February 21, 2023

Alexander Tsyplikhin

13

AGENDA

* Introduction to Graphcore, IPU, and Poplar

« Hands-on: ssh into the POD, enable the SDK, clone tutorials, binary caching, run example

 TensorFlow?2

« Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

« PyTorch

« Hands-on: PopTorch example, DatalLoader, options to optimize performance

GRAPHCORE OVERVIEW

GRAPHCORE ENABLING MACHINE INTELLIGENCE

Founded in 2016

Technology: Intelligence Processor Unit (IPU)

Team: ~500

Offices: UK, US, China, Poland

Raised >$710M

SEQUOIAZ (e)aomco SOFINA B Microsoft

©/7 DAL © BoscH &I Merian

’Hggﬂgo L esprit " Foundation

Amadeus
C apital Partners

- Py R ¥ o8

GRAPHCORE IPU LETS INNOVATORS CF
BREAKTHFROLIGHS IN MACHINE INTELLIGENCE

IPU ARCHITECTURE OVERVIEW

convl - 7x7 conv2 - 1x1 conv2 - 1x1 conv2 - 3x3 v2 - 1x1 v3 - 1x1
[4 in, 64 out] [64 in, 64 out] [256 in, 64 out] [64 in, 64 out] [64 256 t] [256 128 out]
s % S

FEPRESENTS A
COMPLETELY NEW COMPUTE WORKLOAD

conv3 - 1x1
[512 in, 128 out]

Masswe parallelism
Sparsity in data structures
Low precision compute

Model parameter re-use :

Statlc graph struoture

LEGALCY PROCESSOFR ARCHITECTURES
HAVE BEEN REPUFRPOQOSED FOR ML

R e

CPU GPU
Apps and Web/ Graphics and HPC/
Scalar Vector

A NEW PROCESSOF IS KEQUIRED FOF THE FUTLUFEE

e

IPU

Artificial Intelligence/
Graph

Parallelism

Processors [

Memory

Memory Access

IPLl - ARCHITECTURED FOF Al

Massive parallelism with ultrafast memory access

CPU

Designed for scalar processes

Off-chip memory

GPU

SIMD/SIMT architecture. Designed
for large blocks of dense
contiguous data

INEEE
A
INEEE
“ EEEEE ©

Model and data spread across off-
chip and small on-chip cache, and
shared memory

IPU

Massively parallel MIMD. Designed
for fine-grained, high-
performance computing

Model and data tightly coupled,
and large locally distributed SRAM

10

PROVEN IPU ADVANTAGE

SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

E’E:::;;::: LabGenius MMan r) plenSO

FINANCE - OPTION PRICING Al SaaS - TEHT ANALYTICS

CASE STUDY : NLP > CASE STUDY : SIM

CASE STUDY : NLP >

SENSORO v S ECMWF

TRACTABLE
SMART CITY FINANCE - INSURANCE WEATHER FORECASTING

¥ ! L]
CASE STUDY : CV > CASE STUDY : CV > CASE STUDY : SIM >

CASE STUDY >

Argonne & =7

NATIONAL LABORATORY Pacific Northwest
NATIONAL LABORATORY

RESEARCH / BIG LABS COMPUTATIONAL CHEMISTRY

CASE STUDY >

2o UNIVERSITY OF

1 Ay TN)
> OXFORD

ACCELERATOR

dl—l‘\\o LABORATORY

HIGH ENERGY PHYSICS DYNAMIC GRAPHS

i

CASE STUDY : GNN

IPU COMPUTATIONAL ADVANTAGES

Heterogeneous gather/scatter operations. E.g. GNNs

Group and depthwise convolutions. E.g. ResNeXt, EfficientNet

Vector operations with low arithmetic intensity. E.g. Sparse matmuls

Dense as well as Sparse Matrix Multiplication. E.g. Transformers

Hardware accelerated Random Number Generation. E.g. Random Projections

Hard to vectorize workloads. E.g. CRR algorithm for option pricing

References:

https://www.graphcore.ai/performance-results
https://www.graphcore.ai/posts/how-we-made-efficientnet-more-efficient
https://www.graphcore.ai/posts/delving-deep-into-modern-computer-vision-models
https://www.graphcore.ai/posts/training-neural-networks-in-low-dimensional-random-bases
https://www.graphcore.ai/posts/man-group-unlocks-massively-parallel-option-pricing-with-graphcore-ipu

@ GRAPHCORE CONFIDENTIAL

12

WORKLOADS THAT CAN’T EASILY BE VECTORIZED

Workloads with while loops that continue until convergence is
achieved e.g. ray tracing

Workloads where different compute paths are required
depending on the inputs e.g. CRR model

Tree-based models with unbalanced trees of different depth

€D GRAPHCORE CONFIDENTIAL 13

Deep Trench Capacitor

o
Il
(7))
(7))
L
il
Il
i
a
=
—
Il
o

Enables increase in operational performance

Efficient power delivery

Wafer-On-Wafer

(2}
3
>
o0
1S
Q
K]
o]
n
|
1
1
1
|
1
1
|
1
|
1
1
|
1
1
1
|
1
1
|
1
|
1
1
.

0.
pemmmmmmeee-
I
|
I
|
]
|
! —

H
a >
n O 0
co Qo
o O
e o
= Q
5% w.nlv
8y 079
Q¢ >
cx 09
>0 2=
58 2%
<n OO

IPU-Links™

Higher operating frequency
and enhanced overall

performance

10x IPU-Links,

320GB/s chip to chip bandwidth

IPU-Tiles™

cC
©
£t
z >
25
Cm
o O
0=
msm
23
S|
29

S
- &
cc
he
c C
QO ®©
Qs
)
T =
£R
83
S a
- =

IPU-Exchange™

g
O]
9
c
@©

<
Q
X

Y

]

a

©
]
=

®

L

m

[

-

-

c
A
)
b=
©
o
c

9
=
]

9
c
5
S
S
o}
o
>
c
©
o)

£

2
Q

e,

2
c
(¢}

P

IPU-Core™

1472 independent IPU-Core™

PCle

8832 independent program threads

executing in parallel

PCl Gen4 x16

64 GB/s bidirectional bandwidth to host

In-Processor-Memory™

900MB In-Processor-Memory™ per IPU

16

65.4TB/s memory bandwidth per IPU

EXECUTION MODEL

COMPUTATIONAL GRAPH BSP SCHEDLULE COPTIMIZED IPU ERECUTION

I I BSP EXECUTION TRACE - IPU TILES O - 1215

data

EXCHANGE

| sye |

COMPUTE

| syne |

EXCHANGE

| SYNC |

COMPUTE

| syne |

EXCHANGE

: ; OUTPUT FROM POPVISION GRAPH ANALYSER

GRAFHCORE

result [0]

)‘(IJOZ‘T OOO'(I]SI'K 000‘991'1 OOO'QVI'I 000'(I)ZI'T 000'901'1 000‘?00'T 000'990'l 000‘?70'[000'!‘)20‘1 000'(‘)00'1 000;096 000I096 000

BOW-2000 |[PLU MACHINE

Il blade form factor delivering 1.4 PetaFLOPS Al Compute

Disaggregated Al/ML accelerator platform

Excellent performance & TCO leveraging

In-Processor memory & IPU-Exchange

IPU-Links scale to Bow Pod64

Expansion to Bow Pod256 and beyond
with IPU-GW Links

19

BOW-2000: THE BUILDING BLOCK OF LARGE PODS

DRAM DRAM

Bow IPU

Bow IPU

[u}
o€

NIC/SmartNIC

Bow W IPU

(m]
o€

COMPUTE

DATA

COMMUNICATIONS

x16 IPU-Link [64GB/s]
Host-Link Network I/F [100Gbps]

IPU-GW Link [100Gbps]
x8 PCle G4 [32GB/s]

4x Bow IPUs
* 1.4 PFLOP; compute
» 5,888 processor cores
+ > 35,000 independent parallel threads

Exchange Memory
» 3.6GB In-Processor-Memory @ 260 TB/s
* 128GB Streaming Memory DRAM (up to 256GB)

IPU-Fabric managed by IPU-GW

* Host-Link - 100GE to Poplar Server for standard
data center networking

« |PU-Link - 2D Torus for intra-POD64
communication

* GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack - flexible topology

20

HOST AND IPU-FABRIC ENABLES LARGE SCALEOUT PODS

Servers

d
«

Host-Links:

Bow Pod64

100Gbps connectivity for each Bow-2000 to host server

Enabling disaggregation of host server, with optimal server/Bow-2000 ratio.

GW-Links (part of IPU-Fabric):
2x 100Gbps Gateway-Links for rack-to-rack communication

1FEY 2] W bl
2.8 Tbps* ultra-low latency
fabric designed for Al

Redundant rack-to-rack communication for large scaleout beyond Pod64

s x16 IPU-Link 64GB/s
s 100Gbps Host-Link Network I/F

100Gbps IPU-GW Link
x8 PCle G4 32GB/s

*Bandwidth for a Bow-2000

21

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

HANDS-ON

GET STARTED

RUN AN EXAMPLE

HANDOUT

bit.ly/tamu230221

http://www.bit.ly/tamu230221

MODELS AND SOFTWAEFRE

GRAFHCORE

@ Graphcore Confidential

STANDARD ML FRAMEWORK SUPPORT

Develop models using standard high-level frameworks or port existing models

O PyTor‘Ch 1F TensorFlow

T G PyTorch > T O PyTorch
TensorFlow I TensorFlow
o PyTorch Lightning @ & PyG Easy port of) & PyG
HUGGING FACE o o hig h-level
. Keras Torch Lightning framework Keras ° PyTorch Lightning
33 PaddiePaddie HALO models 33 PaddiePaddie HALO
Existing models on -
’%’fl PyG | Ke ras | alternative platforms
POPLAR®

7/.)'/.)' PaddlePaddle

HALO |

IPU-
@ Processor
Platforms

GRAPHCOFRE SOFTWARE MATURITY

NLP/TRANSFORMERS o am®

FRONTENDS jupyter INFERENCE DEPLOYMENT
N TOOLKIT

IMAGE CLASSIFICATION/CNNS

JUPYTER NOTEBOOKS

OBJECT DETECTION

1F O @ONNX HALO @

Keras /33 PaddiePaddle

FRAMEWORKS
LARGE MODELS

MLPERF

XLA POPART+ POPDIST

CONDITIONAL SPARSITY

POPVISION TOOLS

FW BACKENDS
GNNS

PARTITIONER POPIR POPIT
ML APPLICATIONS

POPLIBS GCL POPLAR
TUTORIALS

POPLAR® SYSTEM MONITORING

CODE EXAMPLES GRAPH ENGINE GRAPH COMPILER PROMETHEUS

GRAFANA

DOCUMENTATION

VIDEOS GC DEVICE ACCESS LAYER JOB DEPLOYMENT

NATIVE IPU CODERS PROGRAM DRIVERS

APPS PORTFOLIO

DEVELOPER ECOSYSTEM POPLAR® SDK SYSTEM SOFTWARE

® GRAPHCORE

6

IPUOF DRIVER PCle DRIVER @ K8S SLURM

28

PROGRAMMING ON IPU

DOCS AND TUTORIALS

USEFUL ENV VARIABLES
FRAMEWORKS
POPVISION

DEVELOPER RESOURCES

GRAPHCORE Home About» Products» Industries» Developer» Blog Careers» -

BUILD NEXT GENEFRATION MACHINE
INTELLIGENCE WITH FOPLAR®

I I |
Learn more about the Graphcore Poplar® SDK and get started
programming IPU systems.

h ./ I Open Source Poplar® Comprehensive ML Easy Deployment with

g rap CO re . al deve ODer Libraries & APIs Frameworks Support Docker
Access to PopLibs™, PopART™, TensorFlow & Support for common frameworks & IRs: Pre-built Docker containers with Poplar SDK,
PyTorch APIs to enable community-driven TensorFlow 1& 2, PyTorch, ONNX, HALO, Keras Tools and Frameworks images to get up and
collaboration and innovation. & Hugging Face. PaddlePaddle coming soon. running fast.

« Public hub for developers to
a Ccess : ¥ TensorFlow O PyTOFCh @ ONNX HALO Keras @ /33 Paddiepaddie

« Software documentation
° HOW_tO Videos Choose framework: PyTorch TensorFlow ONNX HALO
« Code tutorial walkthroughs

Introducing the PyTorch API for the IPU. L_E| Read the Guide
° Pe rfo r m a n Ce Be n C h m a r kS With PopTorch™ - a simple Python wrapper for PyTorch programs, developers can =] watch the Video
easily run models directly on Graphcore IPUs with a few lines of extra code.
® Start the Tutorial

Learn how to build performant PyTorch applications for training and inference
with our latest user guide, tutorials, and code examples.) Getthe Code

« Community support
« Developer news

To find out more about our announcement, read our guest blog with PyTorch.

« Learn about the Poplar® SDK and
how to easily run ML models on
IPU systems

GETTING STARKTED

FEATURED DOCUMENTATION

Get up and running fast on the IPU with our
comprehensive software documentation.

IPU Programmer's Guide

Targeting the IPU from
TensorFlow 2

PopVision Analyser User
Guide

Poplar SDK Overview

PyTorch for the IPU: User
Guide

NEW
Graph Recompilation &

Executable Switching in
TensorFlow

Poplar and PopLibs User
Guide

PopART User Guide

NEW
Getting Started with IPU-POD

Systems

graphcore.ai/developer

® © ® () Graphcore - GitHub x e

& github.com/graphcore * B a
COPEN SOURCE
Graphcore
a itories 6 @ g 2 people ['] Projects

github.com/graphcore E T e

GitHub is home to over 50 million developers working together. Join them to grow your own
teams, permissit and on projects.

« As part of our ethos to put power in D
the hands of Al developers,
Graphcore open sourced in 2020

examples Top languages
Example code and applications for machine learning on Graphcore IPUs @®C++ @ Python
1 ™ P A RT P T h & machine-learning deep-learning graphcore
« PopLibs™, PopART, PyTorc
OPython ¥25 w16 (0 118 Updated 3 days ago People .

TensorFlow for IPU fully open = e o
source and available on GitHub demos Manbelpommisiocdind o SN

i . who' rt of this organ ¥
Demonstrators and experimental applications for ML using Graphcore IPUs 0’8 8 part ot s organTzation
®cC++ MBMT Y1 w2 @O0 110 Updated 4 days ago

e Our code is public and open for _—]
code contributions from the wider g LA
ML developer community

tensorflow N\
Graphcore port of TensorFlow for the IPU

®C++ Mapache-20 ¥2 w19 0 110 Updatedon8 Jul

popart WA AN

®c++ ¥2 9 (0 110 Updatedon8ul

poprithms

®c++ Y1 9 ©Oo0 110 updatedon8Jul

http://github.com/graphcore

VIDECQ + GITHUB TUTORIALS

A comprehensive set of online developer training materials and educational content

® TUTORIALS

Learn how to create and run programs using Poplar and
PopLibs with our hands-on programming tutorials.

valuating Eatch Sizes o Programs and Variables Using PopLibs
Profiling Output Basic Machine Learning
Example
Matrix-Vector Multiplication Simple PyTorch for the IPU
Optimisation

he IFU: NLF

THE POPLAR GRAPH

Tutorial 1: programs and variables

Copy the file tutl_variables/start_here/tutl.cpp to your working directory and open it in an editor. The file contains the outline of a
C++ program including some Poplar kibrary headers and a namespace.

Graphs, variables and programs

All Poplar programs require a Graph object to construct the computation graph. Graphs are always created for a specific target (where the
target is a description of the hardware being targeted, such as an IPU). To obtain the target we need to choose a device.

p The tutorials use a simulated target by default, so will run on any machine even if it has no Graphcore hardware attached. On systems with
Getting started with Fop ; Y) accelerator hardware, the header file poplar/DeviceManager.hpp contains API calls to enumerate and return Device objects for the
[attached hardware

Simulated devices are created with the IPuModel class, which models the functionality of an IPU on the host. The createDevice function
creates a new virtual device to work with. Once we have this device we can create a Graph object to target it.

* Add the following code to the body of main

reate the IPU Model device

IPUModel ipuModel;

Device device = ipuModel.createDevice();

Target target = device.getTarget();
Create the Graph object

Graph graph(target);

Any program running on an IPU needs data to work on. These are defined as variables in the graph.

Getting started wi Funning TensorFlow on the IFU + Add the following code to create the first variable in the program
I

Writing Vertex Code

Matrix-Vector Multiplication

Tutorial 5: a basic machine
learning example

This tutorial contains a complete training program that
performs a logistic regression on the MNIST data set, using
gradient descent. The files for the demo are in tut5_ml .
There are no coding steps in the tutorial. The task is to
understand the code, build it and run it. You can build the
code using the supplied makefile.

Before you can run the code you will need to run the
get_mnist.sh script to download the MNIST data.

The program accepts an optional command line argument
to make it use the IPU hardware instead of a simulated IPU.

As you would expect, training is significantly faster on the
IPU hardware.

Copyright (c) 2018 Graphcore Ltd. All rights reserved.

ENHANCED MODEL GAFRDEN

GRAFHCORE

MODEL
GARDEN

LIERARY

Framework:

OPytorch
O Tensorflow1
O Tensorflow 2
[Hugging Face
[JPopaRT
O Paddiepaddie

O roplar

Category:

[E] Natural Language Processing
O summarisation
[0 sequence Classification
Masked-Language Modelling
O ranslation
Causal-Language Modelling
(O Token Classification
[0 Muttiple Choice
[0 Question Answering
3 Text Classification
[Text Generation

O Computer Vision

O Speech Processing

Oonn

O Muttimodal

[Al for Simulation

[J Recommender

O Probabilistic Modelling

[Reinforcement Leaming

O other

Other:

OiNew

O senchmarked
O Training
Oinference

O raperspace

Home Abouts Produces Soutonss Dowlpers Sog carors> [N

FEATURED MODELS

BERT-BASE TRAINING

e (Bidirectional Encoder R

ers) using PyTorch for NLP training

Search:

GPT2-LARGE TRAINING

1 in PyTorch leveraging the Hugging

sformer:

GPT2-MEDIUM INFERENCE

PyTorch leveraging the

sformers library.

GPT2-SMALL FINE-TUNING

HuggingFace Optimum implementation for fine

BERT-LARGE INFERENCE

al Encoder Re

PART for NLP

inference on IPUs.

BERT-LARGE FINE-TUNING

HuggingFace Optimum implementation for fine:

training a BERT-Large transformer model

TGN TRAINING

(GN: Temporal Graph Networks is a dynam

model for training on the IPL

[-

GPT2-LARGE INFERENCE

y everaging the
gging Face Transformers library.

GPT2-MEDIUM FINE-TUNING

Face m implementation for fine-

ansformer mode!

GPT2-SMALL INFERENCE

BERT-LARGE TRAINING

BERT-BASE TRAINING

rs) using PyTorch for NLP

VIT (VISION TRANSFORMER) FINE-
TUNING

HuggingFace Optimum implementation for fine.
nsformer) mode

GPT2-MEDIUM TRAINING

GPT2

Hugging Face Trans

aining in Py

GPT2-SMALL TRAINING

GPT2:S training in h leveraging the Hugging

Face Transform

BERT-LARGE TRAINING

BERT-Large (
from Trans
on IPUS

rectional Encoder Representations

rmers) using PyTorch for NLP t

ining

BERT-LARGE TRAINING

e ti

BERT-LARGE PRETRAINING

HuggingFace
training

ptimum implen

ion for pre

Large transformer model

BERT-BASE TRAINING

BERT-Base (Bidirectional Enco

from Tra
training on IPUs

PUBLIC ACCESS TO WIDE VARIETY OF
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

PAPERSPACE NOTEBOOK LINKS

MODEL GARDEN COVERAGE

— COMPUTER VISION)

@ mMacE

CLASSIFICATION L

?

@" OBJECT
<4 DETECTION

ResNet50 vI.5 YOLO v3

EfficientNet-BO YOLO va

EfficientNet-B4
ResNeXt-10l Faster RCNN
MobileNet v2 EfficientDet
MobileNet v3

¢ ossecr
Unet (Industrial)
MAE Unet (Medical)

.

Z

LP

\ 4
%)
)

) RoBERTa

]

& BERT-Base

@
[N

Al FOR SIMULATION N

DeepMD
DeepDriveMD

GNN .

Cluster-GCN
SchNet
Distr. KGE KLias

ABC Covid-I19

J

—— REINFORCEMENT

= PROBABILISTIC —

%Q MCMC
RL
Reinforcement Learning VAE
SPEECH 2

®)

@ BERT Large STT (ASR) e
GroupBERT = B'_?_‘ET BRI DeepVoice3
fiacked BRI FastSpeechz

2___Hubert T
\ GPT2 & DistilBERT LLZAME

J

(5% RECOMMENDER
=
. DIN |

MULTIMODAL

Stable Diffusion e

“(

OTHER A

Sales Forecast

Neural Image Fields

J

T TensorFlow

O PyTorch
¥ Hugging Face
Keras

7/.)'/.)' PaddlePaddle

POPART

& graphcore.ai/resources * B a
F; E s |:| I.I F; |:: E s |:: E N T F: E GRAFHCORE Home Abouts Products» Industriess Developer» Blog Careers) |GRSIRSISN
RESOURCES

graphcore.ai/resources

RESEARCH

WHITE — HOW-TO
PAPERS E(If)\ PAPERS — VIDEOS E
i Central Source Of researCh See more > I_‘ See more > See more >
papers, white papers, videos,
: WEEINARS SOFTWARE
on-demand yvebmars and R o
documentation
See more > See more >
 Product resources for ML
Engineers & IT / Infrastructure T o .
Managers now available LT RN e e———— | GRAPHCORE tome tooes motes tntris toioes g caers [N
WEEINARS RESEARCH FAPERS

GRAFHCORE

Imperial College London: Bundle Adjustment on a Graph
Processor

IPU-M2000 and IPU-POD: New Breakthroughs in Al at Scale (EN) ; Joseph Ortiz, Mark Pupils, Stefan Leutenegger, Andrew J. Danvison

https://graphcore.ai/resources

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

USEFUL ENV VARIABLES

USEFUL ENV VARIABLES

LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG _DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFE" No logging information. The default.

“ERR” Only error conditions will be reported.

WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won't fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

SYNTHETIC-DATA

TF_POPLAR_FLAGS="--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

Y|

CREATE EXECUTION PROFILE

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./report"}’

« The PopVision Graph Analyser uses report files generated during compilation and execution
by the Poplar SDK.

« These files can be created using POPLAR_ENGINE_OPTIONS.

* |n order to capture the reports needed for the PopVision Graph Analyser you only need to
set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By
default this will enable instrumentation and capture all the required reports to the current

working directory.

42

EXECUTABLE CACHE

If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

* You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

* You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

Warning

The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.

It is the your responsibility to delete the unwanted cache files.

44

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

GRAPHCORE COMMAND LINE TOOLS

gc-info Determines what IPU cards are present in the system.

gc-inventory Lists device IDs, physical parameters and firmware version numbers.

gc-reset Resets an IPU device after reboot. Note that each IPU must be reset after the host machine is rebooted.
gc-exchangetest Allows you to test the internal exchange fabric in an IPU.

gc-memorytest Tests all the memory in an IPU, reporting any tiles that fail.

gc-links Displays the status and connectivity of each of the IPU-Links that connect the C2 IPU-Processor cards
together. See also IPU-Link channel mapping.

gc-powertest Tests power consumption and temperature of the C2 IPU-Processor cards.
gc-hosttraffictest Allows you to test the data transfer between the host machine and the IPUs (in both directions).
gc-iputraffictest Allows you to test the data transfer between IPUS.

gc-docker Allows you to use IPU devices in Docker containers.

@ https://documents.graphcore.ai/

49

https://documents.graphcore.ai/

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

TF2/KERAS ON IPU

KERAS ON IPU

« |PU optimized Keras Model and Sequential
are available for the IPU. These have the
following features:

* On-device training loop for reduction of
communication overhead.

* Gradient accumulation for simulating
larger batch sizes.

* Automatic data-parallelisation of the
model when placed on a multi-IPU device.

as tf import tensorflow as tf
as.layers import x from tensorflow.keras.layers import x
-~ + from tensorflow.python import ipu IF)LJ
+ cfg = ipu.config.IPUConfig()
+ cfg.auto_select_ipus = 1
+ cfg.configure_ipu_system()
~ +with ipu.ipu_strategy.IPUStrategy().scope():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifarl0.load_data()
x_train = x_train.astype('float32') / 255.0 x_train = x_train.astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10) y_train = tf.keras.utils.to_categorical(y_train, 10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_remainde ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_rema
model = tf.keras.Sequential([model = tf.keras.Sequential([
Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]), Conv2D(32, (3, 3), padding='same', input_shape=x_train.shapel[1:1),
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Conv2D(64, (3, 3), padding='same'), = Conv2D(64, (3, 3), padding='same'), —
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Flatten(), Flatten(),
Dense(512), Dense(512),
Activation('relu'), Activation('relu'),
Dropout(0.5), Dropout(0.5),
Dense(10), Dense(10),
Activation('softmax') Activation('softmax')
1) 1)
model.compile(loss="'categorical_crossentropy’, model.compile(loss="'categorical_crossentropy',
optimizer=tf.optimizers.SGD(learning_rate=0.016), optimizer=tf.optimizers.SGD(learning_rate=0.016),
metrics=['accuracy']) metrics=['accuracy'])

model.fit(ds_train, epochs=40) model.fit(ds_train, epochs=40)

@ gpu_cnn_keras.py ¢ ipu_cnn_keras.py tf_keras i I AN [R

D alext — ubuntu@ip-172-31-6-210: ~/gpu2ipu_tf, @ © @ 5 alext — alext@IPU4D70: ~/gpu2ipu_tf/keras — ssh -i ~/.ssh/gc_rsa alext@
(tensorflow2_p36) ubuntu@ip-172-31-6-210:~/gpu2ipu_tf/keras$ (gc_virtualenv_TF2) alext@IPU4D70:~/gpu2ipu_tf/keras$
$ python3 gpu_keras_cnn.pyD $ python3 ipu_keras_cnn.pyl

GPU

(tensorflow2_p36) ubuntu@ip-172-31-6-210:~/gpu2ipu_tf/keras$

$ python3 gpu_keras_cnn.py
Train for 1560 steps
Epoch 1/40

1560/1560 [

Epoch 2/40

1560/1560 [

Epoch 3/40

1560/1560 [
Epoch 4/40
75/1560 [>.ieeeeeeeeneeeeenenneeonnnnns

8s bms/stey

2.168!

5s 3ms/step — loss: 1.880

5s 3ms/step — loss: 1.652

ETA: 5s — loss:

1.5328 - |

[JON |

$ python3 i
2020-05-12

r package:

2020-05-12

2020-05-12

Epoch 1/40

2020-05-12

most once

1560/1560 [
Epoch 2/40

1560/1560 [
Epoch 3/40

1560/1560 [
Epoch 4/40

1560/1560 [
Epoch 5/40

1560/1560 [
Epoch 6/40

1560/1560 [
Epoch 7/40

1560/1560 [
Epoch 8/40

1560/1560 [
Epoch 9/40

1560/1560 [
Epoch 10/40
1560/1560 [
Epoch 11/490
1560/1560 [
Epoch 12/40
1560/1560 [
Epoch 13/40
1560/1560 [
Epoch 14/40
1560/1560 [
Epoch 15/40
1560/1560 [
Epoch 16/40
1560/1560 [
Epoch 17/40

pu_keras_cnn.py
16:40:32.449285:
fé6b6aes4cel)
16:40:34.523582:
16:40:35.357131:

16:40:35.898895:
for the lifetime

alext — alext@IPU4D70: ~/gpuZ2ipu_tf/keras — ssh -i ~/.ssh/gc_rsa alext@
I tensorflow/compiler/plugin/poplar/driver/poplar_pla

ils/cpu_utils.cc
lriver/poplar_exe

I tensorflow/core/platform/prc
I tensorflow/compiler/plugin/g

I tensorflow/compiler/jit/xla_compilation_cache.cc:25¢
of the process.

] 2s 2ms/step — loss: 0.0500 - accurac)

] — 1s 593us/step — loss: 0.0408 — accur:
] - 1s 592us/step — loss: 0.0357 — accur:
] - 1s 597us/step — loss: 0.0325 — accur:
] - 1s 600us/step — loss: 0.0299 — accur:
] - 1s 600us/step — loss: 0.0278 - accur:
] — 1s 599us/step — loss: 0.0258 — accur:
] - 1s 598us/step — loss: 0.0241 — accur:
] - 1s 600Qus/step — loss: 0.0224 — accur:
] - 1s 600Qus/step — loss: 0.0208 — accur:
] - 1s 601lus/step — loss: 0.0193 - accur:
] - 1s 608us/step — loss: 0.0178 — accur:
] - 1s 601lus/step — loss: 0.0164 — accur:
] - 1s 60lus/step — loss: 0.0150 — accur:
] - 1s 598us/step — loss: 0.0136 — accur:
] - 1s 601us/step — loss: 0.0122 - accur:

KERAS TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

68

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

INTRO TO POPTORCH

GRAFHCORE

WHAT IS POPTORCH?

PopTorch

O PyTorch

. POPART

main.py

°

Poplar
compute
‘graph.

o
L
—
o
=
O
@)
L
o
<
o
O

GRAPH RUN TIME

70

WHAT IS POPTORCH?

PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on
Graphcore's IPU hardware.

PopTorch supports both inference and training. To run a model on the IPU you wrap your
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training
wrapper.

You can provide further annotations to partition the model across multiple IPUs. Using the
user-provided annotations, PopTorch will use PopART to parallelise the model over the
given number of IPUs.

Additional parallelism can be expressed via a replication factor which enables you to
data-parallelise the model over more IPUs.

Under the hood PopTorch uses TorchScript, an intermediate representation (IR) of a
PyTorch model, using the torch.jit.trace API. To learn more about TorchScript and JIT, you
can go through PyTorch’s tutorial: . ,
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

Not all PyTorch operations have been implemented by the backend yet and you can find
the list of supported operations here: https://docs.graphcore.ai/projects/poptorch-user-
quide/en/latest/supported_ops.html

7

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html

PYTORCH FOFR IPU

O PyTorch

Examples available from
https://github.com/graphcore/examples

Define a model within
PyTorch

Create an IPU execution
wrapper around the model
and run as normal

PopTorch uses
the torch.jit.trace API to
trace the model to PyTorch IR

Compile the graph in POopART
and then run on one or more
IPUs

72

https://github.com/graphcore/examples

GETTING STARTED: TRAINING A MODEL

TRAINING A MODEL

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DatalLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DatalLoader class:

poptorch.DatalLoader class is specialised for the way the underlying POpART
framework handles batching of data.

3. Define model and loss function using torch API
The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the

CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

18

74

TRAINING A MODEL

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DatalLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

75

if __name__ == '__main__':

—_—r Al = LUILII-IIId)\\pICUJ.LLJ.UIIb, E N
provide labels only for samples, where prediction is available (during the training, nof
ions.size()[0]:]

P T h ch.eq(ind, labels)).item() / labels.size 0
ylorc GPU

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')

parser.add_argument('—-batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('—-test-batch-size', type=int, default=8, help='batch size for testinc
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (de"
parser.add_argument('—1r', type=float, default=0.05, help='learning rate (default: 0.05)'

args = parser.parse_args()

training_data = torch.utils.data.DatalLoader(m
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, 1
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = torch.utils.data.Dataloader(I
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,

model = Network()
training_model = TrainingModelWithLoss(model)
optimizer=optim.SGD(model.parameters(), lr=args.lr)

Run training
for _ in range(args.epochs):
for data, labels in training_data:
preds, losses = training_model(data, labels)
optimizer.zero_grad() I
losses.backward()
optimizer.step()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

—_r Al = LUILII-IIIG}\\pICuLLLJ.UII), L/
provide labels only for samples, where prediction is available (during the training, noi
labels = labels[-predictions.size()[0]:]

accuracy = torch.sum(torch.eq(ind, labels)).item() / labels.si 100.0
return accuracy IF)lJ
if __name__ == '__main__':

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')
parser.add_argument('--batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('--test-batch-size', type=int, default=8, help='batch size for testin
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (def
parser.add_argument('--1r', type=float, default=0.05, help='learning rate (default: 0.05)'
parser.add_argument('--device-iterations', type=int, default=50, help='device iterations |
args = parser.parse_args()

opts = poptorch.Options().deviceIterations(args.device_iterations)

training_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, tran:
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=False, download=True, trar

model = Network() -
training_model = TrainingModelWithLoss(model) —
optimizer=optim.SGD(model.parameters(), lr=args.lr)

training_model = poptorch.trainingModel(training_model, opts, optimizer=optimizer)
inference_model = poptorch.inferenceModel(model) =

Run training
for _ in range(args.epochs): -
for data, labels in training_data:
preds, losses = training_model(data, labels) —

Detach the training model so that the same IPU could be used for validation L—
training_model.detachFromDevice()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = inference_model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

POPTORCH TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tutl basics

77

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH.OPTIONS

« The compilation and execution on the IPU can be controlled using poptorch.0Options

« Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

« Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for
the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

(ii) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
@ your model with torch.nn.DataParallel, but with PopTorch, this is an option. 7%

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

INFERENCE

« Torun inference, you use poptorch.inferenceModel class, which has a similar
APl to poptorch.trainingModel except that it doesn't need an optimizer.

« See tutorial example here:
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tutl_basics#r

unning-our-model-for-inference-on-an-ipu

79

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

MORE INFO

» PyTorch for the IPU: User Guide
https://docs.graphcore.ai/projects/poptorch-
user-guide/en/latest/

« GitHub tutorial
https://github.com/graphcore/examples/tree/

master/tutorials/pytorch/tutl_basics

 Code examples on GitHub
https://github.com/graphcore/examples/tree/

master/code_examples/pytorch/mnist

« Video tutorial on our developer page
https://www.graphcore.ai/developer

18

Getting started with PyTorch for the IPU

Running a basic model for training and inference

GRAPHCORE

80

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://www.graphcore.ai/developer

POPVISION TOOLS

GRAPH ANALYSER

Useful for analysing and optimising the memory use
and execution performance of ML models on the IPU

SYSTEM ANALYSER

Graphical view of the timeline of host-side application
execution steps

“Our team was very impressed by the care and effort Graphcore has clearly put into the PopVision graph and system
analysers. It's hard to imagine getting such a helpful and comprehensive profiling of the code elsewhere, so this was
@ really a standout feature in our IPU experience.”

Dominique Beaini, Valence Discovery, a leader in Al-first drug design 9

POPVISION GRAPH
ANALYSER

* You can use the PopVision Graph
Analyser tool to debug IPU
programs and generate reports on
compilation and execution of the
program.

 This tool can be downloaded from
the Graphcore customer support
portal: https://downloads.graphco

re.al/.

e There is a built-in help system
within the tool for any questions
you might have about producing
and analysing reports.

82

https://downloads.graphcore.ai/
https://downloads.graphcore.ai/

Several new features including:

PopVision Graph Analyser

* A new file format for the graph and
execution profile, resulting in a 50%
file size reduction

* Enhanced PopLibs debug information

Liveness Report

The debug information shown for a
variable now displays enhanced

- information. For each variable that has
Getting started with PopVision™ T e debug information, you can now see the
— PopLibs API that created it, its arguments

Intro to the PopVision™ Graph Analyser .
P P Y and its outputs.

Enhanced debug information has been
added to program steps. Program steps
show Poplar and PopLibs debug
information such as which PopLibs API
created that program step, its arguments
and its outputs.

Check out the integrated help or visit our developer

Getting started video available on the developers portal portal for more information 84

PopVision System Analyser

Show the execution of the software
on the host processor enabling users
to identify bottlenecks in execution
between CPU & IPU(s).

Provide profile insights as you scale
models to multiple CPUs / IPUs.

poplar::core:APUTarget:-run
Duration: 35.833 secs
Channel: Poplar

The PopVision System Analyser allows
developers to understand the execution
of programs running on the host
processor which control the IPU(s). The
System Analyser shows the interaction
between the host and the IPU(s) so that
developers can understand where the
bottlenecks are in the execution of their
applications.

The PopVision System Analyser
visualises the information collected by
the PopVision Trace Instrumentation
Library which is part of the Poplar SDK.

Visit our developer portal for more information and the
latest documentation:

https://www.graphcore.ai/developer

ANY QUESTIONS, REQUESTS, BUGS...

https://www.graphcore.ai/support

ENGINEERING
SUPPORT

Go To Tickets =

https://www.graphcore.ai/support

THANK YOU

Alexander Tsyplikhin
alext@graphcore.ai

