# Introduction to CUDA Programming

#### Jian Tao

jtao@tamu.edu

Spring 2023 HPRC Short Course

2/28/2023



School of Performance,
Visualization & Fine Arts



High Performance Research Computing DIVISION OF RESEARCH



Institute of Data Science

#### **Introduction to CUDA Programming**



### Part I. Getting Started with FASTER



TAMU HPRC Short Course: Getting Started with FASTER and ACES

#### **FASTER Cluster**

hprc.tamu.edu/wiki/FASTER:Intro

| Resources                              | Quantity                                                                               |
|----------------------------------------|----------------------------------------------------------------------------------------|
| 64-core login nodes                    | 4 (3 for TAMU, 1 for ACCESS)                                                           |
| 64-core compute nodes (256GB RAM each) | 180 (11,520 cores)                                                                     |
| Composable GPUs                        | 200 T4 16GB<br>40 A100 40GB<br>10 A10 24GB<br>4 A30 24GB<br>8 A40 48GB                 |
| Interconnect                           | Mellanox HDR100 InfiniBand<br>(MPI and storage)<br>Liqid PCIe Gen4 (GPU composability) |
| Global Disk                            | 5PB DDN Lustre appliances                                                              |



FASTER (Fostering Accelerated Sciences Transformation Education and Research) is a 180-node Intel cluster from Dell featuring the Intel Ice Lake processor.

#### Composability at the Hardware Level



## ACES - Accelerating Computing for Emerging Sciences (Phase I)



| Component                | Quantity | Description                                                                                              |
|--------------------------|----------|----------------------------------------------------------------------------------------------------------|
| <u>Graphcore IPU</u>     | 16       | 16 Colossus GC200 IPUs and dual AMD Rome<br>CPU server on a 100 GbE RoCE fabric                          |
| Intel FPGA PAC D5005     | 2        | FPGA SOC with Intel Stratix 10 SX FPGAs, 64 bit<br>quad-core Arm Cortex-A53 processors, and 32GB<br>DDR4 |
| <u>Intel Optane SSDs</u> | 8        | 3 TB of Intel Optane SSDs addressable as memory using MemVerge Memory Machine.                           |

ACES Phase I components are available through <u>FASTER</u>

#### Accessing the HPRC Portal

HPRC webpage: <a href="https://prec.tamu.edu">hprc.tamu.edu</a>, Portal dropdown menu



#### Accessing FASTER via the HPRC Portal (TAMU)

Log-in using your TAMU NetID credentials.



#### Accessing FASTER via the HPRC Portal (ACCESS)

Log-in using your ACCESS credentials.



#### **Login HPRC Portal - FASTER/FASTER(ACCESS)**



#### **FASTER Shell Access - Portal**



#### **FASTER Shell Access - Shell**





#### Commands to copy the materials

Navigate to your personal scratch directory

```
$cd $SCRATCH
```

Files for this course are located at

```
/scratch/training/cuda.exercise.tgz
```

Make a copy in your personal scratch directory

```
$ cp /scratch/training/cuda.exercise.tgz $SCRATCH/
```

Extract the files

```
$ tar -zxvf cuda.exercise.tgz
```

Enter this directory (your local copy)

```
$cd CUDA
```

#### Load CUDA Module, Compile, and Run



## Part II. GPU as an Accelerator



#### **CPU**

#### **GPU** Accelerator





#### **NVIDIA** Tesla A100 with 54 Billion Transistors





Announced and released on May 14, 2020 was the Ampere-based A100 accelerator. With 7nm technologies, the A100 has 54 billion transistors and features 19.5 teraflops of FP32 performance, 6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth. The A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth.

## Why Computing Perf/Watt Matters?



Traditional CPUs are not economically feasible



GPU-accelerated computing started a new era

## **GPU Computing Applications**

A catalog of GPU-accelerated applications can be found at <a href="https://www.nvidia.com/en-us/gpu-accelerated-applications/">https://www.nvidia.com/en-us/gpu-accelerated-applications/</a>.



#### Add GPUs: Accelerate Science Applications



#### **HPC - Distributed Heterogeneous System**



**Programming Models**: MPI + (CUDA, OpenCL, OpenMP, OpenACC, etc.)

#### **Amdahl's Law**



$$S_{latency}(s) = rac{1}{(1-p) + rac{p}{s}}$$

- **S**<sub>latency</sub> is the theoretical speedup of the execution of the whole task.
- **s** is the speedup of the part of the task that benefits from improved system resources.
- p is the proportion of execution time that the part benefiting from improved resources originally occupied.

## CUDA Parallel Computing Platform <a href="https://developer.nvidia.com/cuda-toolkit">https://developer.nvidia.com/cuda-toolkit</a>

Programming **Approaches** 

Libraries

"Drop-in" Acceleration

OpenACC **Directives** 

Easily Accelerate Apps

**Programming** Languages

Maximum Flexibility

Development Environment



**Nsight IDE** Linux, Mac and Windows **GPU** Debugging and Profiling

CUDA-GDB debugger **NVIDIA Visual Profiler** 

**Open Compiler Tool Chain** 



Enables compiling new languages to CUDA platform, and CUDA languages to other architectures

Hardware Capabilities



**Dynamic Parallelism** 



**HyperQ** 



**GPUDirect** 



## 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

## 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

## Libraries: Easy, High-Quality Acceleration

- Ease of use: Using libraries enables GPU acceleration without in-depth knowledge of GPU programming
- "Drop-in": Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes
- Quality: Libraries offer high-quality implementations of functions encountered in a broad range of applications
- Performance: NVIDIA libraries are tuned by experts

#### **NVIDIA CUDA-X GPU-Accelerated Libraries**

https://developer.nvidia.com/gpu-accelerated-libraries

















Vector Signal Image Processing











Sparse Linear Algebra





C++ STL Features for CUDA



## **CUDA-accelerated Application with Libraries**

• **Step 1:** Substitute library calls with equivalent CUDA library calls saxpy ( ... ) 

■ cublasSaxpy ( ... )

• Step 2: Manage data locality

```
    with CUDA: cudaMalloc(), cudaMemcpy(), etc.
    with CUBLAS: cublasAlloc(), cublasSetVector(), etc.
```

Step 3: Rebuild and link the CUDA-accelerated library

```
$nvcc myobj.o -l cublas
```

## **Explore the CUDA (Libraries) Ecosystem**

 CUDA Tools and Ecosystem described in detail on NVIDIA Developer Zone.



**NVIDIA CUDA Tools & Ecosystem** 

## 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

#### **OpenACC Directives**

Hint



Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs & multicore CPUs

## **OpenACC**



#### The Standard for GPU Directives

- **Easy:** Directives are the easy path to accelerate compute intensive applications
- Open: OpenACC is an open GPU directives standard, making GPU programming straightforward and portable across parallel and multi-core processors
- Powerful: GPU Directives allow complete access to the massive parallel power of a GPU

## **Directives: Easy & Powerful**

#### Real-Time Object Detection

Global Manufacturer of Navigation Systems



#### Valuation of Stock Portfolios using Monte Carlo

Global Technology Consulting Company



#### Interaction of Solvents and Biomolecules

University of Texas at San Antonio



5x in 40 Hours

2x in 4 Hours

5x in 8 Hours

## 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

## **GPU Programming Languages**

Numerical analytics MATLAB, Mathematica, LabVIEW Fortran Denacc, CUDA Fortran C DenACC, CUDA C, OpenCL C++ Drust, CUDA C++, OpenCL **Python** PyCUDA, PyOpenCL, CuPy Julia / Java Julia GPU / CUDA. jl, jcuda

## Rapid Parallel C++ Development

- Resembles C++ STL
- High-level interface
  - Enhances developer productivity
  - Enables performance portability between GPUs and multicore CPUs
- Flexible
  - CUDA, OpenMP, and TBB backends
  - Extensible and customizable
  - Integrates with existing software
  - Open source

```
Thrust
  generate 32M random numbers on host
thrust::host vector<int> h vec(32 << 20);</pre>
thrust::generate(h vec.begin(),
                 h vec.end(),
                 rand);
// transfer data to device (GPU)
thrust::device vector<int> d vec = h vec;
  sort data on device
thrust::sort(d vec.begin(), d vec.end());
  transfer data back to host
thrust::copy(d vec.begin(),
             d vec.end(),
             h vec.begin());
```

https://thrust.github.io/

## **Learn More**

These languages are supported on all CUDA-capable GPUs.

You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++

http://developer.nvidia.com/cuda-toolkit

PyCUDA (Python)

https://developer.nvidia.com/pycuda

Thrust C++ Template Library

http://developer.nvidia.com/thrust

MATLAB

http://www.mathworks.com/discovery/matlab-gpu.html

**CUDA Fortran** 

https://developer.nvidia.com/cuda-fortran

Mathematica

http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/

## Part III. Running CUDA Code on FASTER





#### **Running CUDA Code on FASTER**

```
# load CUDA module
$ml CUDA
# copy sample code to your scratch space
$tar -zxvf cuda.exercise.tqz
# compile CUDA code
$cd CUDA
$nvcc hello world host.cu
$./a.out
# edit job script & submit your GPU job
$sbatch faster cuda run.sh
```

# Part IV. CUDA C/C++ BASICS



## What is CUDA?

- CUDA Architecture
  - Used to mean "Compute Unified Device Architecture"
  - Expose GPU parallelism for general-purpose computing
  - Retain performance
- CUDA C/C++
  - Based on industry-standard C/C++
  - Small set of extensions to enable heterogeneous programming
  - Straightforward APIs to manage devices, memory etc.

# A Brief History of CUDA

- Researchers used OpenGL APIs for general purpose computing on GPUs before CUDA.
- In 2007, NVIDIA released first generation of Tesla GPU for general computing together their proprietary CUDA development framework.
- Current stable version of CUDA is 11.5 (as of Nov 2021).

# **Heterogeneous Computing**

- Terminology:
  - Host The CPU and its memory (host memory)
  - Device The GPU and its memory (device memory)







Device

## **Heterogeneous Computing**

```
#include <iostream>
#include <algorithm>
using namespace std;
#define N 1024
#define RADIUS 3
#define BLOCK SIZE 16
__global__ void stencil_1d(int *in, int *out) {
                       shared__int temp[BLOCK_SIZE + 2 * RADIUS];
                      int gindex = threadIdx.x + blockIdx.x * blockDim.x;
                     int lindex = threadldx x + RADIUS:
                      // Read input elements into shared memory
                     temp[lindex] = in[gindex];
if (threadIdx.x < RADIUS)
                                          temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex +
BLOCK_SIZE];
                     // Synchronize (ensure all the data is available)
                      syncthreads();
                     // Apply the stencil
                     for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
                                           result += temp[lindex + offset];
                     // Store the result
                     out[gindex] = result;
void fill ints(int *x, int n) {
int main(void) {
                                         // host copies of a, b, c
                     int *d_in, *d_out; // device copies of a, b, c
                     int size = (N + 2*RADIUS) * sizeof(int);
                     // Alloc space for host copies and setup values
                     in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
                     // Alloc space for device copies
                     cudaMalloc((void **)&d in, size);
                     cudaMalloc((void **)&d_out, size);
                     cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
                     cudaMemcpy(d out, out, size, cudaMemcpyHostToDevice);
                     // Launch stencil_1d() kernel on GPU
stencil 1d<<<N/BLOCK SIZE,BLOCK SIZE>>>(d in + RADIUS, d out +
RADIUS):
                     cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
                     free(in): free(out):
                     cudaFree(d_in); cudaFree(d_out);
```



# **Simple Processing Flow**



# **Simple Processing Flow**



# **Simple Processing Flow**



# **Unified Memory**

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016



**Unified Memory** 

# **Unified Memory**

- A managed memory space where all processors see a single coherent memory image with a common address space.
- Memory allocation with cudaMallocManaged().
- Synchronization with cudaDeviceSynchronize().
- Eliminates the need for cudaMemcpy ().
- Enables simpler code.
- Hardware support since Pascal GPU.

#### **Hello World!**

```
int main(void) {
   printf("Hello World!\n");
   return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no device code

#### **Output:**

```
$ nvcc hello_world.cu
$ ./a.out
$ Hello World!
```

```
__global__ void mykernel(void) {
int main(void) {
   mykernel<<<1,1>>>();
   printf("Hello World!\n");
   return 0;
```

Two new syntactic elements...

```
__global__ void mykernel(void) {
}
```

- CUDA C/C++ keyword global indicates a function that:
  - Runs on the device
  - Is called from host code
- nvcc separates source code into host and device components
  - Device functions (e.g. mykernel ()) processed by NVIDIA compiler
  - Host functions (e.g. main ()) processed by standard host compiler
    - gcc, icc, etc.

```
mykernel<<<1,1>>>();
```

- Triple angle brackets mark a call from host code to device code
  - Also called a "kernel launch"
  - We'll return to the parameters (1, 1) in a moment
- That's all that is required to execute a function on the GPU!

```
__global__ void mykernel(void) {
}
int main(void) {
   mykernel<<<1,1>>>();
   printf("Hello World!\n");
   return 0;
}
```

#### **Output:**

```
$nvcc hello.cu
$./a.out
Hello World!
```

mykernel() does nothing!

## Parallel Programming in CUDA C/C++

 But wait... GPU computing is about massive parallelism!

We need a more interesting example...

 We'll start by adding two integers and build up to vector addition



#### Addition on the Device

A simple kernel to add two integers

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- As before \_\_global\_\_ is a CUDA C/C++ keyword meaning
  - add() will execute on the device
  - add() will be called from the host

#### Addition on the Device

Note that we use pointers for the variables

```
__global__ void add(int *a, int *b, int *c) {
   *c = *a + *b;
}
```

- add() runs on the device, so a, b, and c must point to device memory
- We need to allocate memory on the GPU.

## **Memory Management**

- Host and device memory are separate entities
  - Device pointers point to GPU memory
     May be passed to/from host code
     May not be dereferenced in host code
  - Host pointers point to CPU memory
     May be passed to/from device code
     May not be dereferenced in device code





- Simple CUDA API for handling device memory
  - cudaMalloc(), cudaFree(), cudaMemcpy()
  - Similar to the C equivalents malloc(), free(), memcpy()

# Addition on the Device: add()

Returning to our add() kernel

```
__global__ void add(int *a, int *b, int *c) {
   *c = *a + *b;
}
```

Let's take a look at main()...

## Addition on the Device: main()

```
int main(void) {
    int a, b, c;
                // host copies of a, b, c
    int *d a, *d b, *d c; // device copies of a, b, c
    int size = sizeof(int);
    // Allocate space for device copies of a, b, c
    cudaMalloc((void **)&d a, size);
    cudaMalloc((void **)&d b, size);
    cudaMalloc((void **)&d c, size);
    // Setup input values
    a = 2;
   b = 7;
```

## Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add <<<1,1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

# **Moving to Parallel**

- GPU computing is about massive parallelism
  - So how do we run code in parallel on the device?

```
add<<< 1, 1 >>>();
add<<< N, 1 >>>();
```

 Instead of executing add() once, execute N times in parallel

## **Vector Addition on the Device**

- With add () running in parallel we can do vector addition
- Terminology: each parallel invocation of add () is referred to as a block
  - The set of blocks is referred to as a grid
  - Each invocation can refer to its block index using blockIdx.x

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

 By using blockIdx.x to index into the array, each block handles a different element of the array.

#### **Vector Addition on the Device**

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

On the device, each block can execute in parallel:

```
Block 0 Block 1 Block 2 Block 3 c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];
```

## Vector Addition on the Device: add()

Returning to our parallelized add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

Let's take a look at main()...

## Vector Addition on the Device: main()

```
#define N 512
int main(void) {
int *a, *b, *c;  // host copies of a, b, c
int *d a, *d b, *d c;  // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);
// Alloc space for host copies of a, b, c and set up input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);
c = (int *)malloc(size);
```

## Vector Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
add <<< N, 1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

## **Vector Addition with Unified Memory**

```
global void VecAdd(int *ret, int a, int b) {
   ret[blockIdx.x] = a + b + blockIdx.x;
int main() {
   int *ret;
   cudaMallocManaged(&ret, 1000 * sizeof(int));
   VecAdd<<< 1000, 1 >>>(ret, 10, 100);
   cudaDeviceSynchronize();
   for(int i=0; i<1000; i++)
       printf("%d: A+B = %d\n", i, ret[i]);
    cudaFree(ret);
   return 0:
```

## **Vector Addition with Managed Global Memory**

```
device managed int ret[1000];
global void VecAdd(int *ret, int a, int b) {
   ret[blockIdx.x] = a + b + blockIdx.x;
int main() {
   VecAdd<<< 1000, 1 >>>(ret, 10, 100);
   cudaDeviceSynchronize();
   for(int i=0; i<1000; i++)</pre>
       printf("%d: A+B = %d\n", i, ret[i]);
   return 0;
```

# Review (1 of 2)

- Difference between host and device
  - Host CPU
  - Device GPU
- Using global to declare a function as device code
  - Executes on the device
  - Called from the host
- Passing parameters from host code to a device function

# Review (2 of 2)

- Basic device memory management
  - cudaMalloc()
  - cudaMemcpy()
  - cudaFree()
- Launching parallel kernels
  - Launch N copies of add() with add<<<N,1>>>(...).
  - Use blockIdx.x to access block index.
  - Use nvprof for collecting & viewing profiling data.

# Unified Memory Programming



### **Unified Memory**

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016



**Unified Memory** 

#### **Unified Memory**

- A managed memory space where all processors see a single coherent memory image with a common address space.
- Eliminates the need for cudaMemcpy ().
- Enables simpler code.
- Equipped with hardware support since Pascal.

#### Example 5 - Vector Addition w/o UM

```
global void VecAdd(int *ret, int a, int b) {
   ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
   int *ret;
   cudaMalloc(&ret, 1000 * sizeof(int));
   VecAdd<<< 1, 1000 >>>(ret, 10, 100);
    int *host ret = (int *)malloc(1000 * sizeof(int));
   cudaMemcpy(host ret, ret, 1000 * sizeof(int), cudaMemcpyDefault);
    for(int i=0; i<1000; i++)</pre>
       printf("%d: A+B = %d\n", i, host ret[i]);
   free(host ret);
   cudaFree(ret);
   return 0;
```

#### **Example 6 - Vector Addition with UM**

```
global void VecAdd(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
    int *ret;
    cudaMallocManaged(&ret, 1000 * sizeof(int));
   VecAdd<<< 1, 1000 >>>(ret, 10, 100);
    cudaDeviceSynchronize();
    for(int i=0; i<1000; i++)</pre>
        printf("%d: A+B = %d\n", i, ret[i]);
    cudaFree(ret);
    return 0;
```

# Example 7 - Vector Addition with Managed Global Memory

```
device managed int ret[1000];
global void VecAdd(int *ret, int a, int b) {
   ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
   VecAdd<<< 1, 1000 >>>(ret, 10, 100);
   cudaDeviceSynchronize();
    for(int i=0; i<1000; i++)</pre>
       printf("%d: A+B = %d\n", i, ret[i]);
    return 0;
```

## **Managing Devices**



#### **Coordinating Host & Device**

- Kernel launches are asynchronous
  - Control returns to the CPU immediately
- CPU needs to synchronize before consuming the results

cudaMemcpy ()

Blocks the CPU until the copy is complete. Copy

begins when all preceding CUDA calls have

completed

**cudaMemcpyAsync()** Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have

completed

#### **Reporting Errors**

- All CUDA API calls return an error code (cudaError t)
  - Error in the API call itself or
  - Error in an earlier asynchronous operation (e.g. kernel)
- Get the error code for the last error:
   cudaError\_t cudaGetLastError(void)
- Get a string to describe the error:

```
char *cudaGetErrorString(cudaError_t)
printf("%s\n",cudaGetErrorString(cudaGetLastError()));
```

#### **Device Management**

Application can query and select GPUs

```
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)
```

- Multiple threads can share a device
- A single thread can manage multiple devices

```
Select current device: cudaSetDevice(i)
For peer-to-peer copies: cudaMemcpy(...)
```

# **GPU Computing Capability**

The compute capability of a device is represented by a version number that identifies the features supported by the GPU hardware and is used by applications at runtime to determine which hardware features and/or instructions are available on the present GPU.



#### **More Resources**

You can learn more about CUDA at

- CUDA Programming Guide (<u>docs.nvidia.com/cuda</u>)
- CUDA Zone tools, training, etc.(developer.nvidia.com/cuda-zone)
- Download CUDA Toolkit & SDK (<u>www.nvidia.com/getcuda</u>)
- Nsight IDE (Eclipse or Visual Studio)(www.nvidia.com/nsight)

#### Acknowledgments

- Educational materials from <u>NVIDIA Deep Learning Institute via</u> its University Ambassador Program.
- Support from the <u>Texas A&M Engineering Experiment Station (TEES)</u>, the <u>Texas A&M Institute of Data Science (TAMIDS)</u>, and <u>Texas A&M High</u> <u>Performance Research Computing (HPRC)</u>.
- Support from <u>NSF OAC Award #2019129</u> MRI: Acquisition of FASTER -Fostering Accelerated Sciences Transformation Education and Research
- Support from <u>NSF OAC Award #2112356</u> Category II: ACES -Accelerating Computing for Emerging Sciences

#### Tesla A100 GPU Node

```
Device 0: "A100-PCIE-40GB"
                                                11.2 / 11.0
  CUDA Driver Version / Runtime Version
  CUDA Capability Major/Minor version number:
                                                8.0
  Total amount of global memory:
                                                40536 MBytes (42505273344 bytes)
                                                6912 CUDA Cores
  (108) Multiprocessors, (64) CUDA Cores/MP:
  GPU Max Clock rate:
                                                1410 MHz (1.41 GHz)
                                                1215 Mhz
 Memory Clock rate:
 Memory Bus Width:
                                                5120-bit
 L2 Cache Size:
                                                41943040 bytes
                                                32
  Warp size:
 Maximum number of threads per multiprocessor:
                                                2048
                                                1024
 Maximum number of threads per block:
 Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
 Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
  Concurrent copy and kernel execution:
                                                Yes with 3 copy engine(s)
  Run time limit on kernels:
                                                No
                                                Enabled
 Device has ECC support:
 Device supports Unified Addressing (UVA):
                                                Yes
  Supports Cooperative Kernel Launch:
                                                Yes
```