
CONFIDENTAL - ONLY SHARED UNDER NDACONFIDENTAL - ONLY SHARED UNDER NDA

1

GRAPHCORE
OVERVIEW AND
ONBOARDING
TRAINING
FOR TAMU

February 21, 2023
Alexander Tsyplikhin

2

AGENDA

• Introduction to Graphcore, IPU, and Poplar
• Hands-on: ssh into the POD, enable the SDK, clone tutorials, binary caching, run example

• TensorFlow2
• Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

• PyTorch
• Hands-on: PopTorch example, DataLoader, options to optimize performance

3

GRAPHCORE OVERVIEW

• Founded in 2016

• Technology: Intelligence Processor Unit (IPU)

• Team: ~500

• Offices: UK, US, China, Poland

• Raised >$710M

GRAPHCORE ENABLING MACHINE INTELLIGENCE

GRAPHCORE IPU LETS INNOVATORS CREATE THE NEXT
BREAKTHROUGHS IN MACHINE INTELLIGENCE

6

IPU ARCHITECTURE OVERVIEW

7

MACHINE INTELLIGENCE REPRESENTS A
COMPLETELY NEW COMPUTE WORKLOAD

Massive parallelism
Sparsity in data structures
Low precision compute
Model parameter re-use
Static graph structure

LEGACY PROCESSOR ARCHITECTURES
HAVE BEEN REPURPOSED FOR ML

IPU

8

Apps and Web/
Scalar

Graphics and HPC/
Vector

Artificial Intelligence/
Graph

IPU

9

Apps and Web/
Scalar

Graphics and HPC/
Vector

Artificial Intelligence/
Graph

A NEW PROCESSOR IS REQUIRED FOR THE FUTURE

IPU – ARCHITECTURED FOR AI

10

Massive parallelism with ultrafast memory access

PROVEN IPU ADVANTAGE
SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

HEALTHCARE

CASE STUDY : NLP

FINANCE – OPTION PRICING

CASE STUDY : SIM

SMART CITY

CASE STUDY : CV

AI SaaS – TEXT ANALYTICS

CASE STUDY : NLP CASE STUDY : GNN

COMPUTATIONAL CHEMISTRY

CASE STUDY

RESEARCH / BIG LABS

CASE STUDY : SIM

WEATHER FORECASTING

CASE STUDY : GNN

DYNAMIC GRAPHSFINANCE - INSURANCE

CASE STUDY : CV CASE STUDY

HIGH ENERGY PHYSICS

GRAPHCORE CONFIDENTIAL 12

IPU COMPUTATIONAL ADVANTAGES

Heterogeneous gather/scatter operations. E.g. GNNs

Group and depthwise convolutions. E.g. ResNeXt, EfficientNet

Vector operations with low arithmetic intensity. E.g. Sparse matmuls

Dense as well as Sparse Matrix Multiplication. E.g. Transformers

Hardware accelerated Random Number Generation. E.g. Random Projections

Hard to vectorize workloads. E.g. CRR algorithm for option pricing

References:
https://www.graphcore.ai/performance-results
https://www.graphcore.ai/posts/how-we-made-efficientnet-more-efficient
https://www.graphcore.ai/posts/delving-deep-into-modern-computer-vision-models
https://www.graphcore.ai/posts/training-neural-networks-in-low-dimensional-random-bases
https://www.graphcore.ai/posts/man-group-unlocks-massively-parallel-option-pricing-with-graphcore-ipu

WORKLOADS THAT CAN’T EASILY BE VECTORIZED

13

Workloads with while loops that continue until convergence is
achieved e.g. ray tracing

Workloads where different compute paths are required
depending on the inputs e.g. CRR model

Tree-based models with unbalanced trees of different depth

GRAPHCORE CONFIDENTIAL

16
Graphcore Confidential

BOW IPU PROCESSOR

SYNC

SYNC

SYNC

SYNC

EXECUTION MODEL

COMPUTE

COMPUTE

BSP SCHEDULE

EXCHANGE

EXCHANGE

EXCHANGE

COMPUTATIONAL GRAPH OPTIMIZED IPU EXECUTION

OUTPUT FROM POPVISION GRAPH ANALYSER

BSP EXECUTION TRACE - IPU TILES 0 - 1215

BOW-2000 IPU MACHINE

BOW IPU-2000

IPU-Links

IPU-GW Links

IPU Gateway100GbE
for host
connectivity

19

Disaggregated AI/ML accelerator platform

Excellent performance & TCO leveraging
In-Processor memory & IPU-Exchange

IPU-Links scale to Bow Pod64

Expansion to Bow Pod256 and beyond
with IPU-GW Links

Bow
IPUs

1U blade form factor delivering 1.4 PetaFLOPS AI Compute

BOW-2000: THE BUILDING BLOCK OF LARGE PODS

20

IPU

IPU

GC200

GC200

Gateway

NIC/SmartNIC

DRAM DRAM

Bow IPU

IPU-GW

Bow W IPUBow IPU

COMPUTE

4x Bow IPUs
• 1.4 PFLOP16 compute
• 5,888 processor cores
• > 35,000 independent parallel threads

DATA

Exchange Memory

• 3.6GB In-Processor-Memory @ 260 TB/s

• 128GB Streaming Memory DRAM (up to 256GB)

COMMUNICATIONS

IPU-Fabric managed by IPU-GW

• Host-Link – 100GE to Poplar Server for standard
data center networking

• IPU-Link – 2D Torus for intra-POD64
communication

• GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack – flexible topology

Bow IPU

x16 IPU-Link [64GB/s]

IPU-GW Link [100Gbps]

Host-Link Network I/F [100Gbps]

x8 PCIe G4 [32GB/s]

21

HOST AND IPU-FABRIC ENABLES LARGE SCALEOUT PODS

x16 IPU-Link 64GB/s

100Gbps IPU-GW Link
100Gbps Host-Link Network I/F

x8 PCIe G4 32GB/s

Bow Pod64

Servers Host-Links:
100Gbps connectivity for each Bow-2000 to host server

Enabling disaggregation of host server, with optimal server/Bow-2000 ratio.

GW-Links (part of IPU-Fabric):
2x 100Gbps Gateway-Links for rack-to-rack communication

Redundant rack-to-rack communication for large scaleout beyond Pod64

IPU-Links (part of IPU-Fabric):
2D Torus for IPU communication

Providing high bandwith connectivity across IPUs up to Pod64

2.8 Tbps* ultra-low latency
fabric designed for AI

*Bandwidth for a Bow-2000

IPU
61

IPU
62

IPU
63

IPU
1

IPU
2

IPU
3

IPU
4

IPU
5

IPU
6

IPU
7

IPU
8

IPU
64

IPU
61

IPU
62

IPU
63

GW

GW

GW

LSTM Encoder Decoder

22

HANDS-ON:

GET STARTED

RUN AN EXAMPLE

23

HANDOUT

bit.ly/tamu230221

http://www.bit.ly/tamu230221

Graphcore Confidential

MODELS AND SOFTWARE

STANDARD ML FRAMEWORK SUPPORT
Develop models using standard high-level frameworks or port existing models

IPU-
Processor
Platforms

POPLAR®

Easy port of
high-level
framework

models

Existing models on
alternative platforms

28

POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE MATURITY

HALOONNX

GRAPHCORE

LSTM Encoder Decoder

29

PROGRAMMING ON IPU

DOCS AND TUTORIALS

USEFUL ENV VARIABLES

FRAMEWORKS

POPVISION

CONFIDENTIALCONFIDENTIAL

CONFIDENTIALCONFIDENTIAL

DEVELOPER RESOURCES

30

31

DEVELOPER PORTAL

• Public hub for developers to
access:
• Software documentation
• How-to videos
• Code tutorial walkthroughs
• Performance Benchmarks
• Community support
• Developer news

• Learn about the Poplar® SDK and
how to easily run ML models on
IPU systems

graphcore.ai/developer

graphcore.ai/developer

32

• As part of our ethos to put power in
the hands of AI developers,
Graphcore open sourced in 2020

• PopLibs™, PopART, PyTorch &
TensorFlow for IPU fully open
source and available on GitHub

• Our code is public and open for
code contributions from the wider
ML developer community

github.com/graphcore

OPEN SOURCE

http://github.com/graphcore

33

VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content

ENHANCED MODEL GARDEN

PUBLIC ACCESS TO WIDE VARIETY OF
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

PAPERSPACE NOTEBOOK LINKS

MODEL GARDEN COVERAGE
COMPUTER VISION

IMAGE
CLASSIFICATION

OBJECT
DETECTION

NLP
SPEECH

STT (ASR) TTS

OTHER

BERT-Large

BERT-Base

GroupBERT

ViT

EfficientNet-B0

EfficientNet-B4

ResNet50 v1.5

ResNeXt-101

YOLO v4

YOLO v3

DIN
DIEN

DeepVoice3

Sales Forecast

RNN-T

Faster RCNN

OBJECT
SEGMENTATION

Unet (Industrial)

Unet (Medical)

FastSpeech2
Conformer

TGN

MPNN-GIN

MobileNet v2

MobileNet v3

GPT2 POPART

REINFORCEMENT

RL
Reinforcement Learning

RECOMMENDER

Autoencoder

PROBABILISTIC

MCMC

DINO

FastPitch

EfficientDet

Cluster-GCN

Neural Image Fields

PackedBERT

SWIN

RoBERTa
Deberta

BART
T5

Hubert

LXMERT

GNN

AI FOR SIMULATION

DeepMD

DeepDriveMD

CosmoFlow

ABC Covid-19

ET0

CLIP

VAE

MULTIMODAL

SchNet

Mini DALL-E
Frozen In Time

MAE

Stable Diffusion NEW

NEW

GPS++ Distr. KGE

DistilBERT NEW

NEW NEW

NEW

36

RESOURCES CENTRE

• Central source of research
papers, white papers, videos,
on-demand webinars and
documentation

• Product resources for ML
Engineers & IT / Infrastructure
Managers now available

graphcore.ai/resources

https://graphcore.ai/resources

LSTM Encoder Decoder

39

USEFUL ENV VARIABLES

40

USEFUL ENV VARIABLES

LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG_DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFF” No logging information. The default.

“ERR” Only error conditions will be reported.

“WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won’t fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

SYNTHETIC-DATA

41

TF_POPLAR_FLAGS= "--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

CREATE EXECUTION PROFILE

42

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./report"}’

• The PopVision Graph Analyser uses report files generated during compilation and execution

by the Poplar SDK.

• These files can be created using POPLAR_ENGINE_OPTIONS.

• In order to capture the reports needed for the PopVision Graph Analyser you only need to

set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By

default this will enable instrumentation and capture all the required reports to the current

working directory.

EXECUTABLE CACHE
If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

• You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

• You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

E.g. TF_POPLAR_FLAGS='--executable_cache_path=/tmp/cachedir'

44

Warning
The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.
It is the your responsibility to delete the unwanted cache files.

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

49

GRAPHCORE COMMAND LINE TOOLS

See: https://documents.graphcore.ai/

https://documents.graphcore.ai/

LSTM Encoder Decoder

63

TF2/KERAS ON IPU

LSTM Encoder Decoder

64

KERAS ON IPU

• IPU optimized Keras Model and Sequential
are available for the IPU. These have the
following features:

* On-device training loop for reduction of
communication overhead.
* Gradient accumulation for simulating
larger batch sizes.
* Automatic data-parallelisation of the
model when placed on a multi-IPU device.

GPU IPUKeras

GPU IPU

CONFIDENTIAL – FOR TENCENT UNDER NDA, DEC. 2018 67

GPU IPU

68

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

KERAS TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

INTRO TO POPTORCH

WHAT IS POPTORCH?

70

PopART

G
RA

PH
 C

O
M

PI
LE

R

G
RA

PH
 R

U
N

 T
IM

E

Poplar
compute

graph

PopTorch

main.py

71

WHAT IS POPTORCH?
• PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on

Graphcore's IPU hardware.

• PopTorch supports both inference and training. To run a model on the IPU you wrap your
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training
wrapper.

• You can provide further annotations to partition the model across multiple IPUs. Using the
user-provided annotations, PopTorch will use PopART to parallelise the model over the
given number of IPUs.

• Additional parallelism can be expressed via a replication factor which enables you to
data-parallelise the model over more IPUs.

• Under the hood PopTorch uses TorchScript, an intermediate representation (IR) of a
PyTorch model, using the torch.jit.trace API. To learn more about TorchScript and JIT, you
can go through PyTorch’s tutorial:
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

• Not all PyTorch operations have been implemented by the backend yet and you can find
the list of supported operations here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/supported_ops.html

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html

PYTORCH FOR IPU

Examples available from
https://github.com/graphcore/examples

72

Define a model within
PyTorch

Create an IPU execution
wrapper around the model

and run as normal

PopTorch uses
the torch.jit.trace API to

trace the model to PyTorch IR

Compile the graph in PopART
and then run on one or more

IPUs

https://github.com/graphcore/examples

GETTING STARTED: TRAINING A MODEL

73

74

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DataLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DataLoader class:
poptorch.DataLoader class is specialised for the way the underlying PopART
framework handles batching of data.

3. Define model and loss function using torch API

The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the
CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

TRAINING A MODEL

75

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DataLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

TRAINING A MODEL

GPU IPUPyTorch

77

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH.OPTIONS

78

• The compilation and execution on the IPU can be controlled using poptorch.Options

• Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

• Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for
the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

(ii) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
your model with torch.nn.DataParallel, but with PopTorch, this is an option.

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

INFERENCE

79

• To run inference, you use poptorch.inferenceModel class, which has a similar
API to poptorch.trainingModel except that it doesn't need an optimizer.

• See tutorial example here:
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics#r
unning-our-model-for-inference-on-an-ipu

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

MORE INFO

80

• PyTorch for the IPU: User Guide
https://docs.graphcore.ai/projects/poptorch-
user-guide/en/latest/

• GitHub tutorial
https://github.com/graphcore/examples/tree/
master/tutorials/pytorch/tut1_basics

• Code examples on GitHub
https://github.com/graphcore/examples/tree/
master/code_examples/pytorch/mnist

• Video tutorial on our developer page
https://www.graphcore.ai/developer

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://www.graphcore.ai/developer

POPLARTM POPVISION TOOLS

81

POPVISIONTM TOOLS

GRAPH ANALYSER
Useful for analysing and optimising the memory use
and execution performance of ML models on the IPU

SYSTEM ANALYSER
Graphical view of the timeline of host-side application
execution steps

“Our team was very impressed by the care and effort Graphcore has clearly put into the PopVision graph and system
analysers. It’s hard to imagine getting such a helpful and comprehensive profiling of the code elsewhere, so this was
really a standout feature in our IPU experience.”

Dominique Beaini, Valence Discovery, a leader in AI-first drug design

GRAPHCORE CONFIDENTIAL

POPVISION GRAPH
ANALYSER

• You can use the PopVision Graph
Analyser tool to debug IPU
programs and generate reports on
compilation and execution of the
program.

• This tool can be downloaded from
the Graphcore customer support
portal: https://downloads.graphco
re.ai/.

• There is a built-in help system
within the tool for any questions
you might have about producing
and analysing reports.

82

https://downloads.graphcore.ai/
https://downloads.graphcore.ai/

83

84

101

ANY QUESTIONS, REQUESTS, BUGS…

https://www.graphcore.ai/support

https://www.graphcore.ai/support

THANK YOU

CONFIDENTIAL

Alexander Tsyplikhin
alext@graphcore.ai

102

