Introduction to CUDA
Programming

Jian Tao
jtao@tamu.edu
Spring 2023 HPRC Short Course

2/28/2023
TEXAS A&M UNIVERSITY H|gh Perfo rmance TEXAS A&M
Al?d School of Performance, AFVI Research Computing AFVI Institute of

Visualization & Fine Arts DIVISION OF RESEARCH Data Science

Introduction to CUDA Programming

Part I. Getting Started with
FASTER (~10 mins)

Part Il. GPU as an
Accelerator (~40 mins)

Q&A and Break
(10 mins)

Part IV. CUDA C/C++ Basics
(~50 mins)

Part lll. Running CUDA Code
on FASTER (~30 mins)

Part I. Getting Started with FASTER

TAMU HPRC Short Course: Getting Started with FASTER and ACES

https://hprc.tamu.edu/files/training/2023/Spring/IntroToComposable_2023_spring.pdf

FASTER Cluster

[hprc.tamu.edu/wiki/FASTER:Intro]

Resources Quantity
64-core login nodes 4 (3 for TAMU, 1 for ACCESS)
64-core compute nodes 180 (11,520 cores)
(256GB RAM each)
Composable GPUs 200 T4 16GB
40 A100 40GB
10 A10 24GB
4 A30 24GB
8 A40 48GB
Interconnect Mellanox HDR100 InfiniBand

(MPI1 and storage)
Ligid PCle Gen4 (GPU composability)

Global Disk 5PB DDN Lustre appliances

FASTER (Fostering Accelerated
Sciences Transformation Education
and Research) is a 180-node Intel
cluster from Dell featuring the Intel Ice
Lake processor.

https://hprc.tamu.edu/wiki/FASTER:Intro

Composability at the Hardware Level

|
. Server pool
|
i Accelerator Ligid
pool (GPUs, - . .)
. FPGA, etc.) Felairie
|
|
. Storage
| pool (SSDs)

Traditional Server : Composable Resources Composable Server Configuration
Configuration

[hprc.tamu.edu/wiki/FASTER:Intro]

https://hprc.tamu.edu/wiki/FASTER:Intro

ACES - Accelerating Computing for Emerging Sciences
(Phase)

Graohcore IPU 16 16 Colossus GC200 IPUs and dual AMD Rome
- CPU server on a 100 GbE RoCE fabric

5 FPCA SOC with Intel Stratix 10 SX FPGAs, 64 bit
Intel FPCGA PAC D5005 qguad-core Arm Cortex-A53 processors, and 32GB
DDR4
TB of Intel D I
Intel Obtane SSDs 5 3 of Intel Optane SSDs addressable as

memory using MemVerge Memory Machine.

ACES Phase | components are available through FASTER

https://www.graphcore.ai/products/ipu
https://www.intel.com/content/www/us/en/products/details/fpga/platforms/pac/d5005.html
https://www.liqid.com/products/liqid-elements/storage-class-memory/element-lqd4900
https://hprc.tamu.edu/resources/

Accessing the HPRC Portal

e HPRC webpage: hprc.tamu.edu, Portal dropdown menu

Home User Services Resources Research Policies Events About
g v » T . w1 L Ry —
< . " 3 - ;
¥ P o ® ' ¢ TerraPortal "P‘ o 1;7
/l‘ T I
e <« - | ; ™ Grace Portal W ey s
T

H |
o

FASTER Portal

Quick Links
New User Information
Accounts

Apply for Accounts
Manage Accounts

User Consulting
Training

FASTER Portal (ACCESS)

TEXAS A&M UNIVERSITY TO ACQUIRE A

https://hprc.tamu.edu/

Accessing FASTER via the HPRC Portal (TAMU)

Log-in using your TAMU NetID credentials.

Forgot your password?

New Student or Employee? Activate your NetID

Accessing FASTER via the HPRC Portal (ACCESS)

Log-in using your ACCESS credentials.

ZACCESS CiLogon
CiLogon #ACCESS
Consent to Attribute Release v
Login to CILogon
TAMU FASTER ACCESS OOD requests access to the following information. If you do not approve this request, do not proceed ogo n
ACCESS Username
+ Your ClLogon user identifier

« Your name

+ Your email address ClLogon facilitates secure access to CyberInfrastructure (CI).
+ Your username and affiiation from your identity provider ACCESS Password

4 1f you had an XSEDE account, please enter your XSEDE username and password for ACCESS login
> Register for an ACCESS Account

- o Don't Re ber Logil
- Select an Identity Provider - e e » Forgot your password?
o

ACCESS Cl (XSEDE) ~

Remember nis selection @

EE

By selecting "Log On", yo _agree to the privacy policy.

Click Here for Assistance

Select an Identity Provider Select the Id entity
Provider appropriate
for your account.

ACCESS CI (XSEDE)~ ©

Login HPRC Portal - FASTER/FASTER(ACCESS)

[] ® @ High Performance Research C- X +

&« C @& hprc.tamu.edu a M % © 8 @@ «© & 0O e H

TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

Home User Services Resources Research Policies Events About
- 4 e
o R 2T o » . ~ UL
s o WVAVAY '!g) _— y Terra Portal

t). ‘

Quick Links

New User Information
Accounts
Apply for Accounts
Manage Accounts
User Consulting

Training n
Knowledge Base

Software
FAQ

FASTER Portal (ACCESS)

llear Puidae

FASTER Shell Access - Portal

® @ @ High Performance Research C: X 4 Dashboard - TAMU HPRC OnlC X -+ v
C @& portal-faster.hprc.tamu.edu/pun/sys/dashboard h ¥ @ 8 ©@ © » 0O e :

TAMU HPRC OnDemand (FASTER) Files~ Jobs~ Clusters~ Interactive Apps ¥

>_faster Shell Access

1
OnDemand provides an integrated, single access point for all of your HPC resources.

Message of the Day

IMPORTANT POLICY INFORMATION

« Unauthorized use of HPRC resources is prohibited and subject to criminal prosecution.
» Use of HPRC resources in violation of United States export control laws and regulations is prohibited. Current
HPRC staff members are US citizens and legal residents.

« Sharing HPRC account and password information is in violation of State Law. Any shared accounts will be
DISABLED.

« Authorized users must also adhere to ALL policies at: https://hprc.tamu.edu/policies

! WARNING: THERE ARE ONLY NIGHTLY BACKUPS OF USER HOME DIRECTORIES. !!

FASTER Shell Access - Shell

o @ Shell - Open OnDemand X +
Cc @ portal-faster.hprc.tamu.edu/pun/sys/shell/ssh/fas... h % @& @ *» 0O 9

Host: faster.hprc.tamu.edu Themes:

blolokolokokokskokkkekkekRsolksolkilorkkkokokokskokkekkkkeeekoksksokokokoRkkokoRokkokokokokokokokek koo oRok

This computer system and the data herein are available only for authorized

purposes by authorized users. Use for any other purpose is prohibited and may

result in disciplinary actions or criminal prosecution against the user. Usage

may be subject to security testing and monitoring. There is no expectation of

privacy on this system except as otherwise provided by applicable privacy laws.

Refer to University SAP 29.01.03.M0.02 Acceptable Use for more information.
bololoiolkokskkkkkkklksolloliololikioiikokskkkekkkkkkolokolorkioroforokokskskokskokkkokko Rk

Password:

® @ jtao@login2:~ b3 + v
C' @ portal-faster.hprc.tamu.edu/pun/sys/shell/sshffas.. h ¥ @& D » 0O 9 H
Host: faster.hprc.tamu.edu Themes:

UPDATE (12:11a 02/20/2023): There was another storage incident between
11:10-11:50p. We are still investigating this new incident since the
indicators observed so far were not related to the previous user's jobs.

UPDATE (10:16p ©2/19/2023): We may have isolated and removed the
batch jobs that were impacting the Grace and FASTER shared storage.
We are continuing to monitor the storage for any further issues.

Original announcement (7:13p ©2/19/2023): Both the FASTER and Grace
clusters are currently having issues with their shared storage since
about 5:15p February 19th. The root cause and recovery options are
under investigation.

[02feb2023] FASTER hardware update: D5005 FPGAs are currently unavailable.

To see these messages again, run the motd command.

Your current disk quotas are:
Disk Disk Usage Limit File Usage Limit
/home/jtao 4K 10.0G 5! 10000
/scratch/user/jtao 21.5G 1.07 156632 250000
/scratch/group/hprc 4.07 10.0T 620476 1000000

* Quota increase for /scratch/group/hprc will expire on Dec 31, 2026
Type 'showquota' to view these quotas again.
[jtao@faster2 ~]$

Commands to copy the materials

e Navigate to your personal scratch directory
$ cd $SCRATCH
e Files for this course are located at
/scratch/training/cuda.exercise.tgz
Make a copy in your personal scratch directory
$ cp /scratch/training/cuda.exercise.tgz $SCRATCH/
e Extract the files
$ tar -zxvf cuda.exercise.tgz
e Enter this directory (your local copy)

$ cd cupa

13

Load CUDA Module, Compile, and Run

@ jtao@login1:~/CUDA/hello_wor X +

C @& portal-faster.hprc.tamu.edu/pun/sys/shell/ssh/fa... M ¢ o] » 0O @
Host: faster.hprc.tamu.edu

[jtao@fasterl hello_world]$ ml CUDA

[jtao@fasterl hello_world]$ nvcc —-version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2022 NVIDIA Corporation

Built on Mon_Oct_24_19:12:58_PDT_2022

Cuda compilation tools, release 12.0, V12.0.76

Build cuda_12.0.r12.0/compiler.31968024_0

[jtaoefasterl hello_world]$ nvcc ./hello_world_device.cu
[jtao@fasterl hello_world]$./a.out

Hello World!

Themes: BEEU

[jtao@fasterl hello_world]l$

Part Il. GPU as an
Accelerator

CPU GPU Accelerator

NVIDIA Tesla A100 with 54 Billion Transistors

Announced and released on May 14, 2020 was the Ampere-based A100 accelerator. With 7nm
technologies, the A100 has 54 billion transistors and features 19.5 teraflops of FP32 performance,

6912 CUDA cores, 40GB of graphics memory, and 1.6TB/s of graphics memory bandwidth. The
A100 80GB model announced in Nov 2020, has 2.0TB/s graphics memory bandwidth.

Why Computing Perf/Watt Matters?

4 N)
2.3 PFlops 7000 homes
fRAAAAAAAR CPU GPU Accelerator
ﬁﬁﬁ@ﬁﬁﬁﬁﬁﬁ Opt]mlzed for Optlmlzed for Many
Cnfwgr g g Serial Tasks Parallel Tasks
gl]
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ i o [
ucfencfenefensnsoss s s 3 S
fRAAAAAAAA mEmmmEm= mEmmamms
7‘0 7‘0 (= IE -- E E:.-:EJ
Megawatts Megawatts
_ J /
Traditional CPUs are GPU-accelerated computing

not economically feasible started a new era

|
GPU com putlng Libraries and Middleware

cuFFT

o o CuDNN CUBLAS \?J;L MATLAB
TensorRT CuRAND Mathematica
Applications D -
Programming Languages
Java : A
< Directives
A catalog of GPU-accelerated /. | CUDA:Enabled NVIDIA GPUs
applications can be found at : _
.y NVIDIA Ampere Architecture Tesla A Series

https://www.nvidia.com/en-us/gpu-accelerate (compute capabilities 8.x)
d-applications/.

NVIDIA Turing Architecture GeForce 2000 Series Quadro RTX Series Tesla T Series
(compute capabilities 7.x)

NVIDIA Volta Architecture DRIVE/JETSON Quadro GV Series Tesla V Series
(compute capabilities 7.x) AGX Xavier

NVIDIA Pascal Architecture GeForce 1000 Series Quadro P Series Tesla P Series
(compute capabilities 6.x)

// o = - T

Embedded I Pmfessional ‘N > Center
BSKtop/Laptop Workstation
-

https://www.nvidia.com/en-us/gpu-accelerated-applications/
https://www.nvidia.com/en-us/gpu-accelerated-applications/

Add GPUs: Accelerate Science Applications

Application Code

Compute-Intensive
Functions
<€« Rest of Sequential
CPU Code

OPU

Use GPU to
Parallelize

o

HPC - Distributed Heterogeneous System

Accelerators (GPU, Xeon Phi, FPGA, etc) Accelerators (GPU, Xeon Phi, FPGA, etc)
C1 C2 C1 C2 C1 c2 C1 C2
L1 S1 L1 L1 S2 | L1 S1 L1 L1 | S2 |

ey e

Programming Models: MPI + (CUDA, OpenCL, OpenMP, OpenACC, etc.)

Amdahl's Law

1
Slatency(s) — 1 D
(1-p)+ %
° S,atency is the theoretical speedup

of the execution of the whole task.

e sis the speedup of the part of the
task that benefits from improved
system resources.

e pis the proportion of execution
time that the part benefiting from
improved resources originally
occupied.

CUDA Parallel Comp utlng Platform

https://developer.nvidia.com/cuda-toolki

r
Programming Libraries OpenACC RIS
Directives Languages

N Approaches “Drop-in” Acceleration Easily Accelerate Apps Maximum Flexibility
J
{ Nsight IDE h
Development . . CUDA-GDB debugger
N S Racanc Windows NVIDIA Visual Profiler
Environment GPU Debugging and Profiling
\ J

Open Compiler @LLVM Enables compiling new languages to CUDA platform, and
. = R CUDA languages to other architectures
Tool Chain f

ILE
INFRASTRUCTUR

Dynamic Parallelism HyperQ GPUDirect
Hardware

Capabilities

https://developer.nvidia.com/cuda-toolkit

3 Ways to Accelerate Applications

é Y

Applications
4 N N (™)
. . OpenACC Programmin
Libraries p . J J
Directives Languages
" J J y
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility

3 Ways to Accelerate Applications

Applications]

r N \
L OpenACC Programming
or— Directives Languages

- J y
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility

Libraries: Easy, High-Quality Acceleration

Using libraries enables GPU acceleration without in-depth
knowledge of GPU programming

Many GPU-accelerated libraries follow standard APls, thus
enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions
encountered in a broad range of applications

NVIDIA libraries are tuned by experts

NVIDIA CUDA-X GPU-Accelerated Libraries

https://developer.nvidia.com/gpu-accelerated-libraries

NVIDIA cuBLAS NVIDIA cuRAND
GPU USIPL | T JRE
Vector Signal GPU Accelerated atrix Algebra on GPI ‘ ,)
Image Processing Linear Algebra JM and Multicore eeshssin NVIDIA cuFFT
F EE E E Em =mm
;] H = | H B
A] A E m_ Em
n L | ||
SR?GFl!va!ARVEE A Fire Matri .S- .L N .0 0
rrayrire 'a rx parse Linear C++ STL Features
IMSL Library Computations Algebra opan souts for CUDA Ay

http://code.google.com/p/thrust/downloads/list
https://developer.nvidia.com/gpu-accelerated-libraries

CUDA-accelerated Application with Libraries

* Step 1: Substitute library calls with equivalent CUDA library calls
saxpy (..) — cublasSaxpy (..)

e Step 2: Manage data locality

- with CUDA: cudaMalloc (), cudaMemcpy (), etc.
- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

* Step 3: Rebuild and link the CUDA-accelerated library

snvcc myobj.o —1 cublas

Explore the CUDA (Libraries) Ecosystem

<A NVIDIA. DEVELOPER

HOME BLOG FORUMS DOCS DOWNLOADS TRAINING Q

e CUDA Tools and

Ecosystem described
in detail on NVIDIA
Developer Zone.

Tools & Ecosystem

| GPU-Accelerated
Libraries
Application accelerating can be as
easy as calling a library function.

Debugging Solutions
Powerful tools can help debug
complex parallel applications in
intuitive ways.

Accelerated Web Services
Micro services with visual and
intelligent capabilities using deep
learning

Language and APIs

GPU acceleration can be accessed
from most popular programming
languages

Data Center Tools

Software Tools for every step of the
HPC and Al software life cycle

Cluster Management
Managing your cluster and job
scheduling can be simple and intuitive.

NVIDIA CUDA Tools & Ecosystem

Performance Analysis
Tools

Find the best solutions for analyzing
your application's performance profile

Key Technologies
Learn more about parallel computing
technologies and architectures.

https://developer.nvidia.com/tools-ecosystem

3 Ways to Accelerate Applications

[Applications]
4)

OpenACC Programming

Directives Languages
. J

4)

Libraries

“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility

OpenACC Directives

CPU GPU

(

b(ogram myscience
. serial code ..
'Sacc kernels

do k = 1,nl
do i = 1,n2
. parallel code .,r
enddo

OpenACC
compiler
Hint

enddo
!Sacc end kernels

End Program myscience

Simple Compiler hints

Compiler Parallelizes
code

Works on many-core
GPUs & multicore CPUs

OpenACC OpenACC

The Standard for GPU Directives

* Easy: Directives are the easy path to accelerate compute
intensive applications

* Open: OpenACCis an open GPU directives standard, making
GPU programming straightforward and portable across
parallel and multi-core processors

 Powerful: GPU Directives allow complete access to the
massive parallel power of a GPU

Directives: Easy & Powerful

Real-Time Object Valuation of Stock Portfolios Interaction of Solvents and
Detection using Monte Carlo Biomolecules
Global Manufacturer of Global Technology Consulting | University of Texas at San Antonio
Navigation Systems Company

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours

3 Ways to Accelerate Applications

[Applications]
(N\ [/)
L OpenACC Programming
Libraries Directives Languages
\ J J
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility

GPU Programming Languages

Numerical analytics
Fortran

C

C++

Python

Julia / Java

>

v VvV VvV V V

MATLAB, Mathematica, LabVIEW
OpenACC, CUDA Fortran
OpenACC, CUDA C, OpenCL
Thrust, CUDA C++, OpenCL
PyCUDA, PyOpenCL, CuPy
JuliaGPU/CUDA.jl, jcuda

Rapid Parallel C++ Development

Resembles C++ STL
High-level interface
* Enhances developer productivity

* Enables performance portability
between GPUs and multicore

CPUs
Flexible
* CUDA, OpenMP, and TBB
backends

e Extensible and customizable
* Integrates with existing software
Open source

//:;;ust:

thrust:

thrust:
thrust:

thrust:

4

:host _vector<int> h _vec (32 << 20);
:generate (h_vec.begin(),

h vec.end(),
rand) ;

:device vector<int> d _vec = h_vec;

:sort(d_vec.begin(), d vec.end()):

:copy (d_vec.begin() ,

d _vec.end(),
h vec.begin())

~

/

https://thrust.github.io/

https://thrust.github.io/

Learn More

These languages are supported on all CUDA-capable GPUs.
You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++
http://developer.nvidia.com/cuda-toolkit

Thrust C++ Template Library
http://developer.nvidia.com/thrust

CUDA Fortran
https://developer.nvidia.com/cuda-fortran

PyCUDA (Python)
https://developer.nvidia.com/pycuda

MATLAB
http://www.mathworks.com/discovery/
matlab-gpu.html

Mathematica
http://www.wolfram.com/mathematica/

new-in-8/cuda-and-opencl-support/

http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/discovery/matlab-gpu.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/thrust
https://developer.nvidia.com/cuda-fortran
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
https://developer.nvidia.com/pycuda

Part lll. Running CUDA Code on FASTER

<3

NVIDIA.
CUDA

Running CUDA Code on FASTER

load CUDA module
Sml CUDA

copy sample code to your scratch space
Star -zxvf cuda.exercise.tgz

compile CUDA code

S$Scd CUDA

$nvcc hello world host.cu
$./a.out

edit job script & submit your GPU job
$sbatch faster cuda run.sh

Part IV. CUDA C/C++ BASICS

<3

NVIDIA.
CUDA

What is CUDA?

* CUDA Architecture
— Used to mean “Compute Unified Device Architecture”

— Expose GPU parallelism for general-purpose computing
— Retain performance

« CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming
— Straightforward APIs to manage devices, memory etc.

A Brief History of CUDA

Researchers used OpenGL APIs for general purpose
computing on GPUs before CUDA.

In 2007, NVIDIA released first generation of Tesla GPU for
general computing together their proprietary CUDA
development framework.

Current stable version of CUDA is 11.5 (as of Nov 2021).

Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

eo“

R
ot
_ \o;e cs:% «\\\1

; gca\a,«-\""

Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global_ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS};
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

I/ Read input elements into shared memory
templiindex] = in[gindex];
if (threadidx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

s e AT ~ parallel function

I/ Synchronize (ensure all the data is available)
__syncthreads();

1/ Apply the stencil

int result =

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

1/ Store the result

outlgindex] = result; -
) .
void fill_ints(int *x, int n) {

fil_n(x, n, 1);
}

int main(void) { o
int *in, *out; I/ host copies of a, b, ¢

M UpeRedate serial code
int size = (N + 2'RADIUS) * sizeof(int); -

I/ Alloc space for host copies and setup values

in = (int “)malloc(size); fill_ints(in, N +2"RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

I/ Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

II Copy to device q
{_in, in, size, ToDevice);
Cout, out, size, fostToDevice); L p a r a e
II Launch stencil_1d() kernel on GPU.
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out +

RADIUS); - C d
I/ Copy result back to host O e
d -

i_out, size, DeviceToHost);
J/ Cleanup :
o) et - Seriat code
cudaFree(d_in); cudaFree(d_out);
return 0;

Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory

Simple Processing Flow

e

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance

Simple Processing Flow

PU
< PCI Bus > —

CPU Memory N

[T
P4
7
L adiim

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance
Copy results from GPU memory to
CPU memory

DRAM

Unified Memory

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016

! $ ‘ !

Unified Memory

Unified Memory

A managed memory space where all processors see a
single coherent memory image with a common address
space.

Memory allocation with cudaMallocManaged ().

Synchronization with cudaDeviceSynchronize ().

Eliminates the need for cudaMemcpy ().
Enables simpler code.

Hardware support since Pascal GPU.

Hello World!

main () {
printf ("Hello World!\n");
0; Output:
}

$ nvcc hello world.cu
$./a.out

e Standard C that runs on the host $ Hello World!

e NVIDIA compiler (nvcc) can be
used to compile programs with no
device code

Hello World! with Device Code

mykernel () |

main () |
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n") ;
0;
}

= Two new syntactic elements...

Hello World! with Device Code

~_global void mykernel (void) {
}

* CUDA C/C++ keyword global indicates a function that:

— Runs on the device
— Is called from host code
e nvcc separates source code into host and device components

— Device functions (e.g. mykernel ()) processed by NVIDIA
compiler

— Host functions (e.g. main ()) processed by standard host
compiler

* gcc, icc, etc.

Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host code to device
code

— Also called a “kernel launch”
— We’'ll return to the parameters (1, 1) in a moment

e That’s all that is required to execute a function on the GPU!

Hello World! with Device Code

mykernel () {
}
main () |
mykernel<<<1l,1>>>() ; Output:
printf ("Hello World'\n");
0; Snvce hello.cu
} $./a.out

Hello World!

 mykernel () does nothing!

Parallel Programming in CUDA C/C++

« But wait... GPU computing is about
massive parallelism!

 We need a more interesting example...

« We'll start by adding two integers and
build up to vector addition

Addition on the Device

* Asimple kernel to add two integers

add (*a, *b, *c) {
*c = *a + *b;

}
e As before is a CUDA C/C++ keyword
meaning
— add () Will execute on the device
— add() Will be called from the host

Addition on the Device
* Note that we use pointers for the variables

add (*a, *b, *c) {
*c = *a + *b;

}
* add() runs on the device, so a, b, and ¢ must
point to device memory

* We need to allocate memory on the GPU.

Memory Management

* Host and device memory are separate entities
Device pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
Host pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

e Simple CUDA API for handling device memory

— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()

Addition on the Device: add ()

e Returning to our adqa() kernel

add (*a, *b, *c) {

*c = *a + *b;

* Let’s take a look at main()...

Addition on the Device: main ()

int main(void) {
int a, b, c¢;
int *d_a, *d b, *d c;

int size = sizeof (int);

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);

Addition on the Device: main ()

cudaMemcpy (d_a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

add<<<1l,1>>>(d a, d b, d c);
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

cudaFree (d_a); cudaFree(d b); cudaFree(d c);
return O;

Moving to Parallel

* GPU computing is about massive parallelism

— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1M, 1 >>>();

* Instead of executing add () once, execute N
times in parallel

Vector Addition on the Device

 With add () running in parallel we can do vector addition

 Terminology: each parallel invocation of add () is referred to as a
block

— The set of blocks is referred to as a grid

— Each invocation can refer to its block index using blockIdx.x

~_global wvoid add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

 Byusing blockIdx. x toindex into the array, each block handles a
different element of the array.

Vector Addition on the Device

__global void add(int *a, int *b, int *c) {
c[blockIdx.x] a[blockIdx.x] + b[blockIdx.x];

* On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[0]; c[l] = a[l] + b[1l]; c[2] = a[2] + b[2]; c[3] = al[3] + b[3];

Vector Addition on the Device: add ()
e Returning to our parallelized aada() kernel

~_global void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* Let’s take a look at main()...

Vector Addition on the Device: main ()

main(void) {

*d_a, *d_b, *d_c;

size = (int);
((**)&d _a, size);
((**)&d b, size);
((**)&d c, size);
a = (*) (size); random ints(a, N);
b = (*) (size); random ints(b, N);
c = (*) (size);

Vector Addition on the Device: main ()

(d_a, a, size, cudaMemcpyHostToDevice) ;
(d_ b, b, size, cudaMemcpyHostToDevice) ;

add<<<i,1>>>(d_a, d b, d c);
(c, d ¢, size, cudaMemcpyDeviceToHost) ;

(a); (b) ; (c);
(d_a); (d_b); (d_c);

return O0;

Vector Addition with Unified Memory

__global void VecAdd(int *ret, int a, int b) {
ret[blockIdx.x] = a + b + blockIdx.x;
}

int main() {
int *ret;
cudaMallocManaged (&ret, 1000 * sizeof(int));
VecAdd<<< 1000, 1 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf ("%d: A+B = %d\n", i, ret[i]);

cudaFree (ret) ;

return O0;

Vector Addition with Managed Global Memory

device =~ managed = int ret[1000];

__global void VecAdd(int *ret, int a, int b) {
ret[blockIdx.x] = a + b + blockIdx.x;

}

int main() {
VecAdd<<< 1000, 1 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf("%d: A+B = %d\n", i, ret[i]):

return O;

Review (1 of 2)

 Difference between host and device
— CPU
— GPU

e Using to declare a function as device code
— Executes on the device
— Called from the host

e Passing parameters from host code to a device
function

Review (2 of 2)

* Basic device memory management

— cudaMalloc()
— cudaMemcpy()

— cudaFree()

* Launching parallel kernels

— Launch N copies of add() with add<<<N,1>>>(...).
— Use to access block index.

— Use nvprof for collecting & viewing profiling data.

Unified Memory
Programming

Unified Memory

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016

i ﬂ i
1 1 ¢

Unified Memory

* A managed memory space where all
processors see a single coherent memory
image with a common address space.

* Eliminates the need for cudaMemcpy ().

* Enables simpler code.

* Equipped with hardware support since Pascal.

Example 5 - Vector Addition w/o UM

__global void VecAdd(int *ret, int a, int Db) {
ret[threadIldx.x] = a + b + threadIdx.x;
}
int main() {
int *ret;
cudaMalloc (&ret, 1000 * sizeof(int)) ;
VecAdd<<< 1, 1000 >>>(ret, 10, 100);
int *host ret = (int *)malloc (1000 * sizeof(int));
cudaMemcpy (host_ret, ret, 1000 * sizeof(int), cudaMemcpyDefault) ;
for(int i=0; i<1000; i++)
printf ("%d: A+B = %d\n", i, host ret[i]);
free (host ret);
cudaFree (ret) ;

return O0;

Example 6 - Vector Addition with UM

__global void VecAdd(int *ret, int a, int b) {

}

ret[threadldx.x] = a + b + threadIdx.x;

int main() {

int *ret;
cudaMallocManaged (&ret, 1000 * sizeof (int));
VecAdd<<< 1, 1000 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf ("%d: A+B = %d\n", i, ret[i]);
cudaFree (ret) ;
return O;

Example 7 - Vector Addition with
Managed Global Memory

__device =~ managed int ret[1000];

__global void VecAdd(int *ret, int a, int b) {

ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {
VecAdd<<< 1, 1000 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)
printf("%d: A+B = %d\n", i, ret[i]):
return O;

Managing Devices

Coordinating Host & Device

* Kernel launches are asynchronous

— Control returns to the CPU immediately

* CPU needs to synchronize before consuming the results

cudaMemcpy ()

cudaMemcpyAsync ()

cudaDeviceSynchronize ()

Blocks the CPU until the copy is complete. Copy
begins when all preceding CUDA calls have
completed

Asynchronous, does not block the CPU

Blocks the CPU until all preceding CUDA calls have
completed

Reporting Errors

* All CUDA API calls return an error code (cudakrror t)
— Error in the API call itself or
— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:
cudaError t cudaGetLastError (void)

* Get a string to describe the error:

char *cudaGetErrorString(cudaError t)
printf ("$s\n",cudaGetErrorString (cudaGetLastError())) ;

Device Management

* Application can query and select GPUs

cudaGetDeviceCount (int *count)

cudaSetDevice (int device)

cudaGetDevice (int *device)

cudaGetDeviceProperties (cudaDeviceProp *prop, int device)

 Multiple threads can share a device

* Asingle thread can manage multiple devices

Select current device: cudasetDevice (i)
For peer-to-peer copies: cudaMemcpy (...)

' requires OS and device support

|
GPU computlng Libraries and Middleware

cuFFT
one CUDNN CUBLAS CULA Thrust VSS\};" ';hyt?))(‘ MATLAB
TensorRT CURAND MAGMA NPP e .Rpa' Mathematica
apability ke e | o

Programming Languages

Java

The compute capability of a oven S Drecioompue i ooy
device is represented by a
version number that identifies

CUDA-Enabled NVIDIA GPUs

the features supported by the | BEHE Tesa A Seres
GPU hardware and is used by
applications at runtime to

determine which hardware (computecapaities)| AGKavier
features and/or instructions I GeForce 1000 Series | QuadroP Series | Teta P Seris

NVIDIA Turing Architecture GeForce 2000 Series Quadro RTX Series Tesla T Series
(compute capabilities 7.x)

DRIVE/JETSON Quadro GV Series Tesla V Series

(compute capabilities 6.x)

are available on the present , -
L il i —— 7>
G P U . //Embedded "“ I I‘ PRofessional ™ /{ Center

Workstatlon

More Resources

You can learn more about CUDA at

— CUDA Programming Guide (docs.nvidia.com/cuda)

— CUDA Zone —tools, training, etc.
(developer.nvidia.com/cuda-zone)

— Download CUDA Toolkit & SDK
(www.nvidia.com/getcuda)

— Nsight IDE (Eclipse or Visual Studio)
(www.nvidia.com/nsight)

http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-zone
http://www.nvidia.com/getcuda
http://www.nvidia.com/nsight

Acknowledgments

Educational materials from NVIDIA Deep Learning Institute via its

University Ambassador Program.

Support from the Texas A&M Engineering Experiment Station (TEES),
the Texas A&M Institute of Data Science (TAMIDS), and Texas A&M High
Performance Research Computing (HPRC).

Support from NSF OAC Award #2019129 - MRI: Acquisition of FASTER -
Fostering Accelerated Sciences Transformation Education and Research
Support from NSF OAC Award #2112356 - Category II: ACES -
Accelerating Computing for Emerging Sciences

84

https://www.nvidia.com/en-in/training/
https://tees.tamu.edu/
https://tamids.tamu.edu/
https://hprc.tamu.edu/
https://hprc.tamu.edu/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2019129&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2112356

Tesla A100 GPU Node

Device 0: "Al00-PCIE-40GRBR"

CUDA Driver Version / Runtime Version 11.2 / 11.0

CUDA Capability Major/Minor version number: 8.0

Total amount of global memory: 40536 MBytes (42505273344 bytes)
(108) Multiprocessors, (64) CUDA Cores/MP: 6912 CUDA Cores
GPU Max Clock rate: 1410 MHz (1.41 GHz)
Memory Clock rate: 1215 Mhz

Memory Bus Width: 5120-bit

L2 Cache Size: 41943040 bytes
Warp size: 32

Run time limit on kernels: No

Device has ECC support: Enabled

Device supports Unified Addressing (UVA): Yes

Supports Cooperative Kernel Launch: Yes

