
CONFIDENTAL - ONLY SHARED UNDER NDACONFIDENTAL - ONLY SHARED UNDER NDA

1

GRAPHCORE
WORKSHOP
FOR TAMU

October 3, 2023
Alexander Tsyplikhin

2

AGENDA

• Introduction to Graphcore, IPU, and Poplar
• Hands-on: access the POD, enable the SDK, run an example

• TensorFlow2/Keras
• Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

• PyTorch
• Hands-on: PopTorch example, DataLoader, options to optimize performance

• Founded in 2016

• Technology: Intelligence Processor Unit (IPU)

• Team: ~500

• Offices: UK, US, China, Poland

• Raised >$710M

GRAPHCORE ENABLING MACHINE INTELLIGENCE

GRAPHCORE IPU LETS INNOVATORS CREATE THE NEXT
 BREAKTHROUGHS IN MACHINE INTELLIGENCE

IPU – ARCHITECTURED FOR AI

5

Massive parallelism with ultrafast memory access

PROVEN IPU ADVANTAGE
SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS

HEALTHCARE

CASE STUDY : NLP

FINANCE – OPTION PRICING

CASE STUDY : SIM

SMART CITY

CASE STUDY : CV

AI SaaS – TEXT ANALYTICS

CASE STUDY : NLP CASE STUDY : GNN

COMPUTATIONAL CHEMISTRY

CASE STUDY

RESEARCH / BIG LABS

CASE STUDY : SIM

WEATHER FORECASTING

CASE STUDY : GNN

DYNAMIC GRAPHSFINANCE - INSURANCE

CASE STUDY : CV CASE STUDY

HIGH ENERGY PHYSICS

GRAPHCORE CONFIDENTIAL 7

IPU COMPUTATIONAL ADVANTAGES

Heterogeneous gather/scatter operations. E.g. GNNs

Group and depthwise convolutions. E.g. ResNeXt, EfficientNet

Vector operations with low arithmetic intensity. E.g. Sparse matmuls

Dense as well as Sparse Matrix Multiplication. E.g. Transformers

Hardware accelerated Random Number Generation. E.g. Random Projections

Hard to vectorize workloads. E.g. DFT in Computational Chemistry

References:
https://www.graphcore.ai/performance-results
https://www.graphcore.ai/posts/how-we-made-efficientnet-more-efficient
https://www.graphcore.ai/posts/delving-deep-into-modern-computer-vision-models
https://www.graphcore.ai/posts/training-neural-networks-in-low-dimensional-random-bases
https://www.graphcore.ai/posts/man-group-unlocks-massively-parallel-option-pricing-with-graphcore-ipu

WORKLOADS THAT CAN’T EASILY BE VECTORIZED

8

Workloads with while loops that continue until convergence is
achieved e.g. ray tracing

Workloads where different compute paths are required
depending on the inputs e.g. DFT or CRR model

Tree-based models with unbalanced trees

GRAPHCORE CONFIDENTIAL

9

10

11

MIMD for
 𝐸 ∈ ℝ!!×!!

65 TB/s for
J = 𝐸 ⋅ 𝑣 ∈ ℝ!!
K = 𝐸# ⋅ 𝑣 ∈ ℝ!!

GRAPHCORE CONFIDENTIAL 12GRAPHCORE CONFIDENTIAL 1212

BOW IPU

GRAPHCORE

13
Graphcore Confidential

BOW IPU PROCESSOR

SYNC

SYNC

EXECUTION MODEL

COMPUTE

COMPUTE

BSP SCHEDULE

EXCHANGE

EXCHANGE

EXCHANGE

COMPUTATIONAL GRAPH OPTIMIZED IPU EXECUTION

OUTPUT FROM POPVISION GRAPH ANALYSER

BSP EXECUTION TRACE - IPU TILES 0 - 1215

host I/O

host I/O

in
te

r-
ch

ip
 s

yn
c

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

 (1
 ti

le
 a

bs
ta

in
s)

in
te

r-
ch

ip
 s

yn
c

compute phase

exchange phase

BULK SYNCHRONOUS
PARALLEL (BSP)

BSP software bridging model – massively parallel
computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program – no live-locks or dead-locks

Widely-used in parallel computing – Google, FB, …

First use of BSP inside a parallel processor

IPU
2

IPU
1

sync
|

inter-chip
sync

|

sync
(1 tile abstains)

|
host I/O

|
sync

|
sync

|
sync

host I/O
|

syncinter-
chip
sync

time

BOW-2000 IPU MACHINE

BOW IPU-2000

IPU-Links

IPU-GW Links

IPU Gateway100GbE
for host
connectivity

16

Disaggregated AI/ML accelerator platform

Excellent performance & TCO leveraging
In-Processor memory & IPU-Exchange

IPU-Links scale to Bow Pod64

Expansion to Bow Pod256 and beyond
with IPU-GW Links

Bow
IPUs

1U blade form factor delivering 1.4 PetaFLOPS AI Compute

BOW-2000: THE BUILDING BLOCK OF LARGE PODS

17

IPU

IPU

GC200

GC200

Gateway

NIC/SmartNIC

DRAM DRAM

Bow IPU

IPU-GW

Bow W IPUBow IPU

COMPUTE

4x Bow IPUs
• 1.4 PFLOP16 compute
• 5,888 processor cores
• > 35,000 independent parallel threads

DATA

Exchange Memory

• 3.6GB In-Processor-Memory @ 260 TB/s

• 128GB Streaming Memory DRAM (up to 256GB)

COMMUNICATIONS

IPU-Fabric managed by IPU-GW

• Host-Link – 100GE to Poplar Server for standard
data center networking

• IPU-Link – 2D Torus for intra-POD64
communication

• GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack – flexible topology

Bow IPU

x16 IPU-Link [64GB/s]

IPU-GW Link [100Gbps]

Host-Link Network I/F [100Gbps]

x8 PCIe G4 [32GB/s]

BOW POD16 DIRECT ATTACH
Simple design with server with 4 Bow-2000 and 16 Bow IPUs

1GbE Management (Cat5, 1.5m)

Host-Link 100GE network interface (QSFP, 1.0m)

IPU-Link (OSFP, 0.3m)

Sync-Link (Cat5, 0.15m)

Host Server

18

LSTM Encoder Decoder

19

HANDS-ON:

GET STARTED

RUN AN EXAMPLE

20

HANDOUT

bit.ly/tamu231003

http://www.bit.ly/tamu231003

IPU DEVELOPER ECOSYSTEM

22

GRAPHCORE SOFTWARE ECOSYSTEM
WORLD CLASS DEVELOPER RESOURCES FOR IPU USERS

WWW.GRAPHCORE.AI/DEVELOPER

23

• As part of our ethos to put power in
the hands of AI developers,
Graphcore open sourced in 2020

• PopLibs™, PopART, PyTorch &
TensorFlow for IPU fully open
source and available on GitHub

• Our code is public and open for
code contributions from the wider
ML developer community

github.com/graphcore

OPEN SOURCE

http://github.com/graphcore

24

VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content

25

RESOURCES CENTRE

• Central source of research
papers, white papers, videos,
on-demand webinars and
documentation

• Product resources for ML
Engineers & IT / Infrastructure
Managers now available

graphcore.ai/resources

https://graphcore.ai/resources

26

POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE

HALOONNX

ENHANCED MODEL GARDEN

PUBLIC ACCESS TO WIDE VARIETY OF
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

PAPERSPACE NOTEBOOK LINKS

https://www.graphcore.ai/resources/model-garden

Access IPU-ready notebooks in seconds

Stable Diffusion 2
Text => Image Inference

Training Dynamic Graphs
TGN - Training

Image Classification
ViT - Fine Tuning

Training ViT HF model
ViT - Fine Tuning

BERT Fine Tuning
BERT-Large - Fine Tuning

Fast sentiment analysis BERT |
RoBERTa - Inference

Named Entity Recognition
BERT - Inference

Question-Answering task
RoBERTa – Fine Tuning

Summarization task
T5 Small – Fine Tuning

Text Classification task
RoBERTa – Fine Tuning

Token Classification task
BERT

Fine-Tuning

Translation task
BART-Base
Fine-Tuning

Training Large Graphs
Cluster-GCN - Training

Predicting molecular properties
SchNet - Training

Predicting molecular properties
GPS++ (OGB-LSC) Train | Inf

Link Prediction training
Dist KGE (OGB-LSC) - Train

Multiple choice task
RoBERTa – Fine Tuning

COMPUTER VISION NATURAL LANGUAGE PROCESSING (NLP) GNN

Running ASR
wav2vec - Inference

Fine-Tuning a wav2vec
wav2vec – Fine Tuning

SPEECH PROCESSING

https://www.graphcore.ai/ipu-jupyter-notebooks

Link Prediction training
NBFNet - Training

Text Entailment
GPT-J – Fine Tuning

Text Generation
GPT-J

Inference

Predicting molecular properties
GIN - Training

Speech Transcription on IPUs
Whisper – FT & Inf

Instruction Tuned LLM
Dolly 2.0 - Inference

Inference

Flan-T5 is all you need
Fine-Tuning & Inference

Inference

Chatbot using OpenAssistant
Pythia 12B - Inference

Inference

Object Detection
YOLO v4 - Inference

NEW

NEW NEWNEW

SQuAD & MNLI
DeBERTa - Inference

Inference NEW

Molecular Prediction
MolFeat – FT & Inf

Multi-horizon financial forecasting
DeepLOB Seq2Seq – Train & Inf

TIME SERIES

Multi-horizon financial forecasting
DeepLOB Attention – Train & Inf

NEW

NEW

NEW

Molecular Modelling with Graphium
GCN/GIN – Train & Inf

NEW

Chatbot Open Source LLM
Llama 2 - Inference

Inference NEW

Stable Diffusion
Text => Image Inference

Stable Diffusion
Image => Image Inference

Stable Diffusion
Text Guided In-Painting Inference

https://ipu.dev/3GxXZpe
https://ipu.dev/3CGjC5E

LSTM Encoder Decoder

29

USEFUL ENV VARIABLES

30

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG_DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFF” No logging information. The default.

“ERR” Only error conditions will be reported.

“WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won’t fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

LOGGING

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

CREATE EXECUTION PROFILE

31

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./report"}’

• The PopVision Graph Analyser uses report files generated during compilation and execution

by the Poplar SDK.

• These files can be created using POPLAR_ENGINE_OPTIONS.

• In order to capture the reports needed for the PopVision Graph Analyser you only need to

set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By

default this will enable instrumentation and capture all the required reports to the current

working directory.

EXECUTABLE CACHE
If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

• You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

• You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

E.g. TF_POPLAR_FLAGS='--executable_cache_path=/tmp/cachedir'

32

Warning
The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.
It is the your responsibility to delete the unwanted cache files.

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

SYNTHETIC-DATA

33

TF_POPLAR_FLAGS= "--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

34

GRAPHCORE COMMAND LINE TOOLS

https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html

https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html

LSTM Encoder Decoder

35

TF2/KERAS ON IPU

LSTM Encoder Decoder

36

KERAS ON IPU

IPU optimized Keras Model and Sequential with
the following features:

• On-device training loop for reduction of
communication overhead.

• Gradient accumulation for simulating larger
batch sizes.

• Automatic data-parallelisation of the model
when placed on a multi-IPU device.

GPU IPUKeras

38

TF2/KERAS TUTORIALS

Continued in the repositories below (follow the READMEs)

github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras

INTRO TO POPTORCH

WHAT IS POPTORCH?

40

PopART

G
RA

PH
 C

O
M

PI
LE

R

G
RA

PH
 R

U
N

 T
IM

E

Poplar
compute

graph

PopTorch

main.py

41

WHAT IS POPTORCH?
• PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on Graphcore's

IPU hardware.

• PopTorch supports both inference and training. To run a model on the IPU you wrap your
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training
wrapper.

• You can provide further annotations to partition the model across multiple IPUs. Using the
user-provided annotations, PopTorch will use PopART to parallelise the model over the given
number of IPUs.

• Additional parallelism can be expressed via a replication factor which enables you to data-
parallelise the model over more IPUs.

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html

PYTORCH FOR IPU

42

Define a model within
PyTorch

Create an IPU execution
wrapper around the

model and run as normal

PopTorch uses
PyTorch dispatcher to

trace the model

Compile the graph in
PopART and then run on

one or more IPUs

GETTING STARTED: TRAINING A MODEL

43

44

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DataLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DataLoader class:
poptorch.DataLoader class is specialised for the way the underlying PopART
framework handles batching of data.

3. Define model and loss function using torch API

The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the
CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

TRAINING A MODEL

45

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DataLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

TRAINING A MODEL

GPU IPUPyTorch

POPTORCH.OPTIONS

47

• The compilation and execution on the IPU can be controlled using poptorch.Options

• Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

• Some examples:
 (i) deviceIterations
 This option specifies the number of batches that is prepared by the host (CPU) for

the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

 (ii) replicationFactor
 This is the number of replicas of a model. We use replicas as an implementation

of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
your model with torch.nn.DataParallel, but with PopTorch, this is an option.

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

48

POPTORCH TUTORIALS

Continued in the repositories below (follow the READMEs)

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed_precision

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed_precision
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

GRAPHIUM FOR IPU

49

ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

RUN GRAPHIUM ON IPU WITH PAPERSPACE JUPYTER NOTEBOOK

A POWERFUL AND
FLEXIBLE OPEN-

SOURCE PYTHON
LIBRARY FOR TRAINING
MOLECULAR GNNS AT

SCALE

Domain: Molecules
Tasks: Multitask
Model: GCN/GIN/GINE
Datasets: QM9, Zinc, Tox21
Workflow: Training, validation, inference
Execution time: 20 mins

Graphium integrates state-of-the-art Graph Neural Network
(GNN) architectures and a user-friendly API, enabling the easy

construction and training of custom GNN models.

PYTORCH GEOMETRIC FOR IPU

50

ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

pyg.org

Training Dynamic Graphs
TGN

Training

RUN GNN MODELS IN PYG ON PAPERSPACE JUPYTER NOTEBOOKS

Training Large Graphs
Cluster-GCN

Training

Predicting molecular properties
SchNet
Training

Predicting molecular properties
GIN

Training

Link Prediction training
NBFNet
Training

“The suitability of IPUs for running GNNs
and the kind of performance advantage
that Graphcore and its customers have
demonstrated is really helping to accelerate
the uptake of this exciting model class”
Matthias Fey – PyG creator & founder of Kumo.ai

Molecular Modelling with Graphium
GCN/GIN

Training & Inf NEW

POPLARTM POPVISION TOOLS

51

POPVISIONTM TOOLS

GRAPH ANALYSER
Useful for analysing and optimising the memory use
and execution performance of ML models on the IPU

SYSTEM ANALYSER
Graphical view of the timeline of host-side application
execution steps

“Our team was very impressed by the care and effort Graphcore has clearly put into the PopVision graph and system
analysers. It’s hard to imagine getting such a helpful and comprehensive profiling of the code elsewhere, so this was
really a standout feature in our IPU experience.”

Dominique Beaini, Valence Discovery, a leader in AI-first drug design

52

POPVISION TOOLS

GRAPHCORE CONFIDENTIAL

GRAPHCORE CONFIDENTIAL

POPVISION GRAPH
ANALYSER

• You can use the PopVision Graph
Analyser tool to debug IPU
programs and generate reports on
compilation and execution of the
program.

• This tool can be downloaded from
graphcore.ai/downloads

• There is a built-in help system
within the tool for any questions
you might have about producing
and analysing reports.

53

https://www.graphcore.ai/downloads

54

55

56

CREATE PROFILE

57

58

59

60

POPVISION TUTORIALS

Continued in the repositories below (follow the READMEs)

tutorials/tensorflow2/infeed_outfeed

tutorials/pytorch/pipelining

tutorials/popvision/system_analyser_instrumentation

https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/infeed_outfeed
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/popvision/system_analyser_instrumentation

61

62

63

64

65

Request an IPU allocation for your research today!

allocations.access-ci.org/prepare-requests-overview

https://allocations.access-ci.org/prepare-requests-overview

THANK YOU

CONFIDENTIAL

Alexander Tsyplikhin
alext@graphcore.ai

66

Request an IPU allocation for your research today!

allocations.access-ci.org/prepare-requests-overview

https://allocations.access-ci.org/prepare-requests-overview

