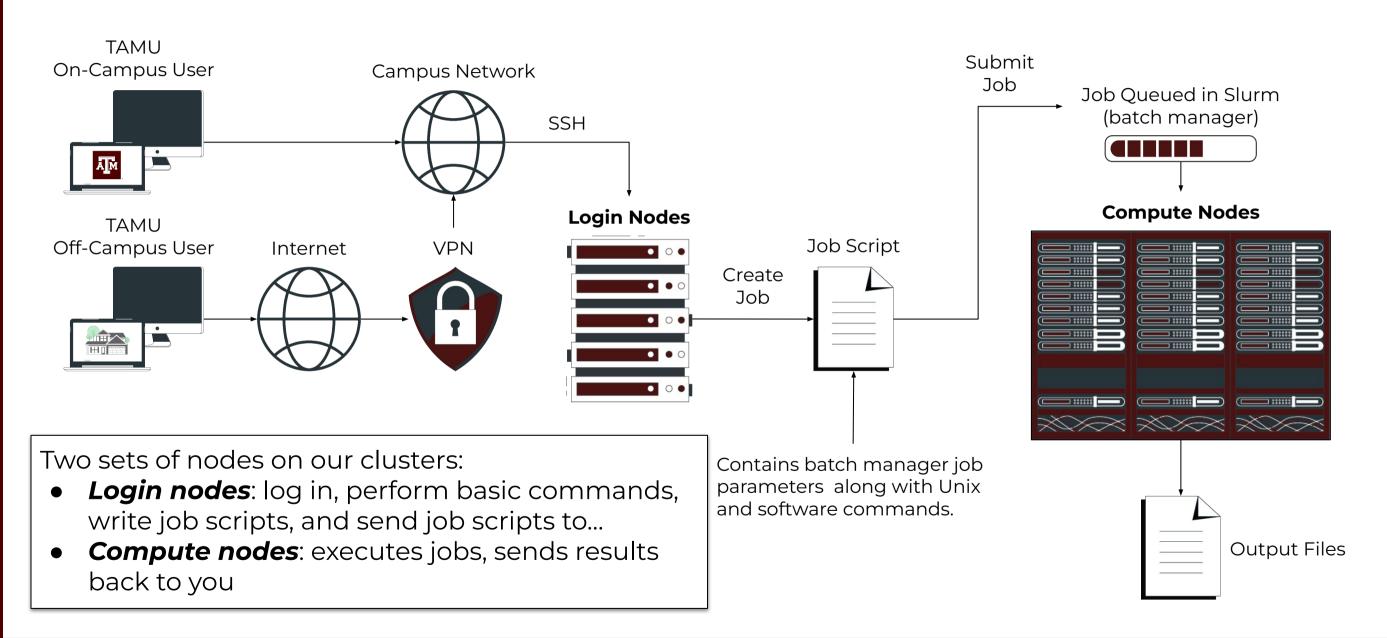
Grace Hardware

Grace is a 925-node Intel cluster from Dell with an InfiniBand HDR-100 interconnect, A100 GPUs, RTX 6000 GPUs and T4 GPUs. The 925 nodes are based on the Intel Cascade Lake processor.

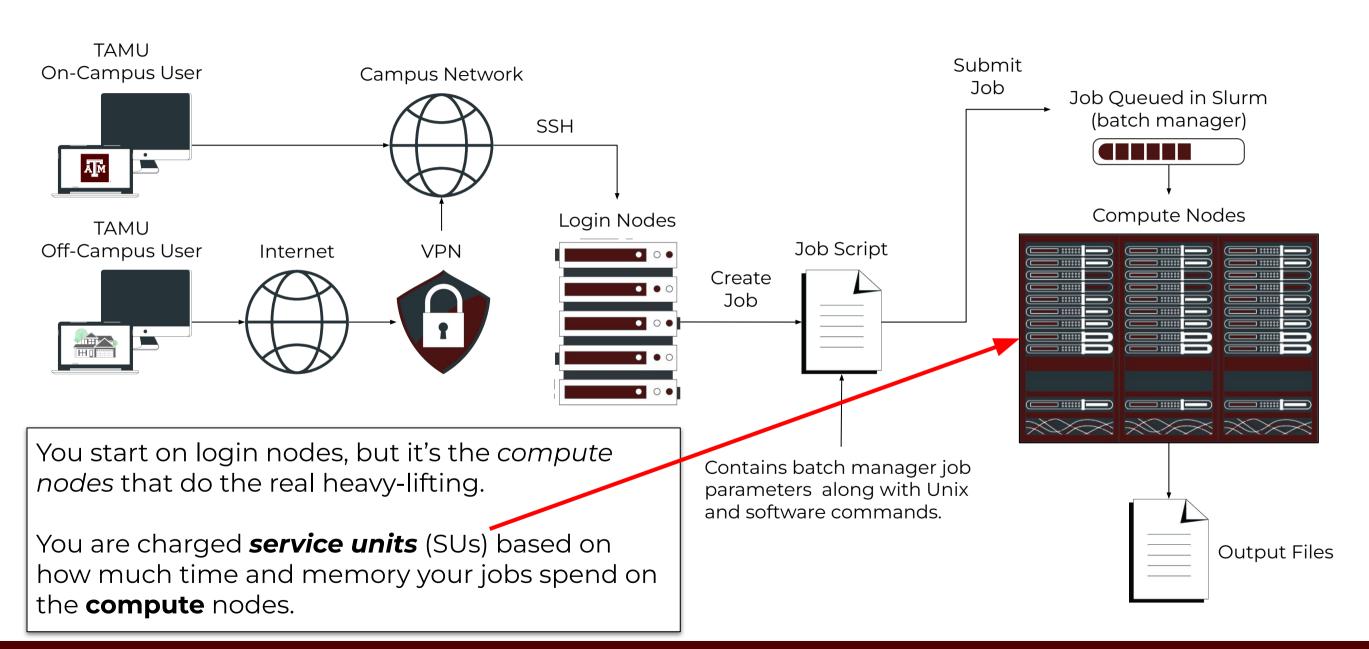
48 cores/node

3TB Large Memory-80 cores/node Login Nodes: 10 GbE TAMU network connection

Resource	Count
Login Nodes	5
384GB memory general compute nodes	800
GPU - A100 nodes with 384GB memory	100
GPU - RTX 6000 nodes with 384GB memory	9
GPU - T4 nodes with 384GB memory	8
3TB Large Memory	8

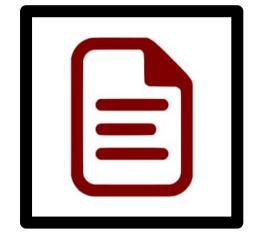


For more information:

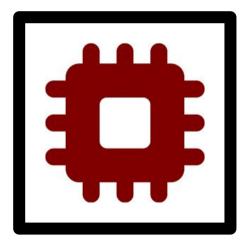

https://hprc.tamu.edu/kb/User-Guides/Grace/

Computing on HPRC Clusters

Batch Jobs on HPRC Clusters



File Quotas and Resource Allocations

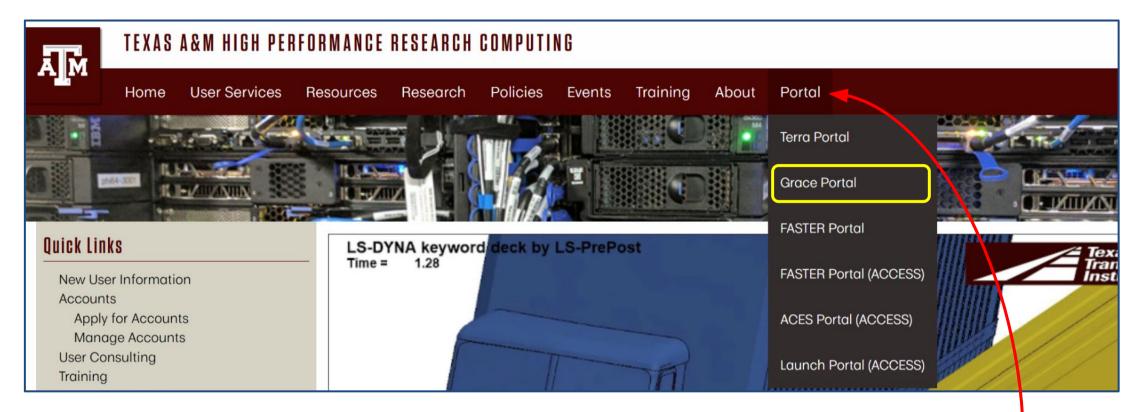

Two things to keep track of when computing

Quota

File Storage
File Count
File Space

<u>Allocation</u>

Computing Resources


Service Units (SUs)

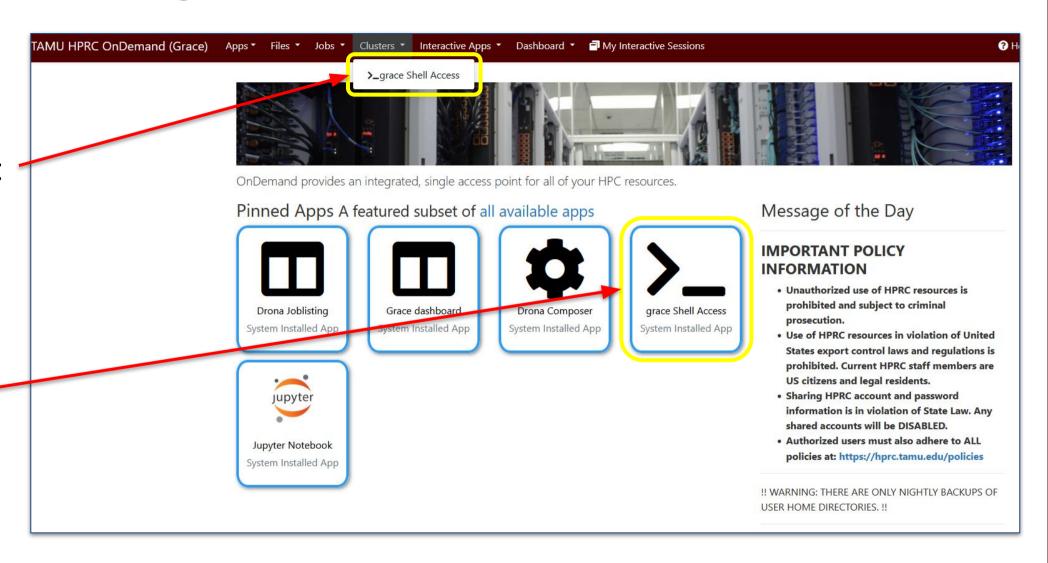
Accessing Grace: Setup

- If off-campus:
 Set up and start VPN (Virtual Private Network):
 <u>u.tamu.edu/VPnetwork</u>
- Two-Factor Authentication required
- Today we'll access Grace via the online Portal, but you can also use ssh.
- See https://hprc.tamu.edu/kb/User-Guides/Grace/Access/ for more details.

Accessing Grace via the Portal

Access the HPRC portals through most web browsers:

- Go to <u>portal.hprc.tamu.edu</u> or use the <u>Portal dropdown menu</u> on the HPRC homepage: <u>https://hprc.tamu.edu/</u>
- 2. Choose Grace Portal


https://hprc.tamu.edu/kb/User-Guides/Grace/Access/

Accessing Grace via the Portal

Two ways to enter the Portal:

- (1) Select at the top:"Clusters" →"Grace Shell*Access"
- (2) Select in Main Menu: "Grace Shell Access"

*shell is also called terminal or command line

https://hprc.tamu.edu/kb/User-Guides/Grace/Access/

Hands-On Activity - 2 Minutes

Try to access a *shell** on Grace now, either through portal.hprc.tamu.edu or hprc.tamu.edu

*(also called terminal or command line)

What message do you see when you login?

Remember Grace has 5 login nodes. Which one does your command prompt say you got?

File Systems and User Directories

Directory	Environment Variable	Space Limit	File Limit	Intended Use
/home/\$USER	\$HOME	10 GB	10,000	Small to modest amounts of processing. Backed up nightly.
/scratch/user/\$USER	\$SCRATCH*	1 TB	250,000	Temporary storage of large files for on-going computations. Not intended to be a long-term storage area. Not backed up.

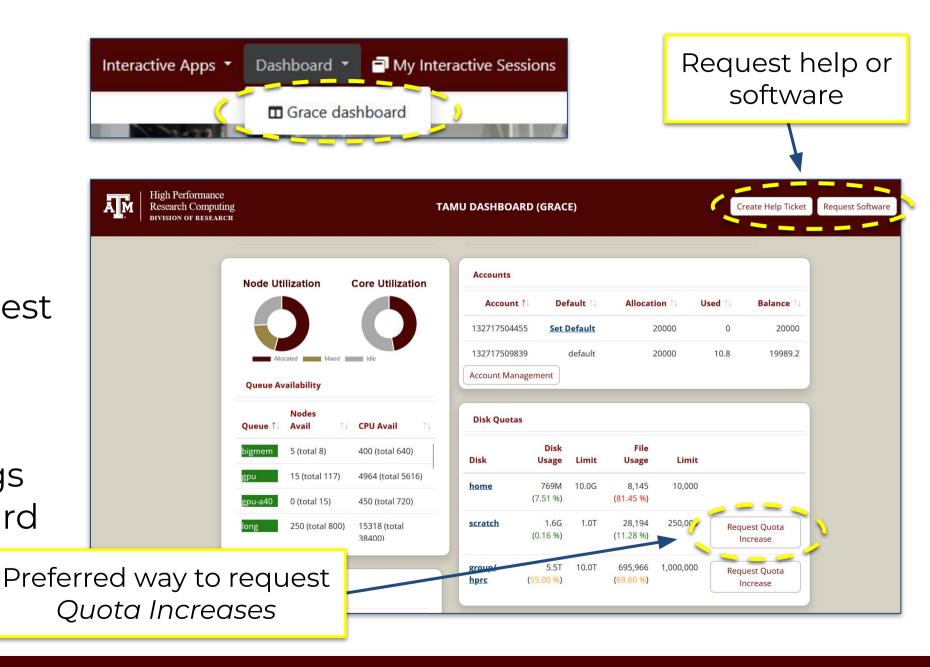
*Do NOT share your home or scratch directories.

Request a group directory for sharing files.

\$SCRATCH is shared between the FASTER and Grace clusters.

View file usage and quota limits in the shell using the command:

showquota


```
Your current disk quotas are:
Disk
                      Disk Usage
                                   Limit
                                             File Usage
                                                          Limit
/home/tiq
                            769M
                                    10.0G
                                                   8146
                                                          10000
scratch/user/tjq
                            1.6G
                                     1.0T
                                                  28196
                                                          250000
```

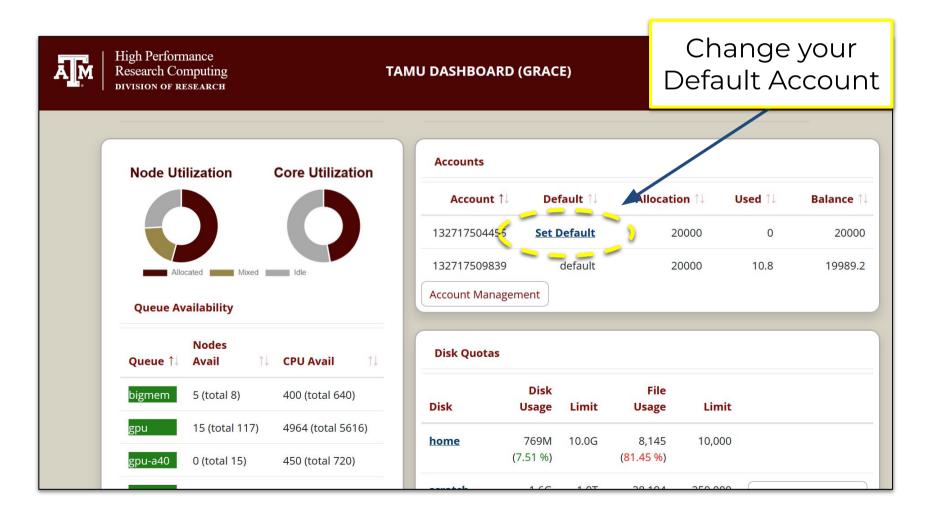
https://hprc.tamu.edu/kb/User-Guides/Grace/Filesystems_and_Files/

Portal: Grace Dashboard

- Easily view Cluster utilization, <u>Storage</u> <u>Quotas</u>, & <u>Allocation</u> <u>Balances</u>
- Ask for help and request software
- Also View current groups and job listings in the Grace Dashboard

Hands-On Activity - 2 Minutes

1. Please try to access dashboard now through the portal.


2. Check your quotas both on the command line and on the dashboard.

showquota

Checking Your Service Unit (SUs) Balance

- 1 SU = 1 core/hr (GPUs are more expensive per-hour!)
- SUs are charged to default account when none is specified.

Checking Your SUs in the Shell

• List the SU Balance of your Account(s) with: myproject

5000.00

```
List of YourNetID's Project Accounts

Account | FY | Default | Allocation | Used & Pending SUs | Balance | PI |

| 1228000223136 | 2023 | N | 10000.00 | 0.00 | 10000.00 | Doe, John |

| 1428000243716 | 2023 | Y | 5000.00 | -71.06 | 4928.94 | Doe, Jane |
```

- Run myproject -d <Account#> to change default project account
 (replace <Account#> with your number!)
- Run myproject -h to see more options

1258000247058 2023

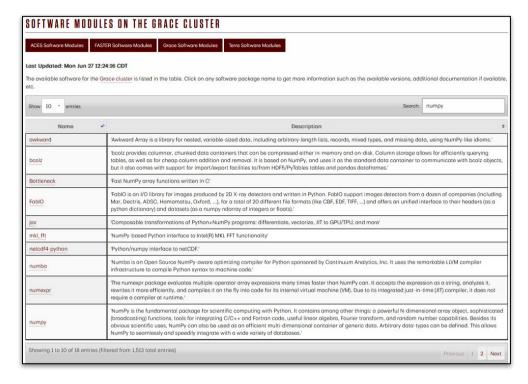
https://hprc.tamu.edu/kb/User-Guides/AMS/UI/https://hprc.tamu.edu/kb/User-Guides/AMS/Service_Unit/

-0.91 4999.09 Doe, Jane

Hands-On Activity - 2 Minutes

1. Use myproject to check the SU balance of your accounts.

2. Use the dashboard the check the same information.



Software

 Search for software modules on <u>https://hprc.tamu.edu/software/grace/</u>

- See the Software Knowledge Base page <u>https://hprc.tamu.edu/kb/Software/</u>
 for instructions and examples
- License-restricted software
 - Contact <u>help@hprc.tamu.edu</u>

- Contact HPRC (can use the dashboard) for software installation help/request
 - User can install software in their home/scratch directory
 - Do NOT run the sudo command when installing software

Software: Application Modules

- Installed applications are made available with the module system
- Grace uses a software hierarchy inside the module system
- In this hierarchy, the user loads a compiler which then makes available Software built with the currently-loaded compiler

module avail

← shows which software is available

module load GCC/10.3.0 OpenMPI/4.1.1 ← load GCC compiler version 10.3.0 and OpenMPI version 4.1.1

module avail

← show which software is available to use with the loaded modules

module load PyTorch/1.12.1 ← load PyTorch version 1.12.1

Module System Youtube Video → <u>www.youtube.com/watch?v=drxpbrOCPFw</u>

← see what software you've loaded already

module list

Software: Modules and Toolchains

- Toolchains are what we call groups of compilers & libraries
- There's a variety of toolchains available on the clusters:
 - intel/2023b
 - o iomkl/2020a
 - foss/2023b
 - GCCcore/13.2.0

(more than just these versions)

• Other module commands:

```
module spider module purge
```

- ← search for modules and their dependencies
- ← removes all loaded modules

Module System Youtube Video → <u>www.youtube.com/watch?v=drxpbrOCPFw</u>

Hands-On Activity - 5 Minutes

Remember:

module load

module purge

1. Please search for and load the following module:

OpenMPI/4.1.4

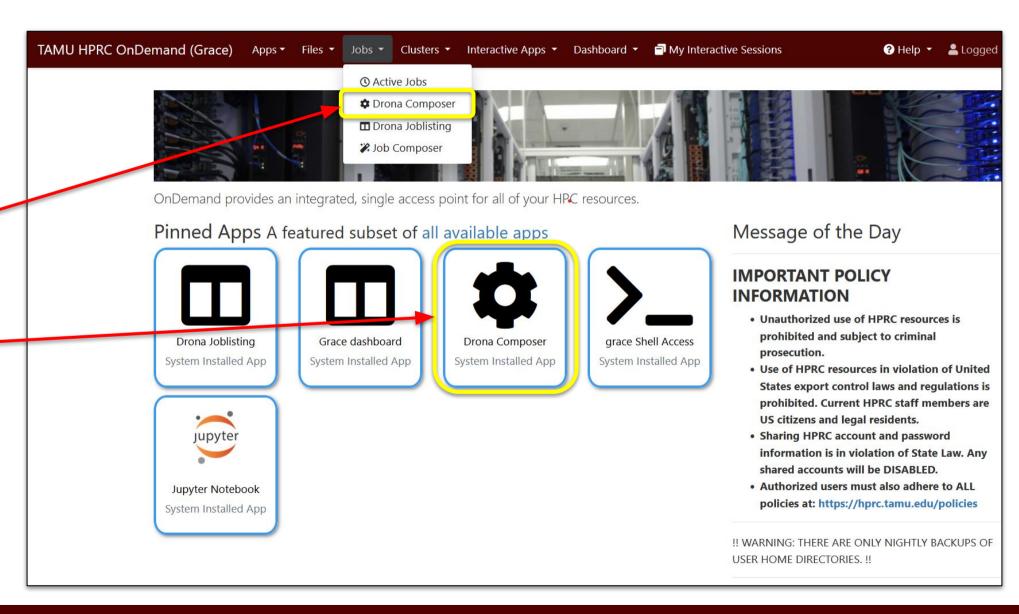
(Tip) Type this to show which compiler needs to be loaded:

module spider OpenMPI/4.1.4

(Tip) And check that it's been loaded with:

module list

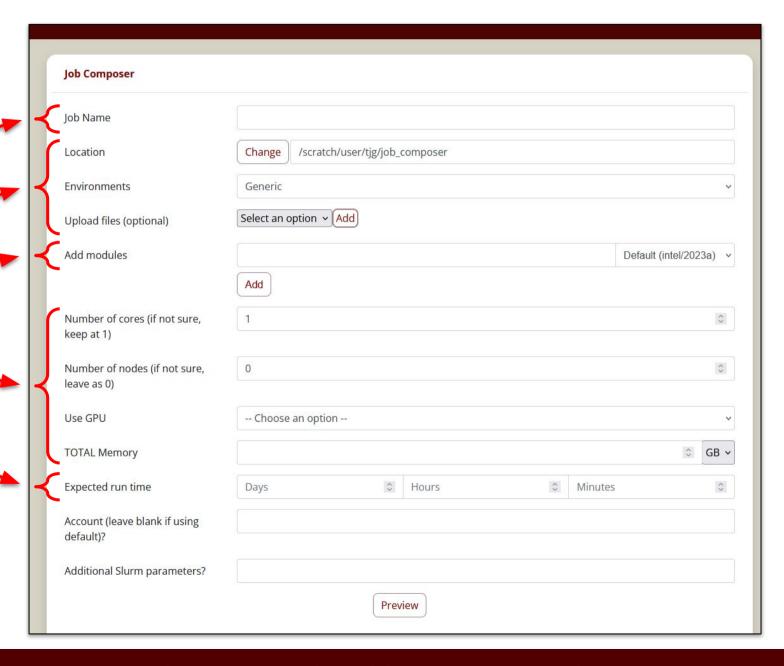
2. Next remove (unload) all your current modules.


Module System Youtube Video → <u>www.youtube.com/watch?v=drxpbrOCPFw</u>

The Drona Composer

• A simple app to assist you with composing jobs

Two ways to enter the Portal:


- (1) Select under "Jobs" tab
- (2) Select in Main Menu ———

The Drona Composer

Create your own jobs through the app:

- (1) Pick a job name
- (2) Chose location and environments
- (3) Add modules
- (4) Chose Resources
- (5) Chose Time

Hands-On Activity - 3 Minutes

Using the Drona composer, create a job script with the following criteria:

- Generic Environment
- Modules Loaded: foss/2023b, Python/3.11.5
- 6 Cores
- 2 Nodes
- No GPU
- 30 GB of Memory
- 3 Minute Runtime

Preview the job script when you are done

Sample Job Script Structure

```
#!/bin/bash
##NECESSARY JOB SPECIFICATIONS
#SBATCH --export=NONE
#SBATCH --get-user-env=L
#SBATCH --job-name=JobExample1
#SBATCH --time=01:30:00
#SBATCH --ntasks=1
#SBATCH --mem=2G
#SBATCH --output=stdout.%j
##OPTIONAL JOB SPECIFICATIONS
#SBATCH --account=123456
#SBATCH --mail-type=ALL
#SBATCH --mail-user=email address
# load required module(s)
module purge
module load GCCcore/11.3.0 Python/3.10.4
# Run your program
python my_program.py
```

These *parameters* describe your job to the Slurm job scheduler.

The lines starting with #SBATCH are NOT comments!

See the **Knowledge Base** for more info

Account number to be charged

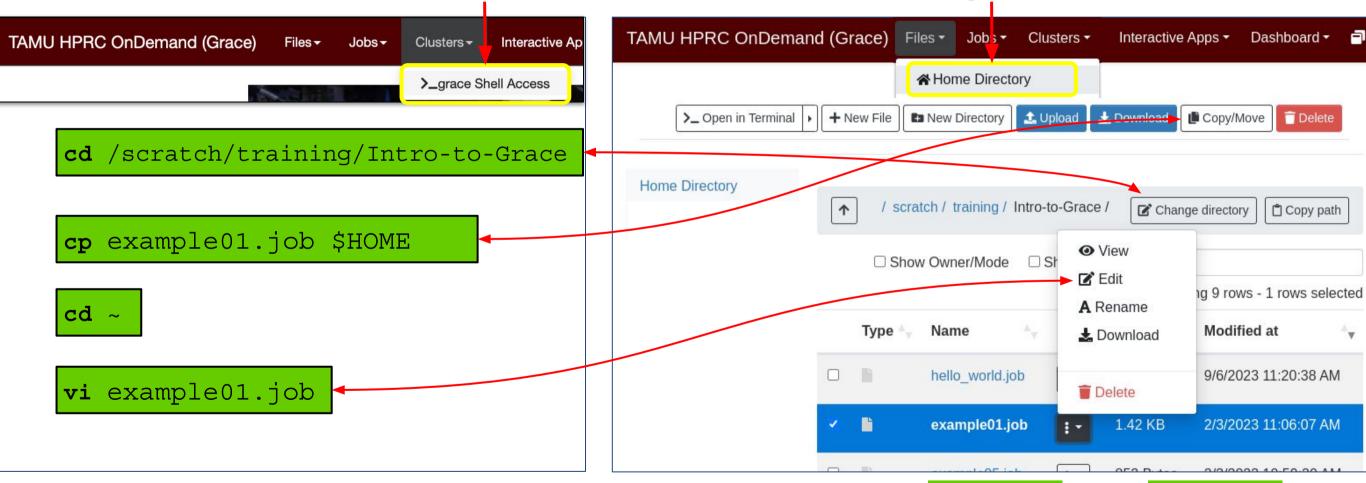
Whatever commands or scripts you want to run. Here, we set up the modules we need for our environment and run a python program.

(We will practice with job files in a few slides)!

Submit a Job and Check Job Status

Submit job

```
sbatch example01.job
Submitted batch job 6853258
(from job submit) your job is charged as below
               Project Account: 122792016265
               Account Balance: 1687.066160
               Requested SUs:/
                         matching JOBID
  Check status
squeue -u netID
                            or
                                  squeue --me
JOBID
       NAME
                USER
                         PARTITION
                                                                   TIME LEFT
                                          CPUS
                                                STATE
                                                                             START TIME
                                    NODES
                                                        TIME
                                                                                              REASON
                                                                                                        NODELIST
6853258
                                                       3-07:36:50
                                                                  16:23:10
       jobname
                NetID
                         xlong
                                           96
                                                RUNNING
                                                                             2023-01-23T17:27:3
                                                                                               None
                                                                                                        c[180,202]
6853257 jobname
                                                                                                        c[523-524]
                         xlong
                                          96
                                                RUNNING
                                                        3-07:36:56 16:23:04
                                                                             2023-01-23T17:27:2 None
                someuser
```



Hands-On Activity

- 1. Navigate to /scratch/training/Intro-to-Grace
- 2. Copy hello_world.py to your home directory
- 3. Return to your home directory and submit the job file using **sbatch**.
- 4. Check that the job is running in a Slurm queue with squeue.
- 5. When your job completes, check the contents of the output file.

Hands-On Activity

Linux command line tools Portal file navigator

Then submit and check on the command line with **sbatch** and **squeue**.

Batch Queues

- Job submissions are auto-assigned to batch queues based on the resources requested (e.g. number of cores/nodes and walltime limit)
- Use **sinfo** to check their status:

```
[NetID@grace2 ~]$ sinfo
PARTITION
                                                  NODES (A/I/O/T)
                                                                      CPUS (A/I/O/T)
               AVAIL
                       TIMELIMIT
                                       JOB SIZE
                                                  687/97/16/800
                                                                      30786/6758/856/38400
short*
                       2:00:00
                                       1-32
               up
medium
                       1-00:00:00
                                      1-128
                                                  687/97/16/800
                                                                      30786/6758/856/38400
               uр
                                                                      30786/6758/856/38400
long
                       7-00:00:00
                                      1-64
                                                  687/97/16/800
               up
                       21-00:00:00
                                      1-32
                                                  687/97/16/800
                                                                      30786/6758/856/38400
xlong
               up
                                      1-32
                                                  104/12/1/117
                                                                      895/4633/88/5616
                       12:00:00
vnc
               up
                       4-00:00:00
                                      1-32
                                                  104/12/1/117
                                                                      895/4633/88/5616
qpu
               up
                       2-00:00:00
                                      1 - 4
                                                  0/7/1/8
                                                                      0/560/80/640
bigmem
               up
                                      1-infinite 791/109/17/917 31681/11391/944/4401
staff
                       infinite
               up
                                      1-infinite 791/109/17/917 31681/11391/944/4401
special
                       7-00:00:00
               up
qpu-a40
                                                  15/0/0/15
                                                                      45/675/0/720
                       10-00:00:00
                                      1-15
               up
```

```
For the NODES and CPUS columns:

A = Active (in use by running jobs)

O = Offline (unavailable for jobs)

T = Total
```

https://hprc.tamu.edu/kb/User-Guides/Grace/Batch/#batch-queues

Job Submission and Tracking

Slurm queue command	Description
<pre>sbatch jobfile1</pre>	Submit jobfile1 to batch system
squeue [-u user_name] [-j job_id]	List jobs
scancel job_id	Kill a job
<pre>sacct -X -j job_id</pre>	Show information for a job (can be when job is running or recently finished)
sacct -X -S YYYY-HH-MM	Show information for all of your jobs since YYYY-HH-MM
<pre>lnu job_id</pre>	Show resource usage for a job
pestat -u \$USER	Show resource usage for a running job
seff job_id	Check CPU/memory efficiency for a job

https://hprc.tamu.edu/kb/Helpful-Pages/Batch-Translation/

Need Help?

First check the FAQ

- Grace User Guide
- Email your questions to help@hprc.tamu.edu

Help us help you -- when you contact us, tell us:

- Which Cluster you're using
- Your username
- Job id(s) if any
- Location of your jobfile, input/output files
- Application used if any
- Module(s) loaded if any
- Error messages
- Steps you have taken, so we can reproduce the problem

Continued Learning

Intro to HPRC Video Tutorial Series

HPRC's Knowledge Base

High Performance Research Computing

Thank you.

Any questions?

Please let us know what you thought of this course by filling out this survey: https://u.tamu.edu/hprc_shortcourse_survey

High Performance Research Computing

Thank you.

Any questions?

Accessing Grace: via SSH

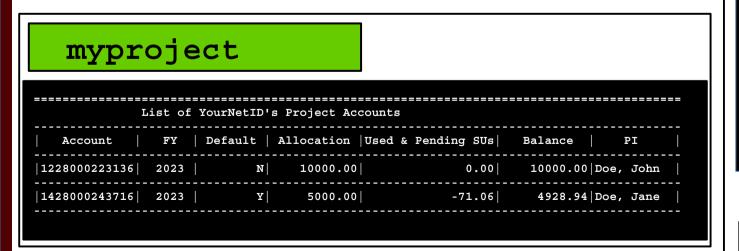
- SSH command is required for accessing Grace / Terra:
 - If off-campus:
 - Set up and start VPN (Virtual Private Network): <u>u.tamu.edu/VPnetwork</u>
 - If on-campus or you've done the above:

ssh NetID@grace.tamu.edu

- Two-Factor Authentication enabled for CAS, VPN, SSH
- Mac and Linux users can use their "Terminal" applications. For Windows:
 - MobaXTerm (preferred, includes SSH and X11)
 - PuTTY SSH
 - Windows Subsystem for Linux
- Grace has 5 login nodes (check your bash prompt to see which you're on).
 - Login sessions that are idle for 60 minutes will be closed automatically.
 - o Processes run longer than 60 minutes on login nodes will be killed automatically.

Do not use more than 8 cores on the login nodes!

Do not use the sudo command.


https://hprc.tamu.edu/kb/User-Guides/Grace/Access/

Consumable Computing Resources

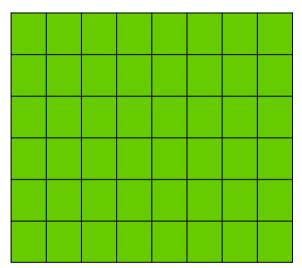
- Resources specified in a job file:
 - Processor cores
 - Memory
 - Wall time
 - GPU
- Service Unit (SU) Billing Account
 - Use "myproject" to query

https://hprc.tamu.edu/kb/User-Guides/AMS/Service_Unit/

- Other resources:
 - Software license/token
 - Use "license_status" to query
 - https://hprc.tamu.edu/kb/Software/useful-tools/Licen se_Checker/

Find available license for "ansys":

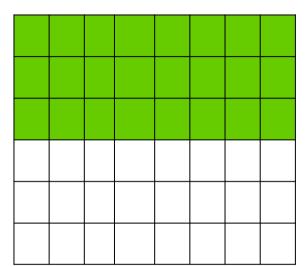
```
license_status -s ansys
```


For more information about this command:

license status -h

Mapping Jobs to Cores per Node on Grace

Α.



48 cores on 1 compute node

#SBATCH --ntasks=48 #SBATCH --tasks-per-node=48

Preferred Mapping (if applicable)

В.

48 cores on 2 compute nodes

#SBATCH --ntasks=48 #SBATCH --tasks-per-node=24

Important Batch Job Parameters

Grace	Comment
#SBATCHexport=NONE #SBATCHget-user-env=L	Initialize job environment.
#SBATCHtime=HH:MM:SS	Specifies the time limit for the job.
#SBATCHntasks=NNN	Total number of tasks (cores) for the job.
#SBATCHntasks-per-node=XX	Specifies the maximum number of tasks (cores) to allocate per node
#SBATCHmem=nnnnM or #SBATCHmem=nG	Sets the maximum amount of memory (MB). G for GB is supported on Grace
(memory per NODE)	

https://hprc.tamu.edu/kb/Helpful-Pages/Batch-Translation/

Pop Quiz

```
#SBATCH --export=NONE
#SBATCH --get-user-env=L
#SBATCH --job-name=stacks S2
#SBATCH --ntasks=80
#SBATCH --ntasks-per-node=20
#SBATCH --mem=40G
#SBATCH --time=48:00:00
#SBATCH --output=/scratch/user/dylan/stdout.%J
#SBATCH --error stderr.%J
```

How many nodes is this job requesting?

A. 1600 C. 20 B. 80 D. 4

Grace Job File (Serial Example)

```
#!/bin/bash
                                       SUs = 1.5
##NECESSARY JOB SPECIFICATIONS
                                      # Set the job name to "JobExample1"
#SBATCH --job-name=JobExample1
#SBATCH --time=01:30:00
                                       # Set the wall clock limit to 1hr and 30min
#SBATCH --ntasks=1
                                       # Request 1 task (core)
#SBATCH --mem=4G
                                       # Request 4GB per node
#SBATCH --output=stdout.%j
                                       # Send stdout and stderr to "stdout.[jobID]"
##OPTIONAL JOB SPECIFICATIONS
#SBATCH --account=123456
                                      # Set billing account to 123456
#SBATCH --mail-type=ALL
                               # Send email on all job events
#SBATCH --mail-user=email address # Send all emails to email address
# load required module(s)
module purge
module load intel/2022a
# run your program
./myprogram
```


Grace Job File (multi core, single node)

```
#!/bin/bash
                                           SUs = 156
##NECESSARY JOB SPECIFICATIONS
#SBATCH --job-name=JobExample2
                                          # Set the job name to "JobExample2"
#SBATCH --time=6:30:00
                                          # Set the wall clock limit to 6hr and 30min
#SBATCH --nodes=1
                                          # Request 1 node
#SBATCH --ntasks-per-node=24
                                          # Request 24 tasks(cores) per node
#SBATCH --mem=48G
                                          # Request 48GB per node
#SBATCH --output=stdout.%j
                                          # Send stdout to "stdout.[jobID]"
#SBATCH --error=stderr.%j
                                          # Send stderr to "stderr.[jobID]"
##OPTIONAL JOB SPECIFICATIONS
#SBATCH --account=123456
                                          # Set billing account to 123456
#SBATCH --mail-type=ALL
                                          # Send email on all job events
#SBATCH --mail-user=email address
                                          # Send all emails to email address
# load required module(s)
module purge
module load GCC/12.2.0
# run your program
./my multicore program
```


Job Memory Requests on Grace

Specify memory request based on memory per node:
 #SBATCH --mem=xxxxxM # memory per node in MB
 or
 #SBATCH --mem=xG # memory per node in GB

- On 384GB nodes, usable memory is at most 360 GB.
 The per-process memory limit should not exceed ~7500 MB for a 48-core job.
- On 3TB nodes, usable memory is at most 2900 GB.
 The per-process memory limit should not exceed 37120 MB for a 48-core job.

CRLF Line Terminators

Windows editors such as Notepad will add hidden Carriage Return Line Feed (CRLF) characters that will cause problems with many applications

```
cd $SCRATCH/batch examples
                                     # use file command to check
 file dos text.txt
dos text.txt: ASCII English text, with CRLF line terminators
                                     # use cat command to see CRLF characters
cat -v dos text.txt
dos2unix dos text.txt
                                     # use dos2unix command to correct
 file dos text.txt
dos text.txt: ASCII English text
```


Job submission issue: insufficient SUs

- What to do if you need more SUs
 - Ask your PI to transfer SUs to your account
 - Apply for more SUs (if you are eligible, as a PI or permanent researcher)

```
https://hprc.tamu.edu/kb/FAQ/Accounts/
https://hprc.tamu.edu/kb/User-Guides/AMS/Service_Unit/
https://hprc.tamu.edu/kb/User-Guides/AMS/UI/
```


HIGH PERFORMANCE RESEARCH COMPUTING

HPRC Primer Grace

August 30, 2024

NOTICE: This course was already taught at 10:00 AM this morning. You may view a past recording of this primer at link in the chat. We apologize for the inconvenience.

High Performance Research Computing

