
hprc.tamu.edu Rev 1.0.0
29 Nov 2022

Abhinand Nasari & Shaina Le

ACES Short Course Series

Introduction
to Intel FPGAs

hprc.tamu.edu

Outline

2

● Introduction to FPGAs
○ Course Objectives
○ Terminology
○ What are FPGAs?
○ Applications of FPGAs
○ Developing on FPGAs vs Other Platforms

● Break
● Getting Started

○ Requirements
○ Accessing the FPGAs
○ Notes on FPGA Usage

● FPGA Development Flow
● Break
● Demonstration
● Getting Support & Other Resources

hprc.tamu.edu

Course Objectives

3

● complete a brief overview of FPGAs
● learn some terminology related to the

FPGAs
● learn about the tools needed to work

with FPGAs
● learn about the availability of tools for

working with FPGAs
● learn how to access the FPGAs
● complete a brief overview of how to

use the FPGAs
● learn where to get help regarding

FPGAs
ℹ These objectives are to be interpreted within the context of FPGAs
on TAMU HPRC systems.

hprc.tamu.edu

What are FPGAs?

4

● “Field-Programmable Gate Array”
● Devices that can be reprogrammed

for desired applications or
functionality after manufacturing

○ Contrast to ASIC (application-specific
integrated circuit), whose functionality
cannot be changed after manufacture)

● Often referred to as “spatial”
accelerators

○ Computation is distributed across discrete
processing elements spread within physical
space

hprc.tamu.edu

Terminology

● binary
○ single file containing host code and device code
○ also known as device image

● bitstream
○ FPGA configuration file containing programming information for the FPGA
○ loaded into an FPGA when ready for execution

● board support package (BSP)
○ consists of software layers and an FPGA hardware scaffold design that makes it possible to target

the FPGA
○ analogous to firmware

● board variant
○ FPGA board firmware supporting different functional capabilities of the FPGA
○ one FPGA model can have multiple board variants

● device
○ identifies the platform the compiled image will support
○ e.g. emulator or hardware

5

hprc.tamu.edu

Terminology

● DPC++ (Data Parallel C++)
○ a high-level language designed for parallel programming productivity and based on the C++

language for broad compatibility
● emulator image

○ device image resulting from compiling for the FPGA emulator
○ runs on the CPU

● hardware image
○ device image resulting from compiling for the FPGA hardware
○ runs on the FPGA

● host
○ a CPU-based system (computer) that executes the primary portion of a program, specifically the

application scope and command group scope
● initialize

○ prepare the board for use by programming it with a default image so it enters a “clean” state
● reconfigure

○ program the FPGA with an image to change its functionality

6

hprc.tamu.edu 7

Why use FPGAs?

● Lower power consumption compared
to a GPU

● Ability to fine-tune the hardware for
specific applications, as opposed to a
general purpose accelerator

● Lower latency compared to GPUs
● Increasing support of FPGA

development tools

V
 S

hprc.tamu.edu

Applications of FPGAs

Artificial
Intelligence

8

GenomicsAutomotive Data Analytics Financial
Workloads

Industrial
Processes Weather & ClimateMedical Research Network

Transformation Prototyping

Additional Reading: https://hardwarebee.com/fpga-common-applications/

https://hardwarebee.com/fpga-common-applications/

hprc.tamu.edu

Developing on FPGAs

● Programming was traditionally done in an HDL (hardware
description language) such as VHDL or Verilog.

○ Typically a steep learning curve
● Introduction of Intel oneAPI tools allow for more widespread

adoption because of its foundation on C++
○ Basis in OpenCL, write applications in DPC++, and call the SYCL SDK + FPGA SDK

libraries
○ CUDA to DPC++ migration tool available for compatibility of GPU code on FPGAs

■ Available here:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-comp
atibility-tool.html

○ Syclomatic by Codeplay
■ Mostly automated CUDA -> DPC++ code migration

9

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compatibility-tool.html

hprc.tamu.edu

FPGA Development: High Level Synthesis Tools

● Code written in high level language C++ to translated to RTL
● Verification can be done by execution of the code in CPU
● Enables a faster development iteration
● Example : Intel’s HLS compiler is packaged with Quartus

○ https://www.intel.com/content/www/us/en/software/programmable/quartus-prime
/hls-compiler.html

10

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html

hprc.tamu.edu

FPGA Development Flow

1. Emulation/Functional Validation
a. code is checked for correctness using a test bench
b. code targeting the FPGA is compiled and executed on

CPU
c. faster turnaround time for resolving bugs

2. Static Performance Analysis
a. compiler generated reports
b. reports include all the information required for

identifying bottlenecks in the design, and suggestions
for optimization techniques to resolve the bottlenecks.

3. Full Compile
a. compiler can insert on request profiling logic into the

generated hardware
b. profiling logic generates dynamic profiling data that can

later be used for identifying data pattern dependent
bottlenecks that cannot be spotted in any other way

11

hprc.tamu.edu

CPU vs. GPU vs. FPGA Development

12

CPU GPU FPGA

Architecture ● Fixed architecture ● Fixed architecture ● Compiled instructions become
hardware components on the
board

Execution ● Instructions from the software
are fetched and executed on
the fixed architecture

● Instructions from the software
are fetched and executed on
the fixed architecture

● Software “execution” is data
flowing through the deep
pipelines that match the
instructions from software

Software
Development

● C/ C++ and other general
programming languages

● CUDA, OpenCL ● RTL (Register Transfer
Level)languages like VHDL or
Verilog were used to
synthesize the board

● High Level Synthesis tools
enable design in language like
C++

hprc.tamu.edu

Break

13

hprc.tamu.edu 14

Getting Started

hprc.tamu.edu

Requirements

● TAMU HPRC account/ACCESS account
● Access to a terminal with SSH access
● Access to the TAMU campus network (on-campus or off-campus

with VPN)
● Familiarity with job submission (interactive/batch) on TAMU HPRC

clusters
● Knowledge of basic terminal usage
● Knowledge of C++ code development

15

hprc.tamu.edu

Overview

This section will walk students through the necessary steps for:

● environment set-up
● device identification
● device initialization

and demonstrate:

● execution of FPGA code on an emulator
● execution of FPGA code on the FPGA device itself
● compilation of FPGA code on a CPU-only node

prior to the hands-on portion of the course.

16

hprc.tamu.edu

Accessing the Cluster

Log into the FASTER cluster:

ACCESS/XSEDE Users: A few additional steps are required prior to
logging in for the first time. Please see this page for more information:
https://hprc.tamu.edu/wiki/ACES#ACES_Phase_I

17

TAMU Users
ssh NetID@faster.hprc.tamu.edu
ACCESS/XSEDE Users
ssh -J UserID@faster-jump.hprc.tamu.edu:8822 UserID@login.faster.hprc.tamu.edu

https://hprc.tamu.edu/wiki/ACES#ACES_Phase_I

hprc.tamu.edu

Accessing the Nodes - Interactive

1. Log into the FASTER cluster via a TAMU HPRC account or an ACCESS
account.

2. Request an interactive session on the cluster nodes:
a. CPU Nodes (For Code Compilation)

b. FPGA Nodes (For Code Execution)

ℹ Students will not be using the FPGA nodes during the course session. There are some technical limitations that will be
discussed shortly.

3. Wait for your request to be allocated.
4. Once allocated, you will be placed in an interactive session on the

requested node.

18

srun --partition=cpu --time=12:00:00 --nodes=1 --ntasks-per-node=16 --mem=64G --pty bash -i

srun --partition=fpga --time=24:00:00 --nodes=1 --exclusive --pty bash -i

hprc.tamu.edu

The contents shown in this example must be entered into a text file, then
executed as such:

Accessing the Nodes - Batch

19

1
2
3
4
5
6
7
8
9
10
11
12
13
14

#!/bin/bash

##NECESSARY JOB SPECIFICATIONS
#SBATCH --job-name=fpga_compilation
#SBATCH --time=12:00:00
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=16
#SBATCH --mem=64G
#SBATCH --output=%x.%j
#SBATCH --partition=fpga

module load oneAPI/2022.3.0
aocl initialize acl0 pac_s10
commands to compile/run code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Indicate the file is a bash script

Set the job name to “fpga_compilation”
Set the wall clock limit to 12hrs
Request one (1) node
Request 16 tasks per node
Request 64GB per node
Redirect stdout/err to file called "[job-name].[jobid]"
Specify partition to submit job to

Set up the oneAPI environment variables
[FPGA partition only] Initialize the FPGA device

sbatch job.slurm

hprc.tamu.edu

Interactive vs. Batch Job Methods

Interactive Jobs

● Pros
○ Better suited for shorter tasks
○ Good for testing a workflow before

committing to a batch job
○ Good for graphical interfaces

● Cons
○ Exiting out of the session ends the job

e.g. if you lose internet connection,
your job terminates

○ Resources can remain idle if not
attended to

20

Batch Jobs

● Pros
○ Better suited for longer tasks
○ Good for unattended workload

processing
○ No need for manual intervention
○ Helps with reproducibility
○ Better suited for running multiple

workloads simultaneously
● Cons

○ Not good if a workload requires
frequent interaction

hprc.tamu.edu

Notes on FPGA Usage

● Currently, there is only one (1) FPGA per node within the FPGA
queue.

○ Due to device constraints, only one user may use an FPGA node at a time.

● FPGA emulator and hardware images can be compiled on a
CPU-only node, but can only be run on a node with an FPGA
installed.

○ This means users do not need to wait for an FPGA node to be available to compile
their code, but will need to request one to run their code.

21

hprc.tamu.edu

● If working interactively, it helps to launch another bash shell within
your session to isolate your environment variables from your primary
session.
○ Exiting out of the shell will return you to the shell you started in.
○ This is helpful for starting with a clean environment.

⚠ The module is still a work in progress, please report any issues to
help@hprc.tamu.edu

Load the oneAPI Module

22

input commands
bash
module load oneAPI/2022.3.0

hprc.tamu.edu

Device Identification

23

input commands
aocl diagnose # can also use ‘list-devices’

example output
⋮

BSP Diagnostics

Device Name:
acl0

BSP Install Location:
/opt/intel/oneapi/intelfpgadpcpp/2022.1.0/board/intel_s10sx_pac

Vendor: Intel Corp

Physical Dev Name Status Information

pac_f200000 Passed Intel PAC Platform
(pac_f200000)
 PCIe 29:00.0
 USM not supported

DIAGNOSTIC_PASSED

⋮

1

2

3

ℹ This can be run on either the CPU or FPGA nodes, but since standard
CPU nodes will not have FPGAs installed, no device will be shown.

1. Device Name: used to reference the device
with respect to the aocl tools

2. Status: indicates whether or not the device
is ready to develop on. A value of
“Uninitialized” means the device needs to
be initialized with a compatible board
variant image before use

3. USM [not] supported: indicates whether or
not the device is currently configured to
compile applications with USM capabilities

ℹ Additional subcommands for aocl can be viewed by running the
following:

aocl help

hprc.tamu.edu

example output: pac_s10
⋮
Physical Dev Name Status Information

pac_f200000 Passed Intel PAC Platform (pac_f200000)
 PCIe 29:00.0
 USM not supported
⋮

Device Initialization

24

example output: pac_s10_usm
⋮
Physical Dev Name Status Information

pac_f200000 Passed Intel PAC Platform (pac_f200000)
 PCIe 29:00.0
 USM supported
⋮

input commands
aocl initialize acl0 pac_s10 # or 'pac_s10_usm'

1

2

1. Device is initialized with a
Stratix 10 image without USM
support, by specifying the
“pac_s10” board variant.

2. Device is initialized with a
Stratix 10 image with USM
support, by specifying the
“pac_s10_usm” board variant.

Syntax: aocl initialize <device_name> [board_variant]
ℹ Specifying “board_variant” is optional. Without it, the
default initialization will use “pac_s10”.

ℹ This can be run on either the CPU or FPGA nodes, but since
standard CPU nodes will not have FPGAs installed, no device
will be detected as a valid target.

hprc.tamu.edu

Demo 1: fpga_compile - emulator version

25

output

Running on device: Intel(R) FPGA Emulation Device

PASSED: results are correct

Binary is running on the emulator
on the CPU, instead of an FPGA
device.

1
2
3
4
5
6
7

cp -R /scratch/training/aces-fpga $SCRATCH
cd $SCRATCH/aces-fpga/fpga_compile
mkdir build && cd build
aocl initialize acl0 pac_s10
cmake .. -DFPGA_DEVICE=intel_s10sx_pac:pac_s10
make fpga_emu
./fpga_compile.fpga_emu

1
2
3
4
5
6
7

Copy the training materials to your $SCRATCH directory
Navigate to the ‘fpga_compile’ example directory
Create and navigate to the ‘build’ directory
Ensure the FPGA device is configured correctly
Run ‘cmake’ to create input files for ‘make’
Build the emulator application
Run the emulator application

hprc.tamu.edu

Demo 2: fpga_compile - hardware version

26

1
2
3
4
5
6
7

cp -R /scratch/training/aces-fpga $SCRATCH
cd $SCRATCH/aces-fpga/fpga_compile
mkdir build && cd build
aocl initialize acl0 pac_s10
cmake .. -DFPGA_DEVICE=intel_s10sx_pac:pac_s10
make fpga
./fpga_compile.fpga

1
2
3
4
5
6
7

Copy the training materials to your $SCRATCH directory
Navigate to the ‘fpga_compile’ example directory
Create and navigate to the ‘build’ directory
Ensure the FPGA device is configured correctly
Run ‘cmake’ to create input files for ‘make’
Build the device application
Run the device application

correct output

Running on device: pac_s10 : Intel PAC Platform (pac_f200000)

PASSED: results are correct

incorrect output - pac_s10 (without USM) image run on USM-enabled platform (pac_s10_usm)
Running on device: pac_s10_usm : Intel PAC Platform (pac_f200000)
Caught a SYCL host exception:
Native API failed. Native API returns: -42 (CL_INVALID_BINARY) -42 (CL_INVALID_BINARY)
terminate called after throwing an instance of 'cl::sycl::runtime_error'
 what(): Native API failed. Native API returns: -42 (CL_INVALID_BINARY) -42 (CL_INVALID_BINARY)
Aborted (core dumped)

Binary is running on the FPGA
device itself, instead of an
emulator.

ℹ This slide serves only as an example demonstrating the execution of a binary compiled for one board variant on an FPGA currently using a different board variant.

hprc.tamu.edu

● Effectively the same as if compiling on the FPGA node, but running a
requested CPU node.

[50%] Building CXX object src/CMakeFiles/compute_units.fpga.dir/compute_units.cpp.o

[100%] Linking CXX executable ../compute_units.fpga

aoc: Compiling for FPGA. This process may take several hours to complete. Prior to performing this compile, be sure to check the

reports to ensure the design will meet your performance targets. If the reports indicate performance targets are not being met,

code edits may be required. Please refer to the oneAPI FPGA Optimization Guide for information on performance tuning applications

for FPGAs.

[100%] Built target compute_units.fpga

[100%] Built target fpga

FPGA Development Flow on CPU

27

input commands

bash
module load oneAPI/2022.3.0
navigate to project directory

make fpga

hprc.tamu.edu

Break

28

hprc.tamu.edu 29

Hands-On Demo

hprc.tamu.edu

Overview

This section will walk students through the necessary steps for:

● creating a CPU node session and configuring the environment
● compile and run FPGA code examples on an emulator

30

hprc.tamu.edu

Set-Up

31

Log-in to FASTER:

Get a copy of the oneAPI FPGA course files:

Create a CPU-only interactive session:

ℹ The reservation is only available for the duration of the short course, and for some time after its conclusion. Any submissions going forward should not include the
–reservation=aces-fpga flag, and will be launched in the general CPU pool.

TAMU Users
ssh NetID@faster.hprc.tamu.edu
ACCESS/XSEDE Users
ssh -J UserID@faster-jump.hprc.tamu.edu:8822 UserID@login.faster.hprc.tamu.edu

cp -R /scratch/training/aces-fpga $SCRATCH

srun --reservation=aces-fpga --partition=cpu --time=12:00:00 --nodes=1 --mem=64G --pty bash -i

hprc.tamu.edu

Set-Up

32

Navigate to the copied directory:

Open another shell, and load the oneAPI module:

ℹ Please recall, if working interactively, it helps to launch another bash shell within your session to isolate your environment
variables from your primary session due to the current format of the module. Exiting out of the shell will return you to the shell you
started in.

⚠ The module is still a work in progress, please report any issues to help@hprc.tamu.edu

cd $SCRATCH/aces-fpga/fpga_lab

bash
module load oneAPI/2022.3.0

hprc.tamu.edu

Exercise 0: Code Execution

33
Data Parallel C++

dpcpp -fintelfpga -DFPGA_EMULATOR ex_0_sample.cpp -o ex_0_sample.fpga_emu

./ex_0_sample.fpga_emu

Please execute the above instructions

https://link.springer.com/book/10.1007/978-1-4842-5574-2

hprc.tamu.edu

Exercise 1: Device Selection

34

1.

Data Parallel C++

https://link.springer.com/book/10.1007/978-1-4842-5574-2

hprc.tamu.edu

Exercise 1: Device Selection

35

1.

Ref: Data Parallel C++

dpcpp -fintelfpga -DFPGA_EMULATOR ex_1_deviceSelector.cpp -o

ex_1_deviceSelector.fpga_emu

./ex_1_deviceSelector.fpga_emu

Modify ex_1_deviceSelector.cpp to use accelerator in the queue

https://link.springer.com/book/10.1007/978-1-4842-5574-2

hprc.tamu.edu

Exercise 2-3: Data Management: USM and Buffers

36
Data Parallel C++

exercise-2

dpcpp -fintelfpga -DFPGA_EMULATOR ex_2_usm.cpp -o ex_2_usm.fpga_emu

./ex_2_usm.fpga_emu

exercise-3

dpcpp -fintelfpga -DFPGA_EMULATOR ex_3_buffer_accessor.cpp -o

ex_3_buffer_accessor.fpga_emu

./ex_3_buffer_accessor.fpga_emu

https://link.springer.com/book/10.1007/978-1-4842-5574-2

hprc.tamu.edu

Exercise 4: Task Graph

37
Data Parallel C++

dpcpp -fintelfpga -DFPGA_EMULATOR ex_4_matrixAdd.cpp -o

ex_4_matrixAdd.fpga_emu

./ex_4_matrixAdd.fpga_emu

Modify the code to print the matrix with all 4’s

https://link.springer.com/book/10.1007/978-1-4842-5574-2

hprc.tamu.edu

Best Practices

38

● Check the initialization state of a card prior to running your
executable. It may have become uninitialized between users or runs.

● Do not reinitialize devices too quickly between initializations and
reconfigurations. This may cause the card to become uninitialized or have
other errors.

● Compilation of either an emulator/device image for an application can
take place on a CPU-only node. This means you do not have to wait for
an FPGA node to be available to compile your application.

● Validate your design through the emulator on a CPU node prior to
requesting an allocation for an FPGA node. This allows other users who
are further ahead in their development flow to test their design on the
FPGA node when required.

hprc.tamu.edu 39

Wrapping Up

hprc.tamu.edu

Resources

40

● Intel Documentation
○ https://www.intel.com/content/www/us/en/develop/document

ation/oneapi-programming-guide/top.html

● Intel FPGA Technical Training
○ https://www.intel.com/content/www/us/en/support/programm

able/support-resources/fpga-training/catalog.html?s=AtoZ

● Intel Learning
○ https://learning.intel.com/developer/learn

● oneAPI Samples on GitHub
○ https://github.com/oneapi-src/oneAPI-samples

● Intel Developer Cloud
○ https://www.intel.com/content/www/us/en/developer/tools/de

vcloud/overview.html

● Explore SYCL* Through Intel® FPGA Code Samples
○ https://www.intel.com/content/www/us/en/developer/articles/c

ode-sample/explore-dpcpp-through-intel-fpga-code-samples.
html

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/catalog.html?s=AtoZ
https://www.intel.com/content/www/us/en/support/programmable/support-resources/fpga-training/catalog.html?s=AtoZ
https://learning.intel.com/developer/learn
https://github.com/oneapi-src/oneAPI-samples
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html
https://www.intel.com/content/www/us/en/developer/articles/code-sample/explore-dpcpp-through-intel-fpga-code-samples.html

hprc.tamu.edu 41

Support

https://hprc.tamu.edu/wikihelp@hprc.tamu.edu 979-845-0219

https://hprc.tamu.edu/wiki
mailto:help@hprc.tamu.edu

hprc.tamu.edu

References

[1] FPGA BSPS and boards. Intel. (n.d.). Retrieved November 29, 2022, from
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/p
rogramming-interface/fpga-flow/fpga-bsps-and-boards.html

[2] Intel® oneAPI Programming Guide - FPGA flow. Intel. (n.d.). Retrieved November 29, 2022, from
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/p
rogramming-interface/fpga-flow.html

[3] Intel® oneAPI Programming Guide - Glossary. Intel. (n.d.). Retrieved November 29, 2022, from
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/g
lossary.html

[4] oneAPI Software Tool Flow Frame for FPGAs by Intel – BittWare. BittWare. (n.d.). Retrieved November
29, 2022, from https://www.bittware.com/ip-solutions/intel-oneapi/

[5] Samples for Intel oneapi toolkits. GitHub. Retrieved November 29, 2022, from
https://github.com/oneapi-src/oneAPI-samples

[6] Xilinx SDK Concepts: FPGA bitstream. Xilinx. (n.d.). Retrieved November 29, 2022, from
https://www.xilinx.com/htmldocs/xilinx2018_1/SDK_Doc/SDK_concepts/concept_fpgabitstream.html

42

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/programming-interface/fpga-flow/fpga-bsps-and-boards.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/programming-interface/fpga-flow/fpga-bsps-and-boards.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/programming-interface/fpga-flow.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/programming-interface/fpga-flow.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/glossary.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/glossary.html
https://www.bittware.com/ip-solutions/intel-oneapi/
https://github.com/oneapi-src/oneAPI-samples
https://www.xilinx.com/htmldocs/xilinx2018_1/SDK_Doc/SDK_concepts/concept_fpgabitstream.html

