ACES: AI/ML TechLab

Accelerating AI/ML Workflows on a Composable Cyberinfrastructure

Zhenhua He 10/03/2023

High Performance Research Computing DIVISION OF RESEARCH

Acknowledgements

This short course is sponsored in part by the CSSN Community Engagement Program Travel Award. We gratefully acknowledge their support in providing this community resource.

AI/ML TechLab

04 Q&A 01 03 (5 mins/lab) 02

Lab IV. Deep Learning (30 minutes)

We will learn how to use PyTorch to build and train a simple image classification model with deep neural network (DNN).

Lab III Machine Learning (30 minutes)

We will learn to use scikit-learn library for linear regression and classification applications.

Figure 1. Structure of the AI/ML TechLab.

Lab I. JupyterLab (30 mins)

We will load required modules and activate virtual environment and run JupyterLab on HPRC ACES portal.

Lab II. Data Exploration (30 mins)

We will go through some examples with two popular Python libraries: Pandas and Matplotlib for data exploration.

Lab I. JupyterLab

File Edit View	Run Kernel Ta	Settings Help					
+ 63	± C	Lorenz.ipynb × 🖪 Terminal 1 × 🖪 Console 1 ×	■ Data.ipynb × ♥ README.md ×				
♠ > notebooks		🖹 + 🛠 🖆 🏲 🕨 🗖 C Code 🗸	Python 3 C				
Name 🔺	Last Modified	In this Notebook we explore the Lorenz system of	differential equations:				
📃 Data.ipynb	an hour ago		$\dot{x} = \sigma(y - x)$				
🖪 Fasta.ipynb	a day ago		$\dot{y} = \rho (y - x)$ $\dot{y} = \rho x - y - xz$				
📃 Julia.ipynb	a day ago		$\dot{y} = \rho x - y - xz$ $\dot{z} = -\beta z + xy$				
Lorenz.ipynb	seconds ago		z = pz + xy				
R.ipynb	a day ago	Let's call the function once to view the solutions.	For this set of parameters, we see the trajectories swirling around two points,				
🖽 iris.csv	a day ago	called attractors.					
Iightning.json	9 days ago						
🅏 lorenz.py	3 minutes ago	<pre>In [4]: from lorenz import solve_lorenz t, x_t = solve_lorenz(N=10)</pre>					
		Output View ×	х				
		sigma 10.00 10 10 10 beta 2.67 11 fig ax = rbo 28.00 13 ax = ax =	<pre>e_lorenz(N=10, max_time=4.0, sigma=10.0, beta=8./3, rho=28.0): lot a solution to the Lorenz differential equations.""" = plt.figure() fig.add_axes([0, 0, 1, 1], projection='3d') xis('off')</pre>				
		14 15 # pr 16 ax.s 17 ax.s 18 ax.s	<pre>repare the axes limits et_xlim((-25, 25)) et_ylim((-35, 35)) et_zlim((5, 55))</pre>				
		21 22 23 24 25 # Ch 26 np.r	<pre>lorenz_deriv(x_y_z, t0, sigma=sigma, beta=beta, rho=rho): """Compute the time-derivative of a Lorenz system.""" x, y, z = x_y_z return [sigma * (y - x), x * (rho - z) - y, x * y - beta * z] toose random starting points, uniformly distributed from -15 to 15 andom.seed(1) -15 + 30 * np.random.random((N, 3))</pre>				

L1 - Resources

- Texas A&M High Performance Research Computing (HPRC)
- ACES Quick Start Guide
- ACES Portal (ACCESS)
- ACCESS Documentation
- HPRC YouTube Channel
- help@hprc.tamu.edu

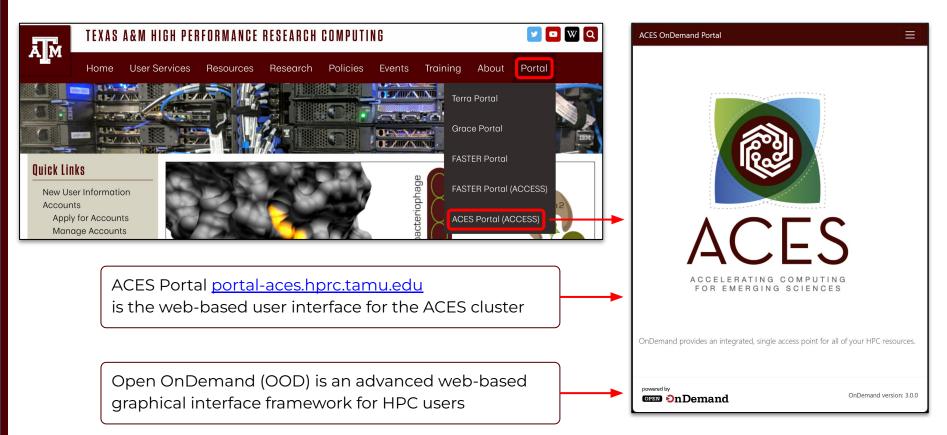
Ā

NSF ACES

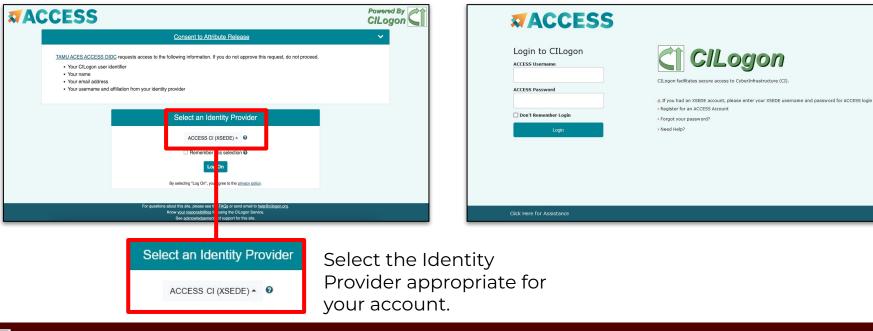
Accelerating Computing for Emerging Sciences

Our Mission:

- Offer an accelerator testbed for numerical simulations and AI/ML workloads
- Provide consulting, technical guidance, and training to researchers
- Collaborate on computational and data-enabled research.



ACES Accelerators


Component	Quantity	Description
Graphcore IPU	32	16 Colossus GC200 IPUs, 16 Bow IPUs. Each IPU group hosted with a CPU server as a POD16 on a 100 GbE RoCE fabric
Intel PAC D5005 FPGA	2	Accelerator with Intel Stratix 10 GX FPGA and 32 GB DDR4
BittWare IA-840F FPGA	2	Accelerator with Agilex AGF027 FPGA and 64 GB of DDR4
NextSilicon Coprocessor	2	Reconfigurable accelerator with an optimizer continuously evaluating application behavior.
NEC Vector Engine	8	Vector computing card (8 cores and HBM2 memory)
Intel Optane SSD	48	18 TB of Intel Optane SSDs addressable as memory w/ MemVerge Memory Machine.
NVIDIA H100 + A30	30 + 4	NVIDIA GPUs for HPC, DL Training, AI Inference
Intel PVC + ATS-P	12 + 22	Software Development Platform for PVC

ACES Portal

Authentication via CILogon

Log-in using your ACCESS CI credentials.

Get a Shell on ACES

Click on "Clusters" menu → _aces Shell Access

Success!

Welcome to the ACES login node.

Check which login node you are on.

АМ

Host: login.aces	10				Themes:	Default
FASTER Grace [Terra [cumentation: Documentation: Documentation: Documentation:	<pre>help@hprc.tamu.edu https://hprc.tamu.e https://hprc.tamu.e https://hprc.tamu.e https://hprc.tamu.e https://www.youtube</pre>	du/kb/Use du/kb/Use du/kb/Use du/kb/Use	r-Guides/ACES r-Guides/FASTER r-Guides/Grace r-Guides/Terra	i i	
<pre>YouTube Channel: https://www.youtube.com/texasamhprc ************************************</pre>						
isk home/u.zh10 scratch/use ype 'showqu	: disk quotas a 18696 er/u.zh108696	Disk Usage 4.0G 275.4G nese quotas again.	the <u>motd</u> Limit 10.0G 1.0T	command. File Usage 2361 352057	Limit 10000 1000000	

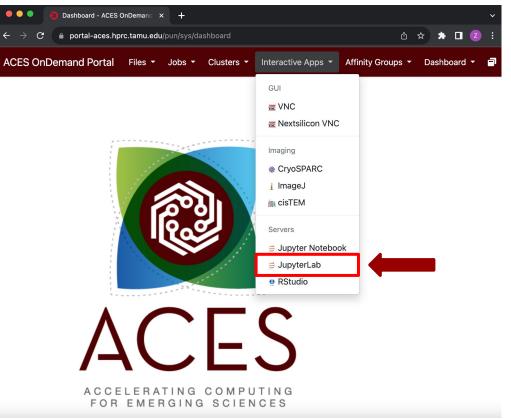
Commands to copy the materials

• Navigate to your personal scratch directory

\$cd \$SCRATCH

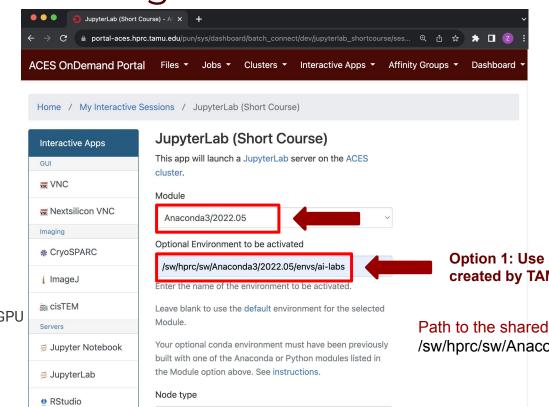
• Files for this course are located at

/scratch/training/ai_tech_labs


Make a copy in your personal scratch directory

\$ cp -r /scratch/training/ai_tech_labs \$SCRATCH

• Enter this directory (your local copy)

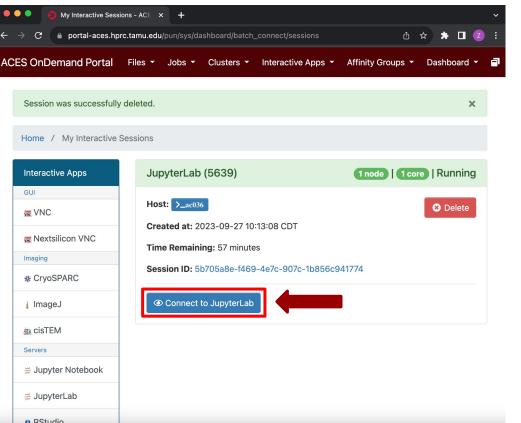

\$cd ai tech labs

Go to JupyterLab Page

JupyterLab Page

Other fields:

Node Type: First available GPU Number of GPUs: 1 Number of hours: 3 Number of cores: 3 Total memory (GB): 5


First available GPU

Option 1: Use a shared environment created by TAMU HPRC for this course

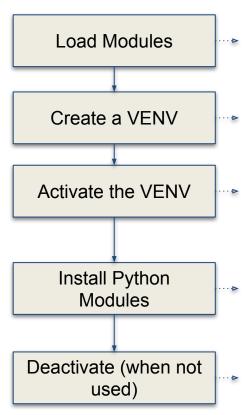
Path to the shared environment:

/sw/hprc/sw/Anaconda3/2022.05/envs/ai-labs

Connect to JupyterLab

Review and Exercise

- Log into ACES through ACES Portal (ACCESS)
- Copy the training materials to your \$SCRATCH directory
- Launch JupyterLab app
- In the notebook named *01_Jupyterlab.ipynb*, follow the instructions to import the


required modules to make sure they have been loaded properly.

🗹 Lau	Incher				×		01_J	upyterlab.ipynb	×	+			
8	+ %	Ū	Ċ	•		C	**	Markdown ∨			ŧ	Python 3 (ipykernel)	0
	[]:							nd click [Shift . TechLab!")	⊦Ente	r]	to execute		
	[]:		st n ite			de b	elow	<i>,</i>					
		► CI	ick h	iere	to s	ee s	olut	ion					
	[];		est p ite			de b	elow	r					
		►											- 11
		СІ	ick h	iere	to s	ee s	olut	ion					

Option 2

Ā M

clean up and load Anaconda
cd \$SCRATCH
module purge
module load Anaconda3/2022.05

create a Python virtual environment conda create -n ai-labs

activate the virtual environment
source activate ai-labs

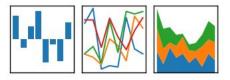
install required package to be used in the portal conda install -c anaconda jupyter conda install -c anaconda pandas conda install -c conda-forge matplotlib conda install -c anaconda scikit-learn conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia

deactivate the virtual environment
source deactivate

JupyterLab Page

Home / My Interactive Sessions / JupyterLab (Short Course)

Interactive Apps	JupyterLab (Short Course)
UI	This app will launch a JupyterLab server on the ACES
W VNC	cluster. Module
Nextsilicon VNC	Anaconda3/2022.05
naging	
* CryoSPARC	Optional Environment to be activated
ImageJ	ai-labs Enter the name of the environment to be activated.
cisTEM	Leave blank to use the default environment for the selected
ervers	Module.
Jupyter Notebook	Your optional conda environment must have been previously built with one of the Anaconda or Python modules listed in
🗟 JupyterLab	the Module option above. See instructions.
RStudio	Node type
	First available GPU


Other fields:

Node Type: First available GPU Number of GPUs: 1 Number of hours: 3 Number of cores: 3 Total memory (GB): 5

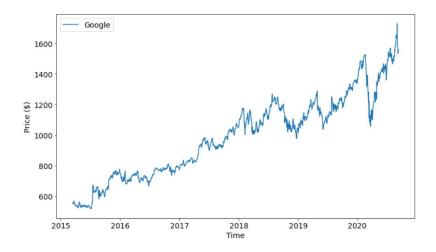
Lab II. Data Exploration

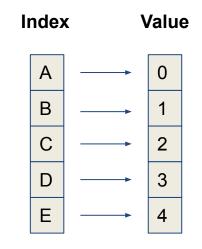
matpletlib

Data Structures

Pandas has two data structures that are descriptive and

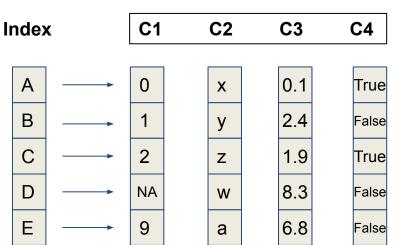
optimized for data with different dimensions.


- Series: 1D labeled array
- DataFrame: General 2D labeled, size-mutable tabular


structure with potentially heterogeneously-typed columns

Series in pandas

- One-dimensional labeled array
- Capable of holding any data type (integers, strings, floating point numbers, etc.)
- Example: time-series stock price data



DataFrame in pandas

- Primary Pandas data structure
- A dict-like container for Series objects
- Two-dimensional size-mutable
- Heterogeneous tabular data structure

A	В	С	D	E	F	G	н
id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
7129300520	20141013T0	221900	3	1	1180	5650	1
6414100192	20141209T0	538000	3	2.25	2570	7242	2
5631500400	20150225T0	180000	2	1	770	10000	1
2487200875	20141209T0	604000	4	3	1960	5000	1
1954400510	20150218T0	510000	3	2	1680	8080	1
7237550310	20140512T0	1.23E+06	4	4.5	5420	101930	1
1321400060	20140627T0	257500	3	2.25	1715	6819	2
2008000270	20150115T0	291850	3	1.5	1060	9711	1
2414600126	20150415T0	229500	3	1	1780	7470	1

Columns

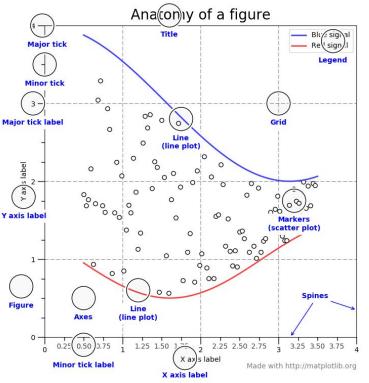
Pandas Learning Objectives

After this lesson, you will know how to:

- Create a DataFrame
- Retrieve a Row or Column
- Drop Entries
- Index, Select, and Filter data
- Sort data
- Input and Output

Key Plotting Concepts in Matplotlib

Matplotlib: Figure


Figure is the object that keeps the whole image output. Adjustable parameters include:

- 1. Image size (set_size_inches())
- 2. Whether to use tight_layout (set_tight_layout())

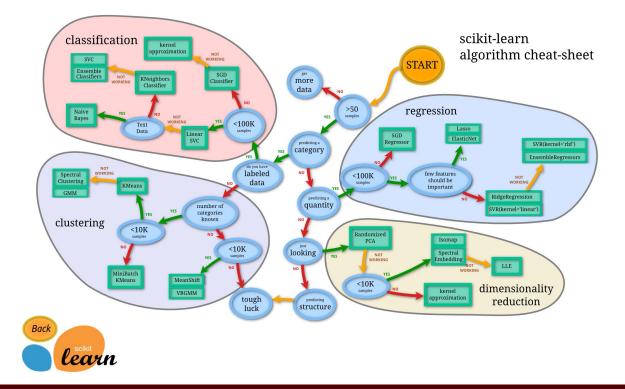
Matplotlib: Axes

Axes object represents the pair of axis that contain a single plot (x-axis and y-axis). The Axes object also has more adjustable parameters:

- The plot frame (set_frame_on() or set_frame_off())
- X-axis and Y-axis limits (set_xlim() and set_ylim())
- X-axis and Y-axis Labels (set_xlabel() and set_ylabel())
- 4. The plot title (set_title())

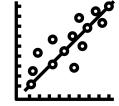
(Credit: matplotlib.org)

Matplotlib Learning Objectives

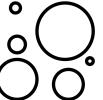

After this lesson, you will know how to:

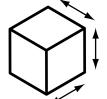
- Scatter plot and Line plot
- Subplots
- Color map
- Contour figures
- 3D figures
 - Surface plots
 - Wire-frame plot
 - Contour plots with projections

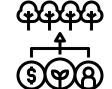
Lab III. Machine Learning



Main Features of scikit-learn

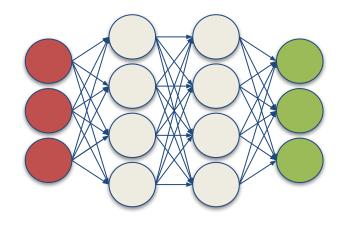



Classification	Regression	Clustering	Dimension Reduction	Model Selection	Preprocessing	
Identifying category of an object	Predicting a attribute for an object	Grouping similar objects into sets	Reducing the number of dimensions	Selecting models with parameter search	Preprocessing data to prepare for modeling	
Applications: Spam detection, image recognition. Algorithms: SVM, nearest neighbors, random forest, and more	Applications: Drug response, Stock prices. Algorithms: SVR, nearest neighbors, random forest, and more	Applications: Customer segmentation, Grouping experiment outcomes Algorithms: k-Means, spectral clustering, mean-shift, and more	Applications: Visualization, Increased efficiency Algorithms: k-Means, feature selection, non-negative matrix factorization, and more	Applications: Improved accuracy via parameter tuning Algorithms: grid search, cross validation, metrics, and more	Applications: Transforming input data such as text for use with machine learning algorithms. Algorithms: preprocessing, feature extraction, and more	
$\overline{}$	E %	°		$\phi\phi\phi\phi\phi$	ትሌ	



JupyterLab Exercises

0 \ 0

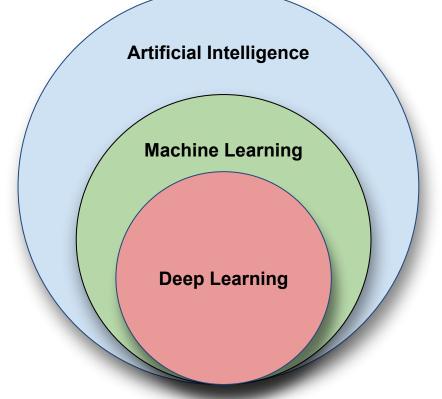

Credit: icons are from The Noun Project under Creative Commons Licenses

Lab IV. Deep Learning

Deep Learning by Ian Goodfellow, Yoshua Bengio, and Aaron Courville <u>http://www.deeplearningbook.org/</u>

Animation of Neutron Networks by Grant Sanderson https://www.3blue1brown.com/

Visualization of CNN by Adam Harley https://adamharley.com/nn_vis/cnn/3d.html

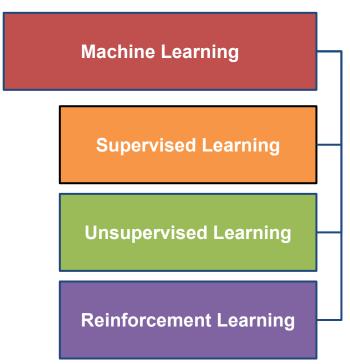


Relationship of AI, ML, and DL

- Artificial Intelligence (AI) is anything about man-made intelligence exhibited by machines.
- Machine Learning (ML) is an approach to achieve AI.
- **Deep Learning (DL)** is one technique to implement **ML**.

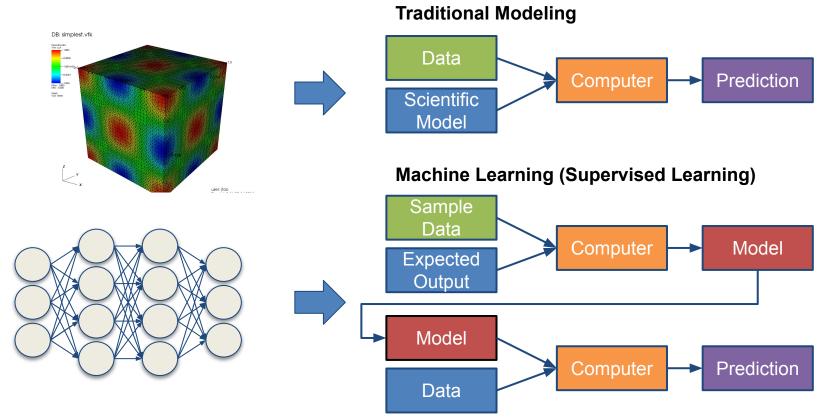
Types of ML Algorithms

• Supervised Learning

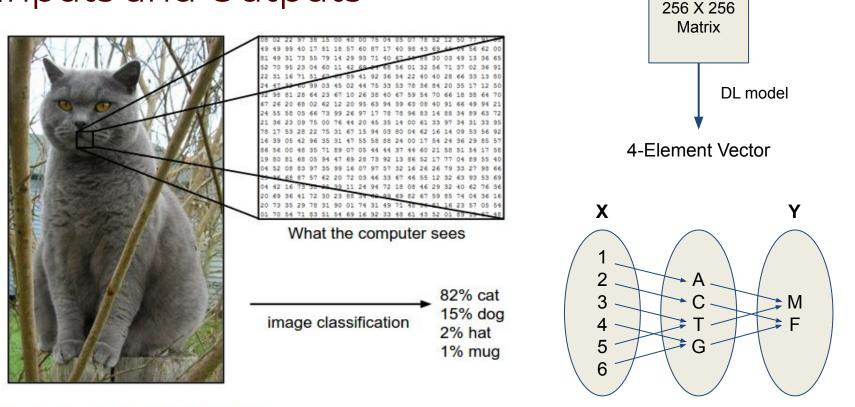

 trained with labeled data; including regression and classification problems

• Unsupervised Learning

 trained with unlabeled data; clustering and association rule learning problems.


Reinforcement Learning

 no training data; stochastic Markov decision process; robotics and business strategy planning.



Machine Learning

ĀМ

Inputs and Outputs

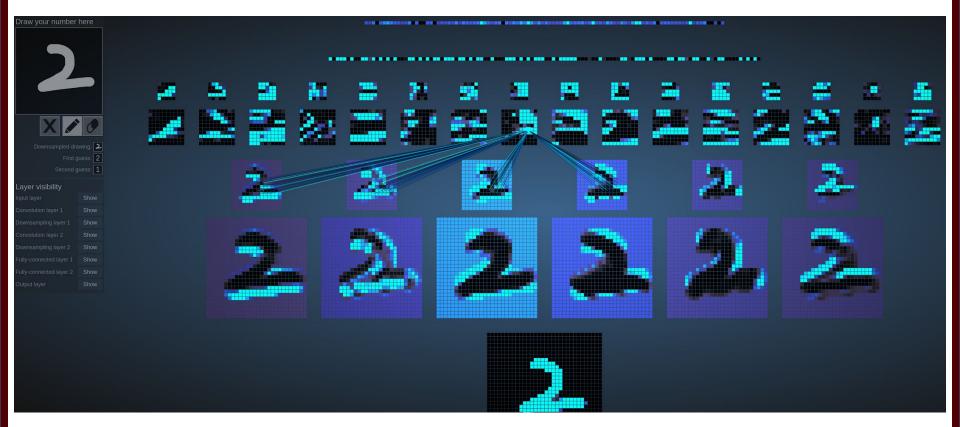

With deep learning, we are searching for a **surjective** (or **onto**) function **f** from a set **X** to a set **Y**.

Image from the Stanford CS231 Course

Ā M

MNIST - CNN Visualization

(Image Credit: https://adamharley.com/nn_vis/cnn/3d.html)

ĀМ

CNN Explainer

(Image Credit: https://poloclub.github.io/cnn-explainer/)

JupyterLab Exercises

High Performance Research Computing DIVISION OF RESEARCH

https://hprc.tamu.edu

HPRC Helpdesk:

help@hprc.tamu.edu Phone: 979-845-0219

Help us help you. Please include details in your request for support, such as, Cluster (Faster, Grace, Terra, ViDaL), NetID (UserID), Job information (Job id(s), Location of your jobfile, input/output files, Application, Module(s) loaded, Error messages, etc), and Steps you have taken, so we can reproduce the problem.

