Intel® AI Analytics Toolkit
Classical ML Optimizations

Aaryan Kothapalli, AI Software Solutions Engineer
Yuning Qiu, AI Software Solutions Engineer
Agenda

- Intel® AI Analytics Toolkit Overview
- Intel Distribution for Python Overview
- Intel® Distribution of Modin
- Intel® Extension for Scikit-Learn* and XGBoost
- Exercises
Intel® AI Analytics Toolkit

Accelerates end-to-end Machine Learning and Data Analytics pipelines with frameworks and libraries optimized for Intel® architectures

Who Uses It?
Data scientists, AI Researchers, Machine and Deep Learning developers, AI application developers

Learn More: intel.com/oneAPI-AIKit
A Brief Overview of Intel® AI Python Offerings

For larger scale and increased performance in data science workloads:

<table>
<thead>
<tr>
<th>Engineer Data</th>
<th>Create Machine Learning and Deep Learning Models</th>
<th>Deploy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Containers</td>
<td>MLOps cnvrg.io</td>
<td>Developer Sandbox Intel® Developer Cloud</td>
</tr>
<tr>
<td>Intel® Developer Catalog</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Connect AI to Big Data</th>
<th>Accelerate End-to-End Data Science and AI</th>
<th>Accelerated Python</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Python Data API Standard/Data Parallel Extensions for Python language</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intel® AI Analytics Toolkit</td>
<td>Intel® Distribution for Python</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data Analytics at Scale</th>
<th>Optimized Frameworks and Middleware</th>
<th>Optimize and Deploy Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODIN</td>
<td>TensorFlow, ONNX Runtime</td>
<td>Automate Model Tuning AutoML</td>
</tr>
<tr>
<td>Numpy</td>
<td>PyTorch</td>
<td>SigOpt</td>
</tr>
<tr>
<td>pandas</td>
<td>PaddlePaddle, mxnet</td>
<td>Automate Low-Precision Optimization</td>
</tr>
<tr>
<td>SciPy</td>
<td>tvm</td>
<td>Intel® Neural Compressor</td>
</tr>
<tr>
<td>Numba</td>
<td>dmic</td>
<td>OpenVINO™ Toolkit</td>
</tr>
</tbody>
</table>

| | | |
| | | oneDAL, oneDNN, oneCCL, oneMKL |

| | | |
| | | Intel Xeon, Intel Core, Intel Xe, Intel habana, SynapseAI |

| | | |
| | | Accelerators |
Key Features & Benefits
Intel® AI Analytics Toolkit

- Accelerate end-to-end AI and Data Science pipelines, achieve drop-in acceleration with optimized Python tools built using oneAPI libraries (i.e. oneMKL, oneDNN, oneCCL, oneDAL, and more)

- Achieve high-performance deep learning training and inference with Intel-optimized TensorFlow and PyTorch versions, and low-precision optimization with support for fp16, int8 and bfloat16

- Expedite development using open-source Intel-optimized pre-trained deep learning models for best performance via Model Zoo for Intel® Architecture (IA)

- Enable distributed training through Torch-CCL, and support of standards-based Horovod library

- Seamlessly scale Pandas workflows across multi-node dataframes with Intel® Distribution of Modin, accelerate analytics with performant backends such as OmniSci

- Increase machine learning model accuracy and performance with algorithms in Scikit-learn and XGBoost optimized for IA

- Supports cross-architecture development (Intel® CPUs/GPUs) and compute
Getting Started with Intel® AI Analytics Toolkit

Overview
- Visit [Intel® AI Analytics Toolkit](https://software.intel.com/ai) (AI Kit) for more details and up-to-date product information
- [Release Notes](https://software.intel.com/ai)

Installation
- [Download](https://software.intel.com/ai) the AI Kit from Intel, [Anaconda](https://www.anaconda.com/) or any of your favorite [package managers](https://www.npmjs.com/)
- Get started quickly with the [AI Kit Docker Container](https://github.com/intel/ai-kit-docker-container)
- [Installation Guide](https://software.intel.com/ai)
- Utilize the [Getting Started Guide](https://software.intel.com/ai)

Hands on
- [Code Samples](https://software.intel.com/ai)
- Build, test and remotely run workloads on the [Intel® DevCloud](https://software.intel.com/ai) for free. No software downloads. No configuration steps. No installations.

Learning
- [Machine Learning & Analytics Blogs](https://software.intel.com/ai)
- [Intel AI Blog site](https://software.intel.com/ai)
- [Webinars & articles](https://software.intel.com/ai)

Support
- Ask questions and share information with others through the [Community Forum](https://software.intel.com/ai)
- Discuss with experts at [AI Frameworks Forum](https://software.intel.com/ai)

Download Now
Intel Distribution For Python
Intel® Distribution for Python

Developer Benefits

<table>
<thead>
<tr>
<th>Maximize Performance</th>
<th>Minimize Development Cost</th>
<th>Vast Ecosystem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Libraries, Parallelism, Multithreading, Language Extensions</td>
<td>Drop-in Python Replacement</td>
<td>Familiar usage and compatibility</td>
</tr>
<tr>
<td>Near-native performance comes through acceleration of core Python numerical packages</td>
<td>Prebuilt optimized packages for numerical computing, machine/deep learning, HPC, & data analytics</td>
<td>Supports Python 3</td>
</tr>
<tr>
<td>Accelerated NumPy/SciPy/scikit-learn with oneMKL & oneDAL</td>
<td>Data-Parallel Python provides cross-architecture XPU support</td>
<td>Supports conda & pip package managers</td>
</tr>
<tr>
<td>Data analytics, machine learning & deep learning with scikit-learn, XGBoost, Modin, daal4py</td>
<td>Conda build recipes included in packages</td>
<td>Packages available via conda, pip YUM/APT, Docker image on DockerHub</td>
</tr>
<tr>
<td>Scale with Numba*, Cython*, tbb4py, mpi4py, SDC</td>
<td>Free download & free for all uses including commercial deployment</td>
<td>Commercial support through the Intel® oneAPI Base Toolkit</td>
</tr>
<tr>
<td>Optimized for latest Intel® architectures</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Operating Systems: Windows*, Linux*, MacOS* |

Intel® Architecture Platforms

- CPU
- GPU
- Other accel.
The layers of quantitative Python*

- The Python* language is interpreted and has many type checks to make it flexible
- Each level has various tradeoffs; NumPy* value proposition is immediately seen
- For best performance, escaping the Python* layer early is best method

Enforces Global Interpreter Lock (GIL) and is single-threaded, abstraction overhead. No advanced types.

Gets around the GIL (multi-thread and multi-core)
BLAS API can be the bottleneck
*Basic Linear Algebra Subprograms (BLAS) [CBLAS]

Gets around BLAS API bottleneck
Much stricter typing
Fastest performance level
Dispatches to hardware vectorization

Intel® oneMKL included with Anaconda* standard bundle; is Free for Python*
NumPy and **SciPy** Optimizations

Scope

- BLAS/LAPACK using oneMKL
- oneMKL-based FFT functionality
- Vectorized, threaded universal functions
- Use of Intel® C Compiler, and Intel® Fortran Compiler
- Aligned memory allocation
- Threaded memory copying
Choose Your Download Option

<table>
<thead>
<tr>
<th>Python Solutions</th>
<th>Download Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tools and frameworks to accelerate end-to-end data science and analytics pipelines</td>
<td>Intel® AI Analytics Toolkit</td>
</tr>
<tr>
<td>Develop fast, performant Python code with essential computational packages</td>
<td>Intel® Distribution for Python</td>
</tr>
<tr>
<td>Optimized Python packages from package managers and containers</td>
<td>Conda</td>
</tr>
<tr>
<td>Develop in the Cloud</td>
<td>Intel® DevCloud</td>
</tr>
</tbody>
</table>

* Also available in the Intel® oneAPI Base Toolkit
1 Line of Code. Infinite Scalability.
Intel Distribution of Modin
Current Data Loading & ETL Landscape

After a certain data size, need to change your API to handle more data

- **Increasing data size**
 - Easy to use, difficult to scale
 - Easy to scale, difficult to use

100 MB+ of Data

- **Easy to use, difficult to scale**
 - pandas

- **Easy to scale, difficult to use**
 - Apache Spark
With Modin, use the same API no matter the scale

Spend the time that would be used to change the workload’s API, and **use it to improve your workload and analysis**
Single Line Code Change for Infinite Scalability
No need to learn a new API to use Modin

```python
import pandas as pd
```

- Accelerate your Pandas* workloads across multiple cores and multiple nodes
- **No upfront cost** to learning a new API
 - import modin.pandas as pd
- Integration with the Python* ecosystem
- Integration with Ray/Dask clusters (run on what you have, even on a laptop!)
- Integration with Intel-built oneAPI Heterogeneous Data Kernels (oneHDK) backend
 - **New** experimental Modin backend based on HeavyDB* technology
Modin: How it Works

• Modin transparently **distributes the data and computation across available cores**, unlike Pandas which only uses one core at a time

• To use Modin, you **do not need to know how many cores your system has**, and you do not need to specify how to distribute the data
Modin – Layered API view

- Pandas
- SQL
- DSL(Ibis)
- User Defined DSL
- Query Compiler API
- Dataframe Algebra API
- Storage API
- Execution API
- Dask
- Ray
- MPI
- Multiprocessing

User level API
System level API
Middleware
NYCTaxi Workload Performance

Pandas* vs. Modin*

Dataset source: https://github.com/toddwschneider/nyc-taxi-data

Configurations:
- For 20 million rows: Dual socket Intel(R) Xeon(R) Platinum 8280L CPUs (S2600WFT platform), 28 cores per socket, hyperthreading enabled, turbo mode enabled, NUMA nodes per socket=2, BIOS: SE5C620.86B.02.01.0013.121520200651, kernel: 5.4.0-65-generic, microcode: 0x4003003, OS: Ubuntu 20.04.1 LTS, CPU governor: performance, transparent huge pages: enabled, System DDR Mem Config: slots / cap / speed: 12 slots / 32GB / 2933MHz, total memory per node: 384 GB DDR RAM, boot drive: INTEL SSDSC2BB800G7.
- For 1 billion rows: Dual socket Intel Xeon Platinum 8260M CPU, 24 cores per socket, 2.40GHz base frequency, DRAM memory: 384 GB 12x32GB DDR4 Samsung @ 2666 MT/s 1.2V, Optane memory: 3TB 12x256GB Intel Optane @ 2666MT/s, kernel: 4.15.0-91-generic, OS: Ubuntu 20.04.4

Higher is Better

Speedup

- Pandas
- Modin + oneHDK

Q = Query

NYCTaxi– Performance improvement with Modin + oneHDK

Results have been estimated or simulated. Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex. See Appendix for configurations.
A Closer Look:

Intel Extension for Scikit-Learn* and XGBoost Optimizations
Speed-up Machine Learning and Analytics with Intel® oneAPI Data Analytics Library (oneDAL)

Boost Machine Learning & Data Analytics Performance

- Helps applications deliver better predictions faster
- Optimizes data ingestion & algorithmic compute together for highest performance
- Supports offline, streaming & distributed usage models to meet a range of application needs
- Split analytics workloads between edge devices and cloud to optimize overall application throughput

Learn More: software.intel.com/oneAPI/oneDAL

What’s New in the oneDAL Release

New GPU support for the following Algorithms:

- **Statistical**: Correlation, Low-order moments*
- **Classification**: Linear Regression*, Logistic Regression*, KNN, SVM
- **Unsupervised Learning**: K-means clustering, DBSCAN
- **Classification & Regression**: Random Forest
- **Dimensionality Reduction**: PCA

Learn More: software.intel.com/oneAPI/oneDAL
oneAPI Data Analytics Library (oneDAL)
Optimized building blocks for all stages of data analytics on Intel Architecture

GitHub: https://github.com/oneapi-src/oneDAL
Intel Extension for Scikit-learn

Common Scikit-learn

```python
from sklearn.svm import SVC
X, Y = get_dataset()
clf = SVC().fit(X, y)
res = clf.predict(X)
```

Scikit-learn with Intel CPU opts

```python
from sklearnex import patch_sklearn
patch_sklearn()

from sklearn.svm import SVC
X, Y = get_dataset()
clf = SVC().fit(X, y)
res = clf.predict(X)
```

Available through:
- `conda install scikit-learn-intelex`
- `conda install --c intel scikit-learn-intelex`
- `conda install --c conda-forge scikit-learn-intelex`
- `pip install scikit-learn-intelex`

Same Code, Same Behavior

- Scikit-learn, **not** scikit-learn-like
- Scikit-learn conformance (mathematical equivalence) defined by Scikit-learn Consortium, continuously vetted by public CI
Speedup with oneDAL-powered Scikit-learn over stock Scikit-learn – higher is better

Testing Data: Performance results are based on testing by Intel as of October 23, 2020 and may not reflect all publicly available security updates.

Configurations Details and Workload Setup: Intel® oneAPI Data Analytics Library 2021.1(oneDAL), Scikit-Learn* 0.23.1, Intel® Distribution for Python* 3.8, Intel® Xeon® Platinum 8280LCPU@2.70GHz, 2 sockets, 28 cores per socket, 10M samples, 10 features, 100 clusters, 100 iterations, float32

Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available options. Learn more at www.intel.com/PerformanceIndex.
Intel® Extension for Scikit-Learn Performance on CLX compared to original Scikit-Learn (Training & Inference)

Optimization Notice

Performance results are based on testing by Intel as of June 8, 2021 and may not reflect all publicly available security updates. Configuration Details and Workload Setup:
c5.24xlarge AWS EC2 (3.0 GHz Intel Xeon Platinum 8275CL, two sockets, 24 cores per socket) Python 3.8, scikit-learn 0.24.2, scikit-learn-intelex 2021.2.3. Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not product or component can be absolutely secure. Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary.

Testing Date: Performance results are based on testing by Intel as of June 8, 2021 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: c5.24xlarge AWS EC2 (3.0 GHz Intel Xeon Platinum 8275CL, two sockets, 24 cores per socket) Python 3.8, scikit-learn 0.24.2, scikit-learn-intelex 2021.2.3. Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. Not product or component can be absolutely secure. Performance varies by use, configuration, and other factors. Learn more at www.intel.com/PerformanceIndex. Your costs and results may vary.

Other names and brands may be claimed as the property of others.
Competitor’s Relative Performance vs. Intel® Distribution for Python (IDP) with Scikit-learn from the Intel® AI Analytics Toolkit

(Intel = 1)

Testing Date: Performance results are based on testing by Intel as of October 23, 2020 and may not reflect all publicly available security updates.

Configuration Details and Workload Setup: Intel® oneDAL beta10, Scikit-learn 0.23.1, Intel® Distribution for Python 3.7, Intel® AI Analytics Toolkit 2021.1, Intel® Xeon® Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode: 0x4003003, total available memory 376 GB, 12X32GB modules, DDR4. AMD Configuration: AMD Rome 7742 @2.25 GHz, 2 sockets, 64 cores per socket, microcode: 0x8301038, total available memory 512 GB, 16X32GB modules, DDR4, Intel® oneDAL beta10, Scikit-learn 0.23.1, Intel® Distribution for Python 3.7. NVIDIA Configuration: Nvidia Tesla V100-16Gb, total available memory 376 GB, 12X32GB modules, DDR4, Intel® Xeon® Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode: 0x5003003, cuDF 0.15, cuML 0.15, CUDA 10.2.89, driver 440.33.01, Operation System: CentOS Linux 7 (Core), Linux 4.19.36 kernel.

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See configuration disclosure for details. No product or component can be absolutely secure. Performance varies by use, configuration, and other factors. Learn more at www.Intel.com/PerformanceIndex. Your costs and results may vary.
Processing Modes

Batch Processing

\[R = F(D_1, \ldots, D_k) \]

d4p.kmeans_init(10, method="plusPlusDense")

Distributed Processing

\[R = F(R_1, \ldots, R_k) \]

d4p.kmeans_init(10, method="plusPlusDense", distributed=“True")

Online Processing

\[S_{i+1} = T(S_i, D_i) \]
\[R_{i+1} = F(S_{i+1}) \]

d4p.kmeans_init(10, method="plusPlusDense", streaming="True")
oneDAL K-Means Fit, Cores Scaling

(10M samples, 10 features, 100 clusters, 100 iterations, float32)
Gradient Boosting Acceleration – gain sources

Pseudocode for XGBoost* (0.81) implementation

```python
def ComputeHist(node):
    hist = []
    for i in samples:
        for f in features:
            bin = bin_matrix[i][f]
            hist[bin].g += g[i]
            hist[bin].h += h[i]
    return hist

def BuildLvl:
    for node in nodes:
        ComputeHist(node)
    for node in nodes:
        for f in features:
            FindBestSplit(node, f)
    for node in nodes:
        SamplePartition(node)
```

- Memory prefetching to mitigate irregular memory access
- Usage uint8 instead of uint32
- SIMD instructions instead of scalar code
- Nested parallelism
- Advanced parallelism, reducing seq loops
- Usage of AVX-512, vcompress instruction (from Skylake)

Pseudocode for Intel® oneDAL implementation

```python
def ComputeHist(node):
    hist = []
    for i in samples:
        prefetch(bin_matrix[i + 10])
        for f in features:
            bin = bin_matrix[i][f]
            bin_value = load(hist[2*bin])
            bin_value = add(bin_value, g[i])
            store(hist[2*bin], bin_value)
    return hist

def BuildLvl:
    parallel_for node in nodes:
        ComputeHist(node)
    parallel_for node in nodes:
        for f in features:
            FindBestSplit(node, f)
    parallel_for node in nodes:
        SamplePartition(node)
```

Legend:
- Moved from Intel® oneDAL to XGBoost (v1.3)
- Already available in Intel® DAAL, potential optimizations for XGBoost*
XGBoost* fit CPU acceleration ("hist" method)

+ Reducing memory consumption

<table>
<thead>
<tr>
<th></th>
<th>memory, Kb</th>
<th>Airline</th>
<th>Higgs1m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>28311860</td>
<td>1907812</td>
<td></td>
</tr>
<tr>
<td>#5334</td>
<td>16218404</td>
<td>1155156</td>
<td></td>
</tr>
<tr>
<td>reduced</td>
<td>1.75</td>
<td>1.65</td>
<td></td>
</tr>
</tbody>
</table>

CPU configuration: c5.24xlarge AWS Instance, CLX 8275 @ 3.0GHz, 2 sockets, 24 cores per socket, HT:on, DRAM (12 slots / 32GB / 2933 MHz)
XGBoost CPU vs. GPU

Details: https://medium.com/intel-analytics-software/new-optimizations-for-cpu-in-xgboost-1-1-81144ea21115
CPU: c5.18xlarge AWS Instance (2 x Intel® Xeon Platinum 8124M @ 18 cores, OS: Ubuntu 20.04.2 LTS, 193 GB RAM.
GPU: p3.2xlarge AWS Instance (GPU: NVIDIA Tesla V100 16GB, 8 vCPUs), OS: Ubuntu 18.04.2 LTS, 61 GB RAM.
Testing Date: 5/18/2020
Custom-trained XGBoost* and LightGBM* Models utilize Gradient Boosting Tree (GBT) from Daal4Py library for performance on CPUs

- No accuracy loss; 23x performance boost by simple model conversion into daal4py GBT:

  ```python
  # Train common XGBoost model as usual
  xgb_model = xgb.train(params, X_train)
  
  import daal4py as d4p
  
  # XGBoost model to DAAL model
  daal_model = d4p.get_gbt_model_from_xgboost(xgb_model)
  
  # make fast prediction with DAAL
  daal_prediction = d4p.gbt_classification_prediction(...).compute(X_test, daal_model)
  ```

Advantages of daal4py GBT model:
- More efficient model representation in memory
- Avx512 instruction set usage
- Better L1/L2 caches locality

For more complete information about performance and benchmark results, visit www.intel.com/benchmarks.
See backup for configuration details.
Call to Action

Download oneAPI Toolkits for free

Intel® AI Analytics Toolkit

For more details on Intel oneAPI, visit

software.intel.com/oneapi

https://devcloud.intel.com/oneapi/

AI Analytics Toolkit Support Forum

For more details on specific AI Kit optimizations, visit

Intel oneContainer Portal

Intel® AWS Containers

Intel® AI Analytics Toolkit Code Samples

Intel® Distribution for Python Support Forum

Machine Learning and Data Analytics Support Forum
Exercises

- Intel Modin - Getting Started
- Intel Extension for SKLearn - Getting Started
- Intel XGBoost - Getting Started
Notices and Disclaimers

• Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

• Performance results are based on testing as of dates shown in configurations and may not reflect all publicly available updates. See backup for configuration details. No product or component can be absolutely secure.

• Intel does not control or audit third-party data. You should consult other sources to evaluate accuracy.

• Your costs and results may vary.

• Intel technologies may require enabled hardware, software or service activation.

• © Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.
Workloads and Configurations

See all benchmarks and configurations: https://software.intel.com/content/www/us/en/develop/articles/blazing-fast-python-data-science-ai-performance.html. Each performance claim and configuration data is available in the body of the article listed under sections 1, 2, 3, 4, and 5. Please also visit this page for more details on all scores, and measurements derived.

Testing Date: Performance results are based on testing by Intel® as of October 16, 2020 and may not reflect all publicly available updates. Configurations details and Workload Setup: 2 x Intel® Xeon® Platinum 8280 @ 28 cores, OS: Ubuntu 19.10.5.3.0-64-generics Mitigated 384GB RAM (192 GB RAM (12x 32GB 2933). SW: Modin 0.81. Scikit-learn 0.22.2. Pandas 1.01, Python 3.8.5, DAL(DAAL4Py) 2020.2, Census Data, (21721922.45) Dataset is from IPUMS USA, University of Minnesota. www.ipums.org [Steven Ruggles, Sarah Flood, Ronald Goeken, Josiah Grover, Erin Meyer, Jose Pacas and Matthew Sobek. IPUMS USA: Version 10.0 [dataset]. Minneapolis, MN. IPUMS, 2020. https//doc.org/10.18128/D010.V10.0]

Testing Date: Performance results are based on testing by Intel® as of October 23, 2020 and may not reflect all publicly available updates. Configuration Details and Workload Setup: Intel® oneAPI Data Analytics Library 2021.1 (oneDAL). Scikit-learn 0.23.1, Intel® Distribution for Python 3.8; Intel® Xeon® Platinum 8280LCPU @ 270GHz, 2 sockets, 28 cores per socket, 10M samples, 10 features, 100 clusters, 100 iterations, float32.

Testing Date: Performance results are based on testing by Intel® as of October 23, 2020 and may not reflect all publicly available updates. Configuration Details and Workload Setup: Intel® AI Analytics Toolkit v2021.1; Intel® oneAPI Data Analytics Library (oneDAL) beta10, Scikit-learn 0.23.1, Intel® Distribution for Python 3.7, Intel® Xeon® Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode: 0x4003003, total available memory 376 GB, 12X32GB modules, DDR4. AMD Configuration: AMD Rome 7742 @2.25 GHz, 2 sockets, 64 cores per socket, microcode: 0x8301038, total available memory 512 GB, 16X32GB modules, DDR4, oneDAL beta10, Scikit-learn 0.23.1. Intel® Distribution for Python 3.7. NVIDIA Configuration: NVIDIA Tesla V100 – 16 Gb, total available memory 376 GB, 12X32GB modules, DDR4, Intel® Xeon® Platinum 8280 CPU @ 2.70GHz, 2 sockets, 28 cores per socket, microcode: 0x5003003, cuDF 0.15, cuML 0.15, CUDA 10.2.89, driver 440.33.01, Operation System: CentOS Linux 7 (Core), Linux 4.19.36 kernel.

Testing Date: Performance results are based on testing by Intel® as of October 13, 2020 and may not reflect all publicly available updates. Configurations details and Workload Setup: CPU: c5.18xlarge AWS Instance (2 x Intel® Xeon® Platinum 8124M @ 18 cores. OS: Ubuntu 20.04.2 LTS, 193 GB RAM. GPU: p3.2xlarge AWS Instance (GPU: NVIDIA Tesla V100 16GB, 8 vCPUs, OS: Ubuntu 18.04.LTS, 61 GB RAM. SW: XGBoost 1.1: build from sources compiler – G++ 7.4, nvcc 9.1 Intel® DAAL: 2019.4 version: Python env: Python 3.6, Numpy 1.16.4, Pandas 0.25 Scikit-learn 0.21.2.
Workloads and Configurations

Testing Date: Performance results are based on testing by Intel® as of October 26, 2020 and may not reflect all publicly available updates. Configuration Details and Workload Setup: Intel® Optimization for Tensorflow v2.2.0; oneDNN v1.2.0; Intel® Low Precision Optimization Tool v1.0; Platform; Intel® Xeon® Platinum 8280 CPU; #Nodes: 1; #Sockets: 2; Cores/socket: 28; Threads/socket: 56; HT: On; Turbo: On; BIOS version: SE5C620.86B.02.01.0010.01620220716; System DDR Mem Config: 12 slots/16GB/2933; OS: CentOS Linux 7.8; Kernel: 4.4.240-1.el7.elrepo

NYCTaxi Workload performance:
For 20 million rows: Dual socket Intel(R) Xeon(R) Platinum 8280L CPUs (S2600WFT platform), 28 cores per socket, hyperthreading enabled, turbo mode enabled, NUMA nodes per socket=2, BIOS: SE5C620.86B.02.01.0013.121520200651, kernel: 5.4.0-65-generic, microcode: 0x4003003, OS: Ubuntu 20.04.1 LTS, CPU governor: performance, transparent huge pages: enabled, System DDR Mem Config: slots / cap / speed: 12 slots / 32GB / 2933MHz, total memory per node: 384 GB DDR RAM, boot drive: INTEL SSDSC2BB800G7. For 1 billion rows: Dual socket Intel Xeon Platinum 8260M CPU, 24 cores per socket, 2.40GHz base frequency, DRAM memory: 384 GB 12x32GB DDR4 Samsung @ 2666 MT/s 1.2V, Optane memory: 3TB 12x256GB Intel Optane @ 2666MT/s, kernel: 4.15.0-91-generic, OS: Ubuntu 20.04.4

End-to-End Census Workload performance (Stock):

End-to-End Census Workload performance (Optimized):