
Jian Tao
jtao@tamu.edu

HPRC Short Course

03/26/2021

Introduction to Scientific
Machine Learning

Pilot Project 1 - Microstructure Informatics Pilot Project 2 - Reservoir Simulation Pilot Project 3 - Thermonuclear Supernovae

TensorDiffEq is a python package built
on top of Tensorflow to provide
scalable and efficient PINN solvers.
TensorDiffEq’s primary purpose is for
scalable solving of PINNs (inference)
and inverse problems (discovery).

Additionally, TensorDiffEq is the only
package that fully supports and
implements Self-Adaptive PINN
solvers and is the only Multi-GPU
PINN solution suite that is fully
open-source.

Raymundo Arroyave, Ulisses Braga-Neto, Levi McClenny, Vahid Attari

LAB MEMBERS

Eduardo Gildin, Ulisses Braga-Neto, Yalchin Efendiev Lifan Wang, Jian Tao, Lisa Perez Levi McClenny, Ulisses Braga-Neto

https://sciml.tamids.tamu.edu/

https://sciml.tamids.tamu.edu/

https://github.com/ChrisRackauckas

Upcoming TAMIDS SciML Lab Talk (April 14)

https://github.com/ChrisRackauckas

https://github.com/divelab/DIG/

Upcoming Hackathon on Material Design with Graph
Learning (April 19 - 23)

￼

One week long Hackathon to explore potential applications of
graphical learning in material design.
Please contact jtao@tamu.edu if you are interested.

https://github.com/divelab/DIG/
mailto:jtao@tamu.edu

https://github.com/tensordiffeq/TensorDiffEq

Upcoming Tutorial on TensorDiffeq (Early May)

https://github.com/tensordiffeq/TensorDiffEq

Part I

Setting up a working
environment on Terra

(15 mins)

Part III

Hands-on Demos
(30 mins)

Part II

Introduction to
Scientific Machine
Learning (90 mins)

03

01 02

Introduction to Scientific Machine Learning

Q&A
(5 mins/part)

Part I. Working Environment

HPRC Portal

https://portal.hprc.tamu.edu/

Login HPRC Portal (Terra)

Terra Shell Access - I

Terra Shell Access - II

Using Pre-installed Julia Module
Step 1. Find the module to be loaded

$ module spider julia
...
Julia/0.6.2-intel-2017A-Python-2.7.12-ParMETIS-4.0.3
Julia/0.6.2-intel-2017A-Python-2.7.12-METIS-5.1.0
Julia/0.6.2-intel-2017A-Python-2.7.12-noSuiteSparse
Julia/1.0.5-linux-x86_64
Julia/1.4.1-linux-x86_64
Julia/1.5.1-linux-x86_64
...

(You can also use the web-based interface to find
software modules available on HPRC systems. For
experienced users, please jump to Step 2.)

Step 2. Load the module

$ module load Julia/1.5.1-linux-x86_64

Step 3. Start Julia REPL

$ julia

SW:Julia - TAMU HPRC

https://hprc.tamu.edu/software/terra/
https://hprc.tamu.edu/wiki/SW:Julia

Using Your Own Julia Installation
Step 1. Find the version to be installed

(You can find different versions of Julia at Download Julia,
The latest stable version of Julia is highly recommended.)

Step 2. Download & Unzip
$ cd $SCRATCH
$ wget https://.../julia-1.5.4-linux-x86_64.tar.gz
$ tar zxvf julia-1.5.4-linux-x86_64.tar.gz

Step 3. Start Julia Shell

$ cd $SCRATCH/julia-1.5.4/bin; ./julia

SW:Julia - TAMU HPRC

Right click and
copy the link.

Paste the
link here.

(Ctrl+D or type exit() to quit Julia shell)

https://julialang.org/downloads/
https://hprc.tamu.edu/wiki/SW:Julia

Install Julia Packages

Set Julia Depot path under $SCRATCH
$export JULIA_DEPOT_PATH=$SCRATCH/.julia

start Julia
$cd $SCRATCH/julia-1.5.4/bin; ./julia

type ']' to open Pkg REPL
julia>]
(@v1.5) pkg> add Plots

Julia - Quickstart
The julia program starts the interactive REPL. You will be immediately
switched to the shell mode if you type a semicolon. A question mark
will switch you to the help mode. The <TAB> key can help with
autocompletion.

julia> versioninfo()
julia> VERSION

Special symbols can be typed with the escape symbol and <TAB>, but
they might not show properly on the web-based terminal.

julia> \sqrt <TAB>
julia> for i ∈ 1:10 println(i) end #\in <TAB>

Part II. Introduction to Scientific
Machine Learning (SciML)

Workshop Report on Basic Research Needs for Scientific Machine Learning:
Core Technologies for Artificial Intelligence
by Baker, Nathan, et. al.
https://doi.org/10.2172/1478744

SciML Scientific Machine Learning Software
by Chris Rackauckas et. al.
https://sciml.ai/

Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations.
by Raissi, M., Perdikaris, P., & Karniadakis, G. E.
Journal of Computational Physics, 378, 686-707.
https://doi.org/10.1016/j.jcp.2018.10.045

https://doi.org/10.2172/1478744
https://sciml.ai/
https://doi.org/10.1016/j.jcp.2018.10.045

Sample
Data

Expected
Output

Computer Model

Data

Scientific
Model

Computer Prediction

Model

Data
Computer Prediction

Theory-Driven Modeling (Numerical Simulation)

Data-Driven Modeling (Supervised Learning)

Data-Driven vs Theory-Driven

Balance between Data and Theory

Theory-Driven Model Data-Driven / ML Model

0101010101010
0001011001001

More Data,
Less Theory,
Noisy,
Realistic,
Blackbox

Less Data,
More Theory,

Clean,
Unrealistic,
Explainable

Data
Assimilation

* Data assimilation is somewhere in between but not necessarily balanced.

Middle Ground - Data Assimilation

Simplistic Overview of Reanalysis Data Assimilation Methods | NCAR

https://climatedataguide.ucar.edu/climate-data/simplistic-overview-reanalysis-data-assimilation-methods

SciML - Best of the Two Worlds

Machine Learning Model Theory-Driven Model

Nesting
Scenario Studies,
Model Validation,

Parameter Search

Post Processing,
Neural Solver,

Surrogate Model

ReplacingFeeding

Inverse Problems,
Faster Program,

NAS

Theory / Numerical Modeling

https://physics.wustl.edu/people/carl-bender
https://hprc.tamu.edu/wiki/Grace
http://sciviz.cct.lsu.edu/gallery/CFD/Stirtank/

Data-Driven Model - Supervised Learning

When both input variables - X and output variables - Y are known, one can
approximate the mapping function from X to Y.

Training Data ML Algorithm

Model Test Data

Step 1: Training

Step 2: Testing

Artificial Neural Network

(Image Credit: Wikipedia)

Input OutputHidden Layers

Supervised Deep Learning with Neural Networks

X3

X2

X1

Y3

Input OutputHidden Layers

W1

W2

W3

From one layer to the next

f is the activation function,
Wi is the weight, and bi is
the bias.

Activation Functions

Image Credit: towardsdatascience.com

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044

Training - Minimizing the Loss

X3

X2

X1

Y3

Input Output

W3, b3

The loss function with regard to weights and
biases can be defined as

W2, b2

W1, b1

L

The weight update is computed by moving a
step to the opposite direction of the cost
gradient.

Iterate until L stops decreasing.

Deep Neural Network as a Universal Approximator

X3

X2

X1

Input Output

● Training: given input and output, find best-fit F

● Inference: given input and F, predict output

Backward Propagation

Forward Propagation

y1

y2

Universal Approximation Theorem
(Cybenko, 1989)

Universal approximation theorems imply
that neural networks can represent a
wide variety of functions.

Pinkus Theorem
(Pinkus, 1999)

Pinkus theorems imply that neural
networks can represent directives of a
function simultaneously.

SciML - Best of the Two Worlds

Machine Learning Model Theory-Driven Model

Nesting
Scenario Studies,
Model Validation,

Parameter Search

Post Processing,
Neural Solver,

Surrogate Model

ReplacingFeeding

Inverse Problems,
Faster Program,

NAS

Sample Workflow of a SciML Application

Machine Learning Model

Theory-Driven Model

Gradient Descent

Loss Function

Nested Function

Automatic Differentiation

Numerical:
(Finite Difference)

Symbolic:

Given

w4

w1

w5

w2

w3

An autodiff system converts the program
into a sequence of primitive operations
to compute derivatives.

Forward

Physics-Informed Neural Networks (PINNs)

Lu Lu, Xuhui Meng, Zhiping Mao, George E.
Karniadakis, DeepXDE: A deep learning
library for solving differential equations
(https://arxiv.org/pdf/1907.04502.pdf)

https://arxiv.org/pdf/1907.04502.pdf

Hands-on Session
Getting Started with NeuralPDE.jl

Install Julia Packages

Set Julia Depot path under $SCRATCH
$export JULIA_DEPOT_PATH=$SCRATCH/.julia

start Julia
$cd $SCRATCH/julia-1.5.4/bin; ./julia

type ']' to open Pkg REPL
julia>]
(@v1.5) pkg> add Plots, NeuralPDE, Flux, ModelingToolkit, GalacticOptim, Optim,
DiffEqFlux

type 'Backspace' to get back to REPL and paste the code directly into the shell.
julia> using NeuralPDE, Flux, ModelingToolkit, GalacticOptim, Optim, DiffEqFlux

ODE with a 3rd-Order Derivative
using NeuralPDE, Flux, ModelingToolkit, GalacticOptim, Optim, DiffEqFlux

@parameters x
@variables u(..)

Dxxx = Differential(x)^3
Dx = Differential(x)
ODE
eq = Dxxx(u(x)) ~ cos(pi*x)

Initial and boundary conditions
bcs = [u(0.) ~ 0.0,
 u(1.) ~ cos(pi),
 Dx(u(1.)) ~ 1.0]

Space and time domains
domains = [x ∈ IntervalDomain(0.0,1.0)]

Neural network
chain = FastChain(FastDense(1,8,Flux.σ),FastDense(8,1))

discretization = PhysicsInformedNN(chain, QuasiRandomTraining(20))
pde_system = PDESystem(eq,bcs,domains,[x],[u])
prob = discretize(pde_system,discretization)

cb = function (p,l)
 println("Current loss is: $l")
 return false
end

res = GalacticOptim.solve(prob, ADAM(0.01); cb = cb, maxiters=2000)
phi = discretization.phiODE with a 3rd-Order Derivative · NeuralPDE.jl

using UnicodePlots

analytic_sol_func(x) =
(π*x*(-x+(π^2)*(2*x-3)+1)-sin(π*x))/(π^3)

dx = 0.05
xs =
[domain.domain.lower:dx/10:domain.domain.upp
er for domain in domains][1]
u_real = [analytic_sol_func(x) for x in xs]
u_predict = [first(phi(x,res.minimizer))
for x in xs]

x_plot = collect(xs)
plot(x_plot ,u_real,title = "real")
plot!(x_plot ,u_predict,title = "predict")

https://neuralpde.sciml.ai/dev/pinn/3rd/#ODE-with-a-3rd-Order-Derivative
https://neuralpde.sciml.ai/dev/pinn/3rd/

