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Part I. Working Environment

HPRC Portal

* VPN is required for off-campus users.

https://portal-terra.hprc.tamu.edu/pun/sys/dashboard


Login HPRC Portal (Terra)



Terra Shell Access - I



Terra Shell Access - II



Python Virtual Environment (VENV)

Create a VENV

Install Python 
Modules

Activate the VENV 

Deactivate (when not 
used)

Load Modules

# clean up and load Anaconda
cd $SCRATCH
module purge
module load Python/3.7.4-GCCcore-8.3.0

# create a Python virtual environment 
python -m venv mylab 

# activate the virtual environment
source mylab/bin/activate

# install required package to be used in the portal
pip install --upgrade pip setuptools
pip install jupyterlab torch torchvision tensorboard
pip install pandas scikit-plot tqdm seaborn

# deactivate the virtual environment
# source deactivate



Check out Exercises

# git clone (check out) the Jupyter notebooks for the short courses
git clone https://github.com/jtao/shortcourses.git



Go to JupyterLab Page



Set Virtual Environment

# enter the full path of the activate command of your virtualenv
/scratch/user/YOURNETID/mylab/bin/activate



Connect to JupyterLab



Create a Jupyter Notebook



Test JupyterLab



Part II. Deep Learning

Deep Learning
by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
http://www.deeplearningbook.org/

Animation of Neutron Networks
by Grant Sanderson
https://www.3blue1brown.com/

http://www.deeplearningbook.org/
https://www.3blue1brown.com/


Relationship of AI, ML and DL

Artificial Intelligence

 

Machine Learning

 

Deep Learning

● Artificial Intelligence (AI)  is 
anything about man-made 
intelligence exhibited by 
machines.

● Machine Learning (ML) is 
an approach to achieve AI.

● Deep Learning (DL) is one 
technique to implement 
ML.
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Types of ML Algorithms
● Supervised Learning

○ trained with labeled data; 
including regression and 
classification problems

● Unsupervised Learning
○ trained with unlabeled data; 

clustering and association rule 
learning problems.

● Reinforcement Learning
○ no training data; stochastic 

Markov decision process; robotics 
and self-driving cars.

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Machine Learning



Supervised Learning

When both input variables - X and output variables - Y are known, one can 
approximate the mapping function from  X to Y.

Training Data ML Algorithm

Model Test Data

Step 1: Training

Step 2: Testing



Unsupervised Learning

When only input variables - X are known and the training data is neither 
classified nor labeled. It is usually used for clustering problems.

Data Class 1

Class 2

Class 3



Reinforcement Learning

When the input variables are only available via interacting with the 
environment, reinforcement learning can be used to train an "agent".

(Image Credit: Wikipedia.org) (Image Credit: deeplearning4j.org)



Why Deep Learning?

● Limitations of traditional machine learning algorithms
○ not good at handling high dimensional data.
○ difficult to do feature extraction and object recognition.

● Advantages of deep learning
○ DL is computationally expensive, but it is capable of 

handling high dimensional data.
○ feature extraction is done automatically.



What is Deep Learning?

Deep learning is a class of machine learning algorithms that:
● use a cascade of multiple layers of nonlinear processing units 

for feature extraction and transformation. Each successive 
layer uses the output from the previous layer as input.

● learn in supervised (e.g., classification) and/or unsupervised 
(e.g., pattern analysis) manners.

● learn multiple levels of representations that correspond to 
different levels of abstraction; the levels form a hierarchy of 
concepts.

(Source: Wikipedia)



Artificial Neural Network

(Image Credit: Wikipedia)

Input OutputHidden Layers



Inputs and Outputs 
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With deep learning, we are searching for a surjective 
(or onto) function f from a set X to a set Y. 

X Y



Learning Principle
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(Image Credit: NVIDIA Deep Learning Institute)
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(Image Credit: NVIDIA Deep Learning Institute)
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(Image Credit: NVIDIA Deep Learning Institute)



Deep Neural Network as a Universal Approximator

X3

X2

X1

Input Output

● Training: given input and output, find best-fit F

● Inference: given input and F, predict output

Backward Propagation

Forward Propagation

y1

y2

Universal Approximation Theorem 
(Cybenko, 1989)

Universal approximation theorems imply 
that neural networks can represent a 
wide variety of functions. 

Pinkus Theorem 
(Pinkus, 1999)

Pinkus theorems imply that neural 
networks can represent directives of a 
function simultaneously.



Supervised Deep Learning with Neural Networks

X3

X2

X1

Y3

Input OutputHidden Layers

W1

W2

W3

From one layer to the next

f is the activation function,
Wi is the weight, and bi is 
the bias.



Training - Minimizing the Loss 

X3

X2

X1

Y2

Input Output

W3, b3

The loss function with regard to weights 
and biases can be defined as

W2, b2

W1, b1

L

The weight update is computed by moving 
a step to the opposite direction of the cost 
gradient. 

Iterate until L stops decreasing. 



Convolution in 2D

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Convolution Kernel 

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Convolution on Image

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


Activation Functions

Image Credit: towardsdatascience.com

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044


Introducing Non Linearity (ReLU)

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


Max Pooling 

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Pooling - Max-Pooling and Sum-Pooling

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


CNN Implementation - Drop Out

(Image Credit: Applied Deep Learning | Arden Dertat)

Dropout is used to prevent overfitting. A neuron is temporarily 
“dropped” or disabled with probability P during training.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


CNN Implementation - Data Augmentation (DA)

(Image Credit: Applied Deep Learning | Arden Dertat)

DA helps to popular  
artificial training 
instances from the 
existing train data sets. 

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Convolutional Neural Networks
A convolutional neural network (CNN, or ConvNet) is a class of deep, feed-forward 
artificial neural networks that explicitly assumes that the inputs are images, which allows 
us to encode certain properties into the architecture.

LeNet-5 Architecture (Image Credit: https://becominghuman.ai)



Deep Learning for Facial Recognition 

(Image Credit: www.edureka.co)



MNIST - Introduction

● MNIST (Mixed National 
Institute of Standards and 
Technology) is a database for 
handwritten digits, distributed 
by Yann Lecun.

● 60,000 examples, and a test 
set of 10,000 examples.

● 28x28 pixels each.
● Widely used for research and 

educational purposes.
(Image Credit: Wikipedia)



MNIST - CNN Visualization

(Image Credit: http://scs.ryerson.ca/~aharley/vis/)

http://scs.ryerson.ca/~aharley/vis/conv/


Hands-on Session #1
A Simple Deep Learning Example with 

PyTorch - First Glance



Part III. Introduction to 
PyTorch

45

PyTorch website: 
https://pytorch.org/

Deep Learning with PyTorch: 
https://pytorch.org/tutorials/

https://pytorch.org/
https://pytorch.org/tutorials/


A Brief History of PyTorch

PyTorch is an open source machine learning library based on the 
Torch library, which was first released by Ronan Collobert, Koray 
Kavukcuoglu, and Clement Farabet in Oct 2002.
● The first official release of PyTorch was by Facebook's AI 

Research lab (FAIR) in Oct 2016.
● Version 1.0 that integrated both Caffe2 and ONNX was release in 

May 2018.
● The latest release is version 1.4.0, as of Feb 13 2020. 



Overview of PyTorch

PyTorch is an open-source machine learning library written in 
Python, C++ and CUDA. PyTorch provides two high-level features:

● Tensor computing (like NumPy) with strong acceleration via 
graphics processing units (GPU)

● Deep neural networks built on a tape-based autodiff system

In a layman's term, PyTorch is a fancy version of NumPy that runs on 
GPUs and comes with a lot of machine learning functionalities.



TensorFlow, Keras, and PyTorch

Keras is a high-level 
neural networks API, 
written in Python and 
capable of running on 
top of TensorFlow, 
CNTK, or Theano. It 
was developed with a 
focus on enabling fast 
experimentation.

TensorFlow is an 
end-to-end open 
source platform for 
machine learning. It 
has a comprehensive, 
flexible ecosystem to 
build and deploy ML 
powered applications.

PyTorch is an open 
source machine 
learning framework 
that accelerates the 
path from research 
prototyping to 
production 
deployment.



Google Trends for Popular ML Frameworks

(Image Credit: https://trends.google.com/)

Caffe paper 
published in 
Jun 2014

Keras 
released in 
Mar 2015

Tensorflow 
released in 
Nov 2015

PyTorch 
released in 
Sep 2016

https://trends.google.com/


Major Components of PyTorch

Components Description

torch a Tensor library like NumPy, with strong GPU support

torch.autograd a tape-based automatic differentiation library that supports all differentiable Tensor 
operations in torch

torch.jit a compilation stack (TorchScript) to create serializable and optimizable models from 
PyTorch code

torch.nn a neural networks library deeply integrated with autograd designed for maximum 
flexibility

torch.multiprocessing Python multiprocessing, but with magical memory sharing of torch Tensors across 
processes. Useful for data loading and Hogwild training

torch.utils DataLoader and other utility functions for convenience



A Powerful Tensor Library - torch

● A PyTorch tensor is an 
n-dimensional array that can live 
on either the CPU or GPU. A 
tensor has a static type, a rank, 
and a shape. 

Name Rank Tensor

Scalar 0 [5]

Vector 1 [1 2 3]

Matrix 2 [[1 2 3 4],
[5 6 7 8]]

Tensor 3 ...

(Image Credit: pytorch.org)



Tensors on CPU and GPU - torch

x = touch.randn(1)
# check if a CUDA device is available
if torch.cuda.is_available():

    # a CUDA device object
    device = torch.device("cuda")    

    # directly create y
    x = x.to(device)
    y = torch.ones_like(x, device=device)

    z = x + y
    print(z)
    print(z.to("cpu", torch.double))



Tape-Based AutoGrad - torch.autograd

● torch.autograd is central to all neural networks in PyTorch.
● The autograd package provides automatic differentiation for all 

operations on Tensors. 
● Use "requires_grad=True" to keep traction operations on a Tensor. 

# x = tensor([[1., 1.],
        [1., 1.]], requires_grad=True)

x = torch.ones(2, 2, requires_grad=True)

# y = tensor([[3., 3.],
        [3., 3.]], grad_fn=<AddBackward0>)

y = x + 2



Tape-Based AutoGrad - torch.autograd

(Image Credit: Elliot Waite: https://youtu.be/MswxJw-8PvE)

● PyTorch uses and replays 
a "tape recorder" to build 
neural networks.

● The official name of the 
method is called 
reverse-mode 
auto-differentiation. 

● The dependent variable is 
fixed and the derivative is 
computed with respect to 
each sub-expression 
recursively.

● The method requires extra 
storage to save 
intermediate states. 

https://youtu.be/MswxJw-8PvE


Dynamic Graph with PyTorch

(Image Credit: pytorch.org)



Neural Network - torch.nn

● torch.nn depends on 
autograd to define models 
and differentiate them.

● An nn.Module contains 
layers, and a method 
forward(input) that returns 
the output.

import torch
import torch.nn as nn

# define a neural network model 
class Net(nn.Module):

    def __init__(self, param):
        super(Net, self).__init__()
        self.param = param

    def forward(self, x):
        return x * self.param

net = Net(torch.Tensor([3, 4, 5]))
print(net)



Procedure to Train a Neural Network - Given a Data Set

  

Definition

Define the neural 
network that has 
some learnable 
parameters (or 
weights)

Step 1

  

Iteration

Iterate over a dataset 
of inputs

Step 2

  

Forward 
Propagation

Process input through 
the network

Step 3

  

Loss Calculation

Compute the loss 
(how far is the output 
from being correct)

Step 4

  

Backward 
Propagation

Propagate gradients 
back into the 
network’s parameters

Step 5

  

Updating

Update the weights of 
the network, typically 
using a simple update 
rule: weight = weight - 
learning_rate * 
gradient

Step 6



import torch.optim as optim

# Net is a predefined nn model
net = Net(torch.Tensor([3, 4, 5]))
output = net(input)

# define a dummy target 
target = torch.randn(10)  
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)

# use one of the update rules such as SGD, 
Nesterov-SGD, Adam, RMSProp, etc
optimizer = optim.SGD(net.parameters(), 

lr=0.01)

# zero the gradient buffers

optimizer.zero_grad()   

loss.backward()

optimizer.step()

Train a Neural Network - torch.nn

● Define the neural network that has 
some learnable parameters.

● Iterate over a dataset of inputs
● Process input through the network
● Compute the loss (how far is the 

output from being correct)
● Propagate gradients back into 

the network’s parameters
● Update the weights of the 

network.



Preparing Datasets for PyTorch

In order to train a decent deep neural network 
model with PyTorch, the input data sets needs 
to be cleaned, balanced, transformed, 
scaled, and splitted.
● Balance the classes. Unbalanced classes 

will interfere with training.
● Transform the categorical variables into 

one-hot encoded variables. 
● Extract the X (variables) and y (targets) 

values for the training and testing 
datasets.

● Scale/normalize the variables.
● Shuffle and split the dataset into training 

and testing datasets

Dog Cat Horse
1 0 0
0 1 0
0 0 1

Dog Cat Horse
1 2 3

One-hot encoding

Numerical encoding



Predefined Datasets in torchvision

The torchvision package consists of popular 
datasets, model architectures, and common image 
transformations for computer vision. The datasets 
include but not limited to MNIST, Fashion-MNIST, 
ImageNet, CIFAR, etc. They all have two common 
arguments:

● transform to transform the input.
● target_transform to transform the target

The datasets can all be passed to a 
torch.utils.data.DataLoader, which can load 
multiple samples parallelly using 
torch.multiprocessing workers.

from torchvision import datasets

# import ImageNet data set
imagenet_data = 
datasets.ImageNet('./imagenet')

data_loader = 
torch.utils.data.DataLoader(
              imagenet_data,
              batch_size=4,                                  
              shuffle=True,                                                                    
num_workers=args.nThreads)



Monitoring Training with Tensorboard

● TensorBoard is a User 
Interface (UI) tools 
designed for TensorFlow.

● More details on 
TensorBoard can be found 
at TensorBoard.

● Once you’ve installed 
TensorBoard, these utilities 
let you log PyTorch models 
and metrics into a directory 
for visualization within the 
TensorBoard UI. 

https://www.tensorflow.org/tensorboard/


Hands-on Session #2
Getting Started with PyTorch



Hands-on Session #3
Classify Fashion-MNIST with PyTorch

● Fashion-MNIST is a dataset of 
Zalando's article images

● consisting of a training set of 60,000 
examples and a test set of 10,000 
examples. 

● Each example is a 28x28 grayscale 
image, associated with a label from 10 
classes.


