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AGENDA

* Introduction to Graphcore, IPU, and Poplar

« Hands-on: access the POD, enable the SDK, run an example

 TensorFlow2/Keras

« Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

« PyTorch

« Hands-on: PopTorch example, DatalLoader, options to optimize performance



GRAPHCORE ENABLING MACHINE INTELLIGENCE

Founded in 2016

Technology: Intelligence Processor Unit (IPU)

Team: ~500

Offices: UK, US, China, Poland

Raised >$710M
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Parallelism

Processors [

Memory

Memory Access

IPLl - ARCHITECTURED FOF Al

Massive parallelism with ultrafast memory access

CPU

Designed for scalar processes

Off-chip memory

GPU

SIMD/SIMT architecture. Designed
for large blocks of dense
contiguous data

INEEE
A
INEEE
“ EEEEE ©

Model and data spread across off-
chip and small on-chip cache, and
shared memory

IPU

Massively parallel MIMD. Designed
for fine-grained, high-
performance computing

Model and data tightly coupled,
and large locally distributed SRAM



PROVEN IPU ADVANTAGE

SELECT CASE STUDIES ACROSS MANY INDUSTRIES & FIELDS
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CASE STUDY : NLP > CASE STUDY : SIM

CASE STUDY : NLP >

SENSORO v S ECMWF

TRACTABLE
SMART CITY FINANCE - INSURANCE WEATHER FORECASTING
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CASE STUDY : CV > CASE STUDY : CV > CASE STUDY : SIM >
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IPU COMPUTATIONAL ADVANTAGES

Heterogeneous gather/scatter operations. E.g. GNNs

Group and depthwise convolutions. E.g. ResNeXt, EfficientNet

Vector operations with low arithmetic intensity. E.g. Sparse matmuls

Dense as well as Sparse Matrix Multiplication. E.g. Transformers

Hardware accelerated Random Number Generation. E.g. Random Projections

Hard to vectorize workloads. E.g. DFT in Computational Chemistry

References:

https://www.graphcore.ai/performance-results
https://www.graphcore.ai/posts/how-we-made-efficientnet-more-efficient
https://www.graphcore.ai/posts/delving-deep-into-modern-computer-vision-models
https://www.graphcore.ai/posts/training-neural-networks-in-low-dimensional-random-bases
https://www.graphcore.ai/posts/man-group-unlocks-massively-parallel-option-pricing-with-graphcore-ipu

@ GRAPHCORE CONFIDENTIAL



WORKLOADS THAT CAN’T EASILY BE VECTORIZED

Workloads with while loops that continue until convergence is
achieved e.g. ray tracing

Workloads where different compute paths are required
depending on the inputs e.g. DFT or CRR model

Tree-based models with unbalanced trees

€D GRAPHCORE CONFIDENTIAL



[1 Files

¥ main v
Q Go tofile

> B .github

> W .gradient

> B9 gdb

> [ images

> [ notebooks

> [ pyscf_ipu

> B gmib

> BB schnet_9m
[ .gitignore
[ LICENSE

| D RreaDMEmd

[ density_functional_theory.py
[ generate.sh
[ pyproject.toml
[ requirements.txt
[ requirements_ipu.txt
[ setup.sh

[ test_requirements.txt

Documentation - Share feedback
L

Q

pyscf-ipu /| README.md

Blame

96 lines (71 loc) - 5.32 KB

PySCF on IPU

Installation guide | Example DFT Computations | Generating data | Training SchNet | QM1B dataset
Port of PySCF to Graphcore IPU.
Limitations

» Restricted Kohn Sham DFT (based on RKS, KohnShamDFT and hf.RHF).
o Number of atomic orbitals less than 70 mol.nao_nr() <= 70 .
e Larger numerical errors due to np.float32 instead of np.float64 .

o Limited support for jax.grad(.)

Installation

PySCF on IPU requires Python 3.8, JAX IPU experimental, TessellatelPU library and Graphcore Poplar SDK 3.2.

To run this package on a standard CPU machine (laptop or server), install the base Python requirements:
pip install -r requirements.txt &
On IPU machines, please additionally use the IPU requirements file:

pip install -U pip &
pip install -r requirements_ipu.txt

This will configure Graphcore research experimental JAX support in your python environment.

We recommend upgrading pip to the latest stable release when using the IPU requirements. This may be an optional step depending on
the overall configuration of your python environment.

And finally, make our sub-packages available:

pip install -e . i

Raw (0 &

1 Top
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Files X
I @ S
gdb

images

notebooks

_ DFT-dataset-generation.ipynb
Z ERI-visualisation-JK.ipynb
Z nanoDFT-demo.ipynb °
pyscf_ipu
qmib
schnet_9m
density_functional_theory.py
generate.sh

LICENSE

pyproject.toml °
README.md
requirements_ipu.txt °
requirements.txt L]
setup.sh

test_requirements.txt

Kernel sessions

® nanoDFT-demo.ipynb 5 @
notebooks/nanoDFT-de...

- S 126 MiB|100TiB & 1% RAM7.2]| 104 GiB

STOP MACHINE @ Running
34
35 v def plot_orbital(Corbital, mol):
36 xyzfmt = f"{len(mol.atom)}\n\n" + mol.tostring()
37 v = py3Dmol.view(data=xyzfmt, style={"stick": ("radius”: 0.08},
38 v.addVolumetricData(cube_data(axes, orbital), "cube”, build_transferfn(orbital))

39 return v

@ graphcore-research/pyscf-ipu

Try changing the ‘mo_index variable to select the different molecular orbitals benzene.

"sphere”: {"radius": 0.2}})

Share © 2

RESTART KERNEL SAVE RUN ALL ©

mo_index = 5

mol_view = plot_orbital(orbital, mol)

1
2
3 orbital = molecular_orbitals[:, mo_index]
4
5 mol_view.spin()

SHOW MORE

graphcore/pytorch-jupyter:3.2.0-ubuntu-20.04

10

Last saved 1 minute ago  AUTO-SAVE ON

4



#cores
4 Profile for DFT Computation

N N B | l ]
20 SCF Iterations

1472

Cycles (time)

MIMD for 65 TB/s for
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8832 independent program threads
65TB/s memory bandwidth per IPU

executing in parallel
In-Processor-Memory™

1472 independent IPU-Core™

IPU-Tiles™
IPU-Core™
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PCle
PCl Gen4 x16

-Exchange™
64 GB/s bidirectional bandwidth to host

IPU
11 TB/s all to all IPU-Exchange™

Non-blocking, any communication pattern

IPU-Links™

10 x IPU-Links,

320GB/s chip to chip bandwidth
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Deep Trench Capacitor

Solder Bumps
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Enables increase in operational performance

Efficient power delivery
stacking technology
Closely coupled power
delivery die

Wafer-On-Wafer
Advanced silicon 3D

IPU-Links™

1
|
32

Higher operating frequency
and enhanced overall
performance

10x IPU-Links,

320GB/s chip to chip bandwidth

IPU-Exchange™
11 TB/s all to all IPU-Exchange™

Non-blocking, any communication pattern

1472 independent IPU-Tiles™ each with an
IPU-Core™ and In-Processor-Memory™

IPU-Tiles™

IPU-Core™

1472 independent IPU-Core™

PCle

8832 independent program threads

executing in parallel

PCl Gen4 x16

64 GB/s bidirectional bandwidth to host

In-Processor-Memory™

900MB In-Processor-Memory™ per IPU

13

65.4TB/s memory bandwidth per IPU



EXECUTION MODEL

COMPUTATIONAL GRAPH BSP SCHEDLULE COPTIMIZED IPU ERECUTION

I I BSP EXECUTION TRACE - IPU TILES O - 1215

data

EXCHANGE

[
COMPUTE

| syne |

EXCHANGE

[
COMPUTE

| syne |

EXCHANGE

: ; OUTPUT FROM POPVISION GRAPH ANALYSER

GRAFHCORE

result [0]
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BULK SYNCHRONOUS
PARALLEL (BSP)

BSP software bridging model - massively parallel
computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program - no live-locks or dead-locks

Widely-used in parallel computing - Google, FB, ...

First use of BSP inside a parallel processor

. compute phase

exchange phase

IPU

IPU

sync

time——

inter-chip sync
sync sync (1 tile abstains)
| | |
host I/O
'\\\/ |
N\
N
N\e
_f/ A host I/0 |
| A |
sync Inter- sync sync
chip
sync



BOW-2000 |[PLU MACHINE

Il blade form factor delivering 1.4 PetaFLOPS Al Compute

Disaggregated Al/ML accelerator platform

Excellent performance & TCO leveraging

In-Processor memory & IPU-Exchange

IPU-Links scale to Bow Pod64

Expansion to Bow Pod256 and beyond
with IPU-GW Links

16



BOW-2000: THE BUILDING BLOCK OF LARGE PODS

DRAM DRAM

Bow IPU

Bow IPU

[u}
o€

NIC/SmartNIC

Bow W IPU

(m]
o€

COMPUTE

DATA

COMMUNICATIONS

x16 IPU-Link [64GB/s]
Host-Link Network I/F [100Gbps]

IPU-GW Link [100Gbps]
x8 PCle G4 [32GB/s]

4x Bow IPUs
* 1.4 PFLOP; compute
» 5,888 processor cores
+ > 35,000 independent parallel threads

Exchange Memory
» 3.6GB In-Processor-Memory @ 260 TB/s
* 128GB Streaming Memory DRAM (up to 256GB)

IPU-Fabric managed by IPU-GW

* Host-Link - 100GE to Poplar Server for standard
data center networking

« |PU-Link - 2D Torus for intra-POD64
communication

* GW-Link - 2x 100Gbps Gateway-Links for rack-to-
rack - flexible topology

17
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Host-Link T00GE network interface (QSFP, 1.0m)
1GbE Management (Cat5, 1.5m)

Sync-Link (Cat5, 0.15m)

IPU-Link (OSFP, 0.3m)

18
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HANDS-ON

GET STARTED

RUN AN EXAMPLE



HANDOUT

bit.ly/tamu231003


http://www.bit.ly/tamu231003
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IPU DEVELOPEFR ECOSYSTEM

GRAFHCORE



GRAPHCORE SOFTWARE ECOSYSTEM

Homa Abouts Productss Industriess Devaloper» ion careerss [N

GRAFHCORE

/ Quickstart Docs -> j Try on Paperspace >

TUTORIALS + CODE

EXAMFLES
Access our open source

Hands-on code tutorials, libraries, APIs, applications
< I> and code examples. O

simple application and
feature examples.

GFRAPHCORE GITHUE

DOCLUMENTATION

Explore our software
documentation, user
guides and technical notes. l

o

See more -

See more >

See more

HOW-TO VIDEOS

Watch practical how-to
® videos and demos by ‘@

MODEL GARDEN

Access a repository of
deployable ML applications

@  oncheru

See more >

DOCKEFR HUE

Access a selection of
Poplar SDK container
images via Docker Hub.

Graphcore engineers.

See more -

See more -

RESEAFRCH PAPERS POFVISION™ TOOLS
Read publications from O Download PopVision to ®
Graphcore's Research team EI (N analyse IPU performance

[;_ and utilisation. &‘

and IPU innovators.
See more - ‘

WEBINARS

Register for upcoming
Graphcore webinars or
watch on-demand.

->

See more >

See more

GRAFHCORE

Graphcore Documents
Version: Latest

Search docs

Getting Started
Software Documents
Hardware Documents
Technical Notes and White Papers
Examples and Tutorials
Document Updates
Alphabetical List of All Documents

Graphcore License Agreements

O PyTorch

GRAPHCORE DOCUMENTS

Documentation for installing

Background information and
and using IPU-Machines and

quick-start guides for Documentation for the
Poplar SDK and other

Graphcloud and Pod
Pod systems

systems software

The latest news about new
Tutorials and application

documents and examples
examples for running on the

Technical notes and white
papers on Graphcore
IPU

technology

Getting started with PyTorch for the IPU

Running a basic model for training and inference

Al Customer Engineer, Chris Bogdiukiewicz
introduces PyTorch for the IPU. With PopTorch™ - a
simple Python wrapper for PyTorch programs,
developers can easily run models, directly on

Graphcore IPUs with a few lines of extra code. Getthe Code -

In this video, Chris provides a quick demo on
running a basic model for both training and
inference using a MNIST based example.

Read the Guide -

GRAPHCORE

22



® © ® () Graphcore - GitHub x e

& github.com/graphcore * B a
COPEN SOURCE
Graphcore
a itories 6 @ g 2 people ['] Projects

github.com/graphcore E T e

GitHub is home to over 50 million developers working together. Join them to grow your own
teams, permissit and on projects.

« As part of our ethos to put power in D
the hands of Al developers,
Graphcore open sourced in 2020

examples Top languages
Example code and applications for machine learning on Graphcore IPUs @®C++ @ Python
1 ™ P A RT P T h & machine-learning  deep-learning  graphcore
« PopLibs™, PopART, PyTorc
OPython ¥25 w16 (0 118 Updated 3 days ago People .

TensorFlow for IPU fully open = e o
source and available on GitHub demos Manbelpommisiocdind o SN

i . who' rt of this organ ¥
Demonstrators and experimental applications for ML using Graphcore IPUs 0’8 8 part ot s organTzation
®cC++ MBMT Y1 w2 @O0 110 Updated 4 days ago

e Our code is public and open for _— ]
code contributions from the wider g LA
ML developer community

tensorflow N\
Graphcore port of TensorFlow for the IPU

®C++ Mapache-20 ¥2 w19 0 110 Updatedon8 Jul

popart WA AN

®c++ ¥2 9 (0 110 Updatedon8ul

poprithms

®c++ Y1 9 ©Oo0 110 updatedon8Jul


http://github.com/graphcore

VIDECQ + GITHUB TUTORIALS

A comprehensive set of online developer training materials and educational content

® TUTORIALS

Learn how to create and run programs using Poplar and
PopLibs with our hands-on programming tutorials.

valuating Eatch Sizes o Programs and Variables Using PopLibs
Profiling Output Basic Machine Learning
Example
Matrix-Vector Multiplication Simple PyTorch for the IPU
Optimisation

he IFU: NLF

THE POPLAR GRAPH

Tutorial 1: programs and variables

Copy the file tutl_variables/start_here/tutl.cpp to your working directory and open it in an editor. The file contains the outline of a
C++ program including some Poplar kibrary headers and a namespace.

Graphs, variables and programs

All Poplar programs require a Graph object to construct the computation graph. Graphs are always created for a specific target (where the
target is a description of the hardware being targeted, such as an IPU). To obtain the target we need to choose a device.

p The tutorials use a simulated target by default, so will run on any machine even if it has no Graphcore hardware attached. On systems with
Getting started with Fop ; Y ) accelerator hardware, the header file poplar/DeviceManager.hpp contains API calls to enumerate and return Device objects for the
[ attached hardware

Simulated devices are created with the IPuModel class, which models the functionality of an IPU on the host. The createDevice function
creates a new virtual device to work with. Once we have this device we can create a Graph object to target it.

* Add the following code to the body of main

reate the IPU Model device

IPUModel ipuModel;

Device device = ipuModel.createDevice();

Target target = device.getTarget();
Create the Graph object

Graph graph(target);

Any program running on an IPU needs data to work on. These are defined as variables in the graph.

Getting started wi Funning TensorFlow on the IFU + Add the following code to create the first variable in the program
I

Writing Vertex Code

Matrix-Vector Multiplication

Tutorial 5: a basic machine
learning example

This tutorial contains a complete training program that
performs a logistic regression on the MNIST data set, using
gradient descent. The files for the demo are in tut5_ml .
There are no coding steps in the tutorial. The task is to
understand the code, build it and run it. You can build the
code using the supplied makefile.

Before you can run the code you will need to run the
get_mnist.sh script to download the MNIST data.

The program accepts an optional command line argument
to make it use the IPU hardware instead of a simulated IPU.

As you would expect, training is significantly faster on the
IPU hardware.

Copyright (c) 2018 Graphcore Ltd. All rights reserved.



& graphcore.ai/resources * B a
F; E s |:| I.I F; |:: E s |:: E N T F: E GRAFHCORE Home Abouts Products» Industriess Developer» Blog Careers) |GRSIRSISN
RESOURCES

graphcore.ai/resources

RESEARCH

WHITE — HOW-TO
PAPERS E(If)\ PAPERS — VIDEOS E
i Central Source Of researCh See more > I_‘ See more > See more >
papers, white papers, videos,
: WEEINARS SOFTWARE
on-demand yvebmars and R o
documentation
See more > See more >
 Product resources for ML
Engineers & IT / Infrastructure T o .
Managers now available LT RN e e———— | GRAPHCORE  tome tooes motes tntris toioes g caers [N
WEEINARS RESEARCH FAPERS

GRAFHCORE

Imperial College London: Bundle Adjustment on a Graph
Processor

IPU-M2000 and IPU-POD: New Breakthroughs in Al at Scale (EN) ; Joseph Ortiz, Mark Pupils, Stefan Leutenegger, Andrew J. Danvison



https://graphcore.ai/resources
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NLP/TRANSFORMERS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

ML APPLICATIONS

TUTORIALS

CODE EXAMPLES

DOCUMENTATION

VIDEOS

NATIVE IPU CODERS PROGRAM

APPS PORTFOLIO

DEVELOPER ECOSYSTEM

GRAPHCORE SOFTWAERE

FRONTENDS Jupyter INFERENCE DEPLOYMENT
o~ TOOLKIT
JUPYTER NOTEBOOKS

1F O @ ONNX" HALO >

FRAMEWORKS
Keras /33 PaddiePaddle
XLA POPART+ POPDIST

FW BACKENDS

PARTITIONER POPIR POPIT

POPLIBS

POPLAR®

GRAPH ENGINE GRAPH COMPILER

GC DEVICE ACCESS LAYER

DRIVERS

IPUOF DRIVER PCle DRIVER

POPLAR® SDK

POPVISION TOOLS

SYSTEM MONITORING

PROMETHEUS
GRAFANA

JOB DEPLOYMENT

SYSTEM SOFTWARE

G
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R urces > Model G

MODEL

GARDE

LIERARY

Type:

[ Paperspace
New

[J Benchmarked
[ Training

[ Inference

Framework:

[J PyTorch

[ TensorFlow 1

[ Tensorflow 2
[ Hugging Face
[ PopART

[J PaddlePaddle

[ Poplar
Category:

[ Natural Language Processing
[ Computer Vision

[ Speech Processing

[JonN

[ Multimodal

[J At for Simulation

[ Recommender

[ Probabilistic Modelling

[ Reinforcement Learning

[ other

GPS++ INFERENCE
hybrid GNN/Transformer for Moles

© v on Paperspace () view Repository

Search:

STABLE DIFFUSION TEXT-TO-
IMAGE INFERENCE

The popular latent diffusion r for generative
Al with support for text-to-image o u
Hugging Face Optimum

© 1y on Paperspace () view Repository

GPS++ TRAINING

training Molecul
the PCQMAMVZ
raph Benchmark

© 1y on Paperspace ) view Repository

DISTRIBUTED KGE - TRANSE
(256) INFERENCE

) view Repository

DISTILBERT TRAINING

DistilBERT is a small, fast, cheap and light

DISTRIBUTED KGE - TRANSE (256)
TRAINING

Graph Benchma

) view Repository

STABLE DIFFUSION IMAGE-TO-
IMAGE INFERENCE

The popular latent
Al with support fo

© 11y on Paperspace () view Repository

GPS++ INFERENCE

A hybrid GNN/Transform

© Ty on Paperspace () view Repository

DISTRIBUTED KGE - TRANSE
(256) TRAINING

) view Repository

MAE TRAINING
plementation of MAE computer vision m

GPT-J 6B FINE-TUNING

T-J 68 fine-tuned v
et leveraging the
nsformer

) viewrepository

STABLE DIFFUSION INPAINTING
INFERENCE
e popular latent diffusion modelfor generativ

r inting

© 1y on Paperspace ) view Repository

DISTRIBUTED KGE - TRANSE
(256) TRAINING

) view Repository

GPT-J 6B FINE-TUNING

GPT-J € ned using the GLU!

) viewRepository

FROZEN IN TIME TRAINING

Implementation of Frozen in Time on the IPU in

PUBLIC ACCESS TO WIDE VARIETY OF
MODELS, READY TO RUN ON IPU

NEW FILTER/SEARCH CAPABILITY

DIRECT ACCESS TO GITHUB

PAPERSPACE NOTEBOOK LINKS



COMPUTER VISION

Stable Diffusion 2
Text => Image Inference

© Runon Gradient

Access IPU-ready notebooks in seconds

NATURAL LANGUAGE PROCESSING (NLP)

BERT Fine Tuning
BERT-Large - Fine Tuning

< .> ~ © Runon Gradient

Summarization task
T5 Small - Fine Tuning

© Run on Gradient

GNN

Training Large Graphs
Cluster-GCN - Training

T &

Stable Diffusion
Text => Image Inference

© Runon Gradient

Fast sentiment analysis BERT |
RoBERTa - Inference

~ © | Run on Gradient

Text Classification task
RoBERTa - Fine Tuning

© Run on Gradient

q

Stable Diffusion
Image => Image Inference

© Runon Gradient

Text Guided In-Painting Inference

.a
-

Stable Diffusion

© Runon Gradient

O

Training ViT HF model
VIT - Fine Tuning

© | Run on Gradient

Named Entity Recognition
BERT - Inference

~ ©  Runon Gradient

Token Classification task
BERT

© | Run on Gradient

q

Multiple choice task
RoBERTa - Fine Tuning

~ © | Run on Gradient

Translation task
BART-Base

© | Run on Gradient

(§

Question-Answering task
RoBERTa - Fine Tuning

~ © Runon Gradient

Text Entailment
GPT-J - Fine Tuning
O © | Run on Gradient

Image Classification
ViT - Fine Tuning
© Runon Gradient

O

Object Detection
YOLO v4 - Inference

© Runon Gradient

[ &

|

Instruction Tuned LLM
Dolly 2.0 - Inference

O © Run on Gradient

Text Generation
GPT-J

O © Run on Gradient

Fine-Tuning & Inference

© | Run on Gradient

Flan-T5 is all you need l

Chatbot using OpenAssistant
Pythia 12B - Inference
~ © Run on Gradient

Chatbot Open Source LLM
Llama 2 - Inference
g

SQuUAD & MNLI
DeBERTa - Inference

© Run on Gradient

m)

Training Dynamic Graphs
TGN - Training
’

7o,
@ © | Run on Gradient

Paperspace

SPEECH PROCESSING

Fine-Tuning a wav2vec
wav2vec - Fine Tuning

~ © | Run on Gradient

Predicting molecular properties
= SchNet - Training

@ ©  Run on Gradient

Running ASR
wav2vec - Inference

~ © Runon Gradient

Predicting molecular properties
GIN - Training

Predicting molecular properties
GPS++ (OGB-LSC) Train | Inf

1' © Runon Gradient

Link Prediction training
Dist KGE (OGB-LSC) - Train

©  Run on Gradient

Speech Transcription on IPUs

Whisper - FT & Inf m

~ © Runon Gradient

TIME SERIES

Multi-horizon financial forecasting
DeepLOB Seqg2Seq - Train & Inf

1' © Runon Gradient m

Link Prediction training
NBFNet - Training

@’%\ ©  Run on Gradient

Multi-horizon financial forecasting
DeepLOB Attention - Train & Inf

1' © Runon Gradient m

Molecular Prediction
MolFeat - FT & Inf

i\
@“:a © Runon Gradient

Molecular Modelling with Graphium
GCN/GIN - Train & Inf
’

7\
@‘“ﬂ ©  Run on Gradient

https://www.graphcore.ai/ipu-jupyter-notebooks
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USEFUL ENV VARIABLES



LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar
POPLAR_LOG _DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

No logging information. The default.

“OFF”

“ERR” Only error conditions will be reported.

WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won't fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.


https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

CREATE EXECUTION PROFILE

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./report"}’

« The PopVision Graph Analyser uses report files generated during compilation and execution
by the Poplar SDK.

« These files can be created using POPLAR_ENGINE_OPTIONS.

* |n order to capture the reports needed for the PopVision Graph Analyser you only need to
set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By
default this will enable instrumentation and capture all the required reports to the current

working directory.
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EXECUTABLE CACHE

If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

* You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

* You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

Warning

The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.

It is the your responsibility to delete the unwanted cache files.
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https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

SYNTHETIC-DATA

TF_POPLAR_FLAGS="--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.
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GRAPHCORE COMMAND LINE TOOLS

gc-docker Allows you to use IPU devices in Docker containers using the Docker container engine.

gc-flops Allows you to benchmark the number of floating point operations per second on one or more IPU pro-
cessors.

gc-info Determines what IPU cards are present in the system.
gc-inventory Lists device IDs, physical parameters and firmware version numbers.

gc-links Displays the status and connectivity of each of the IPU-Links that connect IPUs. See also IPU-Link channel
mapping for connectivity in an IPU Server containing C2 cards.

gc-monitor Monitors IPU activity on shared systems.

gc-reset Resets IPU devices.

gc-exchangetest Allows you to test the internal exchange fabric in an IPU.
gc-exchangewritetest Tests direct writes to the IPU’s tile memory via the host.
gc-gwlinkstraffictest Tests GW-Links on multi-rack IPU-POD systems.

gc-hostsynclatencytest Reports the latency of transfers between the host machine and the IPUs (in both direc-
tions).

gc-hosttraffictest Allows you to test the data transfer between the host machine and the IPUs (in both directions).
gc-iputraffictest Allows you to test the data transfer between IPUS.

gc-memorytest Tests all the memory in an IPU, reporting any tiles that fail.

gc-podman Allows you to use IPU devices in Docker containers using the Podman container engine.

gc-powertest Tests power consumption and temperature of the IPU processors.

@ https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html


https://docs.graphcore.ai/projects/command-line-tools/en/latest/index.html
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KERAS ON IPU

IPU optimized Keras Model and Sequential with
the following features:

« On-device training loop for reduction of
communication overhead.

« Gradient accumulation for simulating larger
batch sizes.

« Automatic data-parallelisation of the model
when placed on a multi-IPU device.




as tf import tensorflow as tf
as.layers import x from tensorflow.keras.layers import x
-~ + from tensorflow.python import ipu IF)LJ
+ cfg = ipu.config.IPUConfig()
+ cfg.auto_select_ipus = 1
+ cfg.configure_ipu_system()
~ +with ipu.ipu_strategy.IPUStrategy().scope():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifarl0.load_data()
x_train = x_train.astype('float32') / 255.0 x_train = x_train.astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10) y_train = tf.keras.utils.to_categorical(y_train, 10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_remainde ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_rema
model = tf.keras.Sequential([ model = tf.keras.Sequential([
Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]), Conv2D(32, (3, 3), padding='same', input_shape=x_train.shapel[1:1),
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Conv2D(64, (3, 3), padding='same'), = Conv2D(64, (3, 3), padding='same'), —
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Flatten(), Flatten(),
Dense(512), Dense(512),
Activation('relu'), Activation('relu'),
Dropout(0.5), Dropout(0.5),
Dense(10), Dense(10),
Activation('softmax') Activation('softmax')
1) 1)
model.compile(loss="'categorical_crossentropy’, model.compile(loss="'categorical_crossentropy',
optimizer=tf.optimizers.SGD(learning_rate=0.016), optimizer=tf.optimizers.SGD(learning_rate=0.016),
metrics=['accuracy']) metrics=['accuracy'])

model.fit(ds_train, epochs=40) model.fit(ds_train, epochs=40)

@ gpu_cnn_keras.py ¢ ipu_cnn_keras.py tf_keras i I AN [ R



TF2/KERAS TUTORIALS

Continued in the repositories below (follow the READMES)

github.com/araphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras
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https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/keras
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WHAT IS POPTORCH?

PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on Graphcore's
IPU hardware.

PopTorch supports both inference and training. To run a model on the IPU you wrap your
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training

wrapper.

You can provide further annotations to partition the model across multiple IPUs. Using the
user-provided annotations, PopTorch will use PopART to parallelise the model over the given

number of IPUs.

Additional parallelism can be expressed via a replication factor which enables you to data-
parallelise the model over more IPUs.

Y


https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html

PYTORCH FOFR IPU

Define a model within
PyTorch

Create an IPU execution
wrapper around the
model and run as normal

PopTorch uses
PyTorch dispatcher to
trace the model

O PyTorch

Compile the graph in

PopART and then run on
one or more IPUs
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GETTING STARTED: TRAINING A MODEL



TRAINING A MODEL

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DatalLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DatalLoader class:

poptorch.DatalLoader class is specialised for the way the underlying POpART
framework handles batching of data.

3. Define model and loss function using torch API
The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the

CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

18
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TRAINING A MODEL

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DatalLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.
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if __name__ == '__main__':

—_—r Al = LUILII-IIId)\\pICUJ.LLJ.UIIb, E N
# provide labels only for samples, where prediction is available (during the training, nof
ions.size()[0]:]

P T h ch.eq(ind, labels)).item() / labels.size 0
ylorc GPU

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')

parser.add_argument('—-batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('—-test-batch-size', type=int, default=8, help='batch size for testinc
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (de"
parser.add_argument('—1r', type=float, default=0.05, help='learning rate (default: 0.05)'

args = parser.parse_args()

training_data = torch.utils.data.DatalLoader( m
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, 1
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = torch.utils.data.Dataloader( I
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,

model = Network()
training_model = TrainingModelWithLoss(model)
optimizer=optim.SGD(model.parameters(), lr=args.lr)

# Run training
for _ in range(args.epochs):
for data, labels in training_data:
preds, losses = training_model(data, labels)
optimizer.zero_grad() I
losses.backward()
optimizer.step()

# Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

—_r Al = LUILII-IIIG}\\pICuLLLJ.UII), L/
# provide labels only for samples, where prediction is available (during the training, noi
labels = labels[-predictions.size()[0]:]

accuracy = torch.sum(torch.eq(ind, labels)).item() / labels.si 100.0
return accuracy IF)lJ
if __name__ == '__main__':

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')
parser.add_argument('--batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('--test-batch-size', type=int, default=8, help='batch size for testin
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (def
parser.add_argument('--1r', type=float, default=0.05, help='learning rate (default: 0.05)'
parser.add_argument('--device-iterations', type=int, default=50, help='device iterations |
args = parser.parse_args()

opts = poptorch.Options().deviceIterations(args.device_iterations)

training_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, tran:
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=False, download=True, trar

model = Network() -
training_model = TrainingModelWithLoss(model) —
optimizer=optim.SGD(model.parameters(), lr=args.lr)

training_model = poptorch.trainingModel(training_model, opts, optimizer=optimizer)
inference_model = poptorch.inferenceModel(model) =

# Run training
for _ in range(args.epochs): -
for data, labels in training_data:
preds, losses = training_model(data, labels) —

# Detach the training model so that the same IPU could be used for validation L—
training_model.detachFromDevice()

# Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = inference_model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))



POPTORCH.OPTIONS

« The compilation and execution on the IPU can be controlled using poptorch.0Options

« Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

« Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for
the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

(ii) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
@ your model with torch.nn.DataParallel, but with PopTorch, this is an option. 47


https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

POPTORCH TUTORIALS

Continued in the repositories below (follow the READMES)

qgithub.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics

qgithub.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed precision

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading

github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining
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https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/basics
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/mixed_precision
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/efficient_data_loading
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining

A POWERFUL AND
FLEXIBLE OPEN-
SOURCE PYTHON
LIBRARY FOR TRAINING
MOLECULAR GNNS AT
SCALE

GRAPHIUM FOR IPU

Graphium integrates state-of-the-art Graph Neural Network
(GNN) architectures and a user-friendly API, enabling the easy
construction and training of customm GNN models.

ANNOUNCEMENT | TECHNICAL BLOG | GETTING STARTED

GRAPHIUM: &N IPU-READY

PYTHON LIBRAEY FOR £ e N
TRAINING MOLECULAR GNNS H 1 Y <3 Ghad
AT SCALE =

Written By:

Dominique Beaini MULTITASK MOLECULAR
MODELLING WITH
GRAFHIUM N THE IPU

Written By:
Sam Maddrell-Mander

RUN GRAPHIUM ON IPU WITH PAPERSPACE JUPYTER NOTEBOOK

Domain: Molecules

Tasks: Multitask

Multitask Molecular Modelling Model: GCN/GIN/GINE
oLl Datasets: QM9, Zinc, Tox21

o o o e Workflow: Training, validation, inference
Execution time: 20 mins

Graphium
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POPVISION TOOLS

GRAPH ANALYSER

Useful for analysing and optimising the memory use
and execution performance of ML models on the IPU

SYSTEM ANALYSER

Graphical view of the timeline of host-side application
execution steps

“Our team was very impressed by the care and effort Graphcore has clearly put into the PopVision graph and system
analysers. It's hard to imagine getting such a helpful and comprehensive profiling of the code elsewhere, so this was
@ really a standout feature in our IPU experience.”

Dominique Beaini, Valence Discovery, a leader in Al-first drug design .



PCOPVISICON TOQLS

IPU MEMORY ANALYSIS

Capture memory information from your ML
models when executed on IPUs. Inspect
variable placement, size and liveness
throughout the execution.

HOST EXECUTION ANALYSIS

Understand the execution of IPU-targeted
software on your host system processors.
Identify any bottlenecks between CPUs and
IPUs across a visual interactive timeline.

@ GRAPHCORE CONFIDENTIAL
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EXECUTION TRACE REPORT

View the output of instrumenting a Poplar
program, capturing cycle counts for each
step. See execution statistics, tile balance,
cycle proportions and compute-set details.

i S A k]

T e s

GRAPH DATA

Plot graph data of any numerical data points
from the host or IPU processor systems,
such as board temperature, power
consumption and IPU utilisation.

REPORT COMPARISONS

Open two reports at once to compare their
memory, execution, liveness and operations.
Visualise where efficiencies can be made
with different model parameters.

LOCAL + REMOTE REFORTS

Ability to open reports either on your local

machine, or remotely on the host machine.

The Graph Analyser also supports local and
remote report access.
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POPVISION GRAPH
ANALYSER

* You can use the PopVision Graph
Analyser tool to debug IPU
programs and generate reports on
compilation and execution of the
program.

* This tool can be downloaded from
graphcore.ai/downloads

e There is a built-in help system
within the tool for any questions
you might have about producing
and analysing reports.

53


https://www.graphcore.ai/downloads

Several new features including:

PopVision Graph Analyser

* A new file format for the graph and
execution profile, resulting in a 50%
file size reduction

* Enhanced PopLibs debug information

Liveness Report

The debug information shown for a
variable now displays enhanced

- information. For each variable that has
Getting started with PopVision™ T e debug information, you can now see the
— PopLibs API that created it, its arguments

Intro to the PopVision™ Graph Analyser .
P P Y and its outputs.

Enhanced debug information has been
added to program steps. Program steps
show Poplar and PopLibs debug
information such as which PopLibs API
created that program step, its arguments
and its outputs.

Check out the integrated help or visit our developer

Getting started video available on the developers portal portal for more information 5




PopVision System Analyser

Show the execution of the software
on the host processor enabling users
to identify bottlenecks in execution
between CPU & IPU(s).

Provide profile insights as you scale
models to multiple CPUs / IPUs.

poplar::core:APUTarget:-run
Duration: 35.833 secs
Channel: Poplar

The PopVision System Analyser allows
developers to understand the execution
of programs running on the host
processor which control the IPU(s). The
System Analyser shows the interaction
between the host and the IPU(s) so that
developers can understand where the
bottlenecks are in the execution of their
applications.

The PopVision System Analyser
visualises the information collected by
the PopVision Trace Instrumentation
Library which is part of the Poplar SDK.

Visit our developer portal for more information and the
latest documentation:

https://www.graphcore.ai/developer




CREATE PROFILE

}(3.3.0+1403_poptorch) alext@bpodl6:~/work/examples/tutorials/tutorials/pytorch/basics$ POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./
report", "debug.allowOutOfMemory":"true", "profiler.includeFlopEstimates":"true"}' python walkthrough.py

epochs: Q%] | /5 [00:00<?, ?it/s[
22:25:58.232] [poptorch:cpp] [warning] [DISPATCHER] Type coerced from Long to Int for tensor id 12 | 0/3750 [00:00<?, ?it/s]
Graph compilation: 100%l| | 100/100 [00:39<00:00]
epochs: 100%| | 5/5 [01:21<00:00, 16.21s/it]
/nethome/alext/venvs/poplar_sdk-ubuntu_20_04-3.3.0+1403-208993bbb7/3.3.0+1403_poptorch/1ib/python3.8/site-packages/torch/nn/modules/module.py:1802: UserWarning: P
ositional args are being deprecated, use kwargs instead. Refer to https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict for de
tails.

warnings.warn(

Graph compitation: 1eo |HEEE— N | 100,100 [00:19<00:00]

Eval accuracy: 89.25%
Graph compilation: 100 |EEE—— | 100/100 [00:09<00:00]
tensor([[-4.4754, -0.9084, -3.2791, -5.8905, -3.4738, -1.4554, -1.8643, -6.6169,
-2.1170, -5.5300]71)
IPU predicted class: Trouser
CPU predicted class: Trouser

@ .
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A7 Insights

& Memory Report

||. Liveness Report

Ez Program Tree

BB Operations Summary

A& Operations Graph

|= Execution Trace

C Reload Report

X Close Report

[B Documentation

< Minimise

PopVision® Graph Analyser [10.129.111.38 : [nethc | t/work/: [tutorials/tutorials/pytorch/basics/report/training]
Graph Type - Total Memory v Breakdown - None 201 X Options v [
& O Navigation @ &« 100% Q « » @ < D
Py
192 KiB-|
128 KiB-|
64.0 KiB-|
Tile 201
@ L
e \
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[ Tile Memory (w/o gaps) [___] Tile Memory (w/ gaps)
Details Compute Sets Vertices Exchanges Variables
Tile 201
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Memory Including Gaps 209 KiB
v Memory Excluding Gaps 28.3KiB
w By Memory Region
Non-interleaved 274 KiB
Interleaved 960 B
Overflowed 0B
w By Data Type
w Not Overlapped
Variables 1.6 KiB
Constants 414 B
Control Code 2.4KiB
Vertex Code 8.8 KiB
Internal Exchange Code 7.2 KiB
Host Exchange Code 640 B
Global Exchange Code 0B
\lartav Inetan~ac 1AviR
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B Summary

A7 Insights

£ Memory Report

||. Liveness Report

Ez Program Tree

BB Operations Summary

A& Operations Graph

E Execution Trace

C Reload Report
X Close Report
[B Documentation

& Minimise

PopVision® Graph Analyser [10.129.111.38 : [nethc

t/work/:

ples/tutorials/tutorials/pytorch/basics/report/training]

Q Filter steps Select Source v Options v 9]
& O Navigation @ &« 100% Q « » @ < D
4.8 MiB-| OnTileExecute (conv2/Conv:ConvDataGrad/218/convolution/Conv_5x5/Convolve)
B \ot-Always-Live: 4.6 MiB
3.8 MiB-{
2.9 MiB-|
1.9 MiB-{
977 KiB
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Program Steps
Not-Always-Live
Selected Program Steps
Step 312  OnTileExecute (conv2/Conv:ConvDataGrad/218/convolution/Conv_5x5/Convolve)
Always-Live Variables Not-Always-Live Variables Vertices Cycle Estimates FLOP Estimates
Filter variables
Variable § All Tiles &
Total 29.3 MiB
vertexCode 11.8 MiB
internalExchangeCode 8.5 MiB
controlCode 3.0 MiB
vertexInstanceState 1.9 MiB
hostExchangeCode 924 KiB
stack 535 KiB
instrumentationResults 402 KiB
»  Accll__fcl.weight 380 KiB
p  fclweight 380 KiB
vertexFieldData 241 KiB
copyDescriptor 223 KiB
hnactFvrhanaaPankatHaadar 10R KiR
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[ NON ) PopVision® Graph Analyser [10.129.111.38 : [neth /alext/work/ les/tutorials/tutorials/pytorch/basics/report/training]
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Summary Details

Total Cycles 94,526 Total FLOPs 31,844,509
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X Close Report
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POPVISION TUTORIALS

Continued in the repositories below (follow the READMES)

tutorials/tensorflow2/infeed outfeed

tutorials/pytorch/pipelining

tutorials/popvision/system_analyser_instrumentation
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https://github.com/graphcore/examples/tree/master/tutorials/tutorials/tensorflow2/infeed_outfeed
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/pytorch/pipelining
https://github.com/graphcore/examples/tree/master/tutorials/tutorials/popvision/system_analyser_instrumentation
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X Close Report
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@® © @ PopVision® Graph Analyser [10.129.111.38 : [net}

1l I’ ol M : " T
t/work/ /tutor / / _out

d_code/report/tf_report__2023-07-25__01-03-33.553__93433 vs 10.129.111.38 : |

1} flow2/ / p t/work/ /tutor :-.:.,,“..v. ]
Q Filter steps Select Source v Options v (@1}
& O Navigation @ &« 100% Q « » @ < [[|] ”1]
r L
1.9 MiB
L - 1l - ’7
- o = b . r i _ y’ ‘
0B T T T T T T T T T T T T T T 2 T T T
(0] 10 20 30 40 50 60 70 80 90 100 1o 120 130 140 150 160 17¢
Program Steps
[ source: Not-Always-Live
& O Navigaton @ @  100% @« » @ < 0
L]
1.9 MiB
.
R - B Il C
0B T T T T T T T T T T T T T T T T T T
0] 10 20 30 40 50 60 70 80 90 100 1o 120 130 140 150 160 17¢
Program Steps
[ Target: Not-Always-Live
Selected Program Step
Name (source): None selected. Click on the graph to select a source program step
Name (target): None selected. Click on the graph to select a target program step
Always-Live Variables Not-Always-Live Var Cy
Q Filter variables o

Variable §

Total

vertexCode

controlCode

internalExchangeCode
hostExchangeCode

stack

vertexInstanceState
while/sequential/dense/MatMul/dot.35/rhs
sequential/dense/MatMul/dot/rhs
instrumentationResults

hostExchangePacketHeader

Source: All Tiles §
11.3 MiB
6.0 MiB

1.5 MiB
1.2 MiB
595 KiB
540 KiB
527 KiB
392KiB
180 KiB
14 KiB

Target: All Tiles §

1.2 MiB
6.0 MiB
1.5 MiB

11 MiB
556 KiB
529 KiB
527 KiB
392 KiB
180 KiB
137 KiB

Diff: All Tiles §
-3 KiB

-16 B (-0.00%)
-37.7 KiB (-2.41%)
-47.6 KiB (-3.99%)
-39.2 KiB (-6.58%)
-11.0 KiB (-2.04%)
20 B (0.00%)

-392 KiB (-100.00%)
392 KiB (100.00%)
4 B (0.00%)

23.7 KiB (17.25%)

B
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A7 Insights
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||. Liveness Report
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= Program Tree

BB Operations Summary

A& Operations Graph

L'—; Execution Trace

C Reload Report

X Close Report
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PopVision® Graph Analyser [10.129.111.38 : [nethome/alext/work/examples/tutorials/tutorials/pytorch/pipelining/report/training]

Execution View - Flame Navigation @ & 260775% Q o« » < AllIPUs v Q Search Options v O 1]

[====]
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A~ St...y| StreamCopy | StreamCopy | StreamCopy | StreamCopy J StreamCopy ‘ Ex..c | StreamCopy H ‘ StreamCopy‘ H‘ StreamCopy H ‘ Stre...Copy H \ | ‘E ‘ ‘ ‘ ‘ ‘ ‘ ‘ | ‘ II
| R | Il I MY g |l [ T T
Il Il Il il [ It |
IPU1
~ Sty StreamCopy I StreamCopy I StreamCopy I StreamCopy I StreamCopy I I | StreamCopy I I | Stre...Copy I I | StreamCopyI I | Stre...Copy I I | I I | I | I | l | I I E II
B [end | JECE R | jCS ] = |1 ONESRR] | | WEER | [N L] W |
I I I I I I i T
I | | l | | | | |
| | | | | | |
IPU 2
A Sty StreamCopy StreamCopy StreamCopy StreamCopy StreamCopy Ex..c  StreamCopy Ex..c Stre..Copy Ex..c| StreamCopy Ex..c | Stre..Copy Ex..c Ex..c (Ferss E E.. [l Ex..c WE.. II
End End End ‘ End ‘ End ‘ End ‘ End ‘ End ‘ End End ‘ ‘ ‘
| | I | i | | | I | I
| | | | |
IPU 3
A Sty StreamCopy StreamCopy StreamCopy StreamCopy StreamCopy E..c ' StreamCopy E..c ' StreamCopy E..c | StreamCopy E..c ' StreamCopy EXIC E..c |S.. Ext..nc | Ext...nc | E..c II
End End End B.. End End End End ‘ End ‘ End ‘ End ‘ ‘ ‘ ‘
| 1 | | | | |
| | I | I | I I I
|
Summary Details

Total Cycles 1,700,636 Total FLOPs 2,227,345,013

Proportions Tile Utilisation @ Stream Copy (Rx/Tx) Global Exchange (Rx/Tx)
] ] 11 MiB /172 KiB 41MiB/4.2MiB
I I 08/08 5.0 MiB / 5.3 MiB
[ [ | 0B/0OB 1.8 MiB / 1.4 MiB
] [ 7688 /320 B 640 KiB / 640 KiB
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[ ON ) PopVision® System Analyser
9 Add file Flame Graph Type - Aggregated v Line Graph Type - Line v Heatmap Options Navigation @ @ 100% Q o« » < Q Search Options v -3 1]
Events 405 —— — =L
Duration 17.561 secs | . S Em | —
[ | | I
— 1 — ]
S B } I E—
Collapse all charts — | —
- |
00:00:00 00:00:02 00:00:04 00:00:06 00:00:08 00:00:10 00:00:12 00:00:14 00:00:16
¥ Tue_Jul_25_00:06:49_2023_UTC_57...
¥ Aggregated ba po...ad
pop...ch
-- popart::popx::Devicex::run ‘
popa...ble popart:...treams popart::popx::Devicex::run ‘ popar...able popart::pop...ectStreams  po...n
- popa...ice popart:...treams popart::Session::run ‘ - popar...vice popart::Ses...ectStreams  po...n
compileWi...ITracing loadEn...treams execute .compiIeWith...nuaITracing IoadEngineA...ectStreams‘ ex..te

Summary Call Tree
Aggregate
Self time §
3.421secs 38.0%
565.996 ms 6.3%
366.950 ms 41%
352.631 ms 3.9%
58174 ms 0.6%
43.665 ms 0.5%
556.523 ms 6.2%
306.832 ms 3.4%
192.610 ms 21%
36.681 ms 0.4%
147590 ms 1.6%
331.532 ms 3.7%
96.082 ms 11%
313.409 ms 3.5%

(|
|
|
1
\
|
|
[
I
\
I
I
l
I

Total time 4 Activity §

8.996secs 100.0% (NG v [l poplar::core:IPUTarget::run

3615secs  40.2% [ v [l poplar::core::IPUTarget::processHspSync

1.945 secs 21.6% - v . poplar::core::SyncGroupFlow::prepareAccess

1578secs  175% [l v [l poplar::core::Fetch::operator

658.362 ms 7.3% I v . poplar::core::Fetch::doCallback

600.188 ms 6.7% I v popart::popx::Devicex::PrefetchCallback::fetch
556.523 ms 6.2% l popart::popx::Devicex:InputDatastream::read
306.832 ms 3.4% I . poplar::core::Fetch::doHostGatewaySync

192.610 ms 21% | [ poplar:core::Fetch::doHostGatewayMirror

67.629 ms 0.8% ‘ > popart::popx::Devicex::PrefetchCallback::complete
599.345 ms 6.7% I 4 . poplar::core::SyncGroupFlow::completeAccess
331532ms  37% | Il 'PUSync::incrementMarkCount

173.335 ms 1.9% | > . poplar::core::SyncGroupFlow::releaseAccess

1503secs  167% M v [l poplar:core:IPUDevice::waitForAny
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PopVision® System Analyser

9 Add file Flame Graph Type - Timeline Line Graph Type - Line Heatmap Options (~] Q Search Options v -3 [91]

Events 3,163,853
Duration 58.214 secs
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® © ® 3 ACCESS Allocations: Prepare X =4 v

& > iQ @& allocations.access-ci.org/prepare-requests-overview LI *¢ 2 H » O g’

ALLOCATIONS SUPPORT OPERATIONS METRICS

QACCESS Request an IPU allocation for your research today!

4 Allocations allocations.access-ci.org/prepare-requests-overview

Get started Manage allocations Prepare requests Use credits Updates Policies FAQs

Prepare requests: overview

Prepare requests:
We've organized your options for requesting access to advanced research computing resources into a set of overview
opportunities designed to support needs ranging from new or entry-level exploration to the largest-scale
computational experiments. We welcome you to find the opportunity that aligns with your best estimate of your Dl A
resource needs. And don't worry about starting too small. As you clarify your needs, you can upgrade to a Discover ACCESS
larger-scale opportunity when you're ready. Accelerate ACCESS

There are four opportunities, which are described below and compared side-by-side in this table: Maxinize ACCESS

Comparison Table
e Explore ACCESS

o Discover ACCESS



https://allocations.access-ci.org/prepare-requests-overview

T H A N K YO U Request an IPU allocation for your research today!

o allocations.access-ci.org/prepare-requests-overview
Alexander Tsyplikhin

alext@graphcore.ai
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