
Introduction to Deep Learning
with PyTorch

Jian Tao
jtao@tamu.edu

HPRC Short Course

4/16/2021

Part I

Setting up a working
environment (15 mins)

Part III

Introduction to
PyTorch (60 mins)

Part II

Introduction to Deep
Learning (60 mins)

03

01 02

Introduction to Deep Learning with PyTorch

Q&A
(5 mins/part)

Part I. Working Environment

HPRC Portal

* VPN is required for off-campus users.

https://portal-terra.hprc.tamu.edu/pun/sys/dashboard

Login HPRC Portal (Terra)

Terra Shell Access - I

Terra Shell Access - II

Python Virtual Environment (VENV)

Create a VENV

Install Python
Modules

Activate the VENV

Deactivate (when not
used)

Load Modules

clean up and load Anaconda
cd $SCRATCH
module purge
module load Python/3.7.4-GCCcore-8.3.0

create a Python virtual environment
python -m venv mylab

activate the virtual environment
source mylab/bin/activate

install required package to be used in the portal
pip install --upgrade pip setuptools
pip install jupyterlab torch torchvision tensorboard
pip install pandas scikit-plot tqdm seaborn

deactivate the virtual environment
source deactivate

Check out Exercises

git clone (check out) the Jupyter notebooks for the short courses
git clone https://github.com/jtao/shortcourses.git

Go to JupyterLab Page

Set Virtual Environment

enter the full path of the activate command of your virtualenv
/scratch/user/YOURNETID/mylab/bin/activate

Connect to JupyterLab

Create a Jupyter Notebook

Test JupyterLab

Part II. Deep Learning

Deep Learning
by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
http://www.deeplearningbook.org/

Animation of Neutron Networks
by Grant Sanderson
https://www.3blue1brown.com/

http://www.deeplearningbook.org/
https://www.3blue1brown.com/

Relationship of AI, ML and DL

Artificial Intelligence

Machine Learning

Deep Learning

● Artificial Intelligence (AI) is
anything about man-made
intelligence exhibited by
machines.

● Machine Learning (ML) is
an approach to achieve AI.

● Deep Learning (DL) is one
technique to implement
ML.

Machine Learning
Traditional Modeling

Machine Learning (Supervised Learning)
Sample

Data
Expected

Output

Computer Model

Data

Scientific
Model

Computer Prediction

Model

Data
Computer Prediction

Types of ML Algorithms
● Supervised Learning

○ trained with labeled data;
including regression and
classification problems

● Unsupervised Learning
○ trained with unlabeled data;

clustering and association rule
learning problems.

● Reinforcement Learning
○ no training data; stochastic

Markov decision process; robotics
and self-driving cars.

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Machine Learning

Supervised Learning

When both input variables - X and output variables - Y are known, one can
approximate the mapping function from X to Y.

Training Data ML Algorithm

Model Test Data

Step 1: Training

Step 2: Testing

Unsupervised Learning

When only input variables - X are known and the training data is neither
classified nor labeled. It is usually used for clustering problems.

Data Class 1

Class 2

Class 3

Reinforcement Learning

When the input variables are only available via interacting with the
environment, reinforcement learning can be used to train an "agent".

(Image Credit: Wikipedia.org) (Image Credit: deeplearning4j.org)

Why Deep Learning?

● Limitations of traditional machine learning algorithms
○ not good at handling high dimensional data.
○ difficult to do feature extraction and object recognition.

● Advantages of deep learning
○ DL is computationally expensive, but it is capable of

handling high dimensional data.
○ feature extraction is done automatically.

What is Deep Learning?

Deep learning is a class of machine learning algorithms that:
● use a cascade of multiple layers of nonlinear processing units

for feature extraction and transformation. Each successive
layer uses the output from the previous layer as input.

● learn in supervised (e.g., classification) and/or unsupervised
(e.g., pattern analysis) manners.

● learn multiple levels of representations that correspond to
different levels of abstraction; the levels form a hierarchy of
concepts.

(Source: Wikipedia)

Artificial Neural Network

(Image Credit: Wikipedia)

Input OutputHidden Layers

Inputs and Outputs
256 X 256

Matrix

4-Element Vector

DL model

1
2
3
4
5
6

A
C
T
G

M
F

With deep learning, we are searching for a surjective
(or onto) function f from a set X to a set Y.

X Y

Learning Principle

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

Dataset

= 5

(Image Credit: NVIDIA Deep Learning Institute)

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

= 15

Learning Principle

(Image Credit: NVIDIA Deep Learning Institute)

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

= 2.5

Learning Principle

(Image Credit: NVIDIA Deep Learning Institute)

Deep Neural Network as a Universal Approximator

X3

X2

X1

Input Output

● Training: given input and output, find best-fit F

● Inference: given input and F, predict output

Backward Propagation

Forward Propagation

y1

y2

Universal Approximation Theorem
(Cybenko, 1989)

Universal approximation theorems imply
that neural networks can represent a
wide variety of functions.

Pinkus Theorem
(Pinkus, 1999)

Pinkus theorems imply that neural
networks can represent directives of a
function simultaneously.

Supervised Deep Learning with Neural Networks

X3

X2

X1

Y3

Input OutputHidden Layers

W1

W2

W3

From one layer to the next

f is the activation function,
Wi is the weight, and bi is
the bias.

Training - Minimizing the Loss

X3

X2

X1

Y2

Input Output

W3, b3

The loss function with regard to weights
and biases can be defined as

W2, b2

W1, b1

L

The weight update is computed by moving
a step to the opposite direction of the cost
gradient.

Iterate until L stops decreasing.

Convolution in 2D

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution Kernel

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution on Image

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Activation Functions

Image Credit: towardsdatascience.com

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044

Introducing Non Linearity (ReLU)

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Max Pooling

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Pooling - Max-Pooling and Sum-Pooling

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

CNN Implementation - Drop Out

(Image Credit: Applied Deep Learning | Arden Dertat)

Dropout is used to prevent overfitting. A neuron is temporarily
“dropped” or disabled with probability P during training.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Implementation - Data Augmentation (DA)

(Image Credit: Applied Deep Learning | Arden Dertat)

DA helps to popular
artificial training
instances from the
existing train data sets.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Networks
A convolutional neural network (CNN, or ConvNet) is a class of deep, feed-forward
artificial neural networks that explicitly assumes that the inputs are images, which allows
us to encode certain properties into the architecture.

LeNet-5 Architecture (Image Credit: https://becominghuman.ai)

Deep Learning for Facial Recognition

(Image Credit: www.edureka.co)

MNIST - Introduction

● MNIST (Mixed National
Institute of Standards and
Technology) is a database for
handwritten digits, distributed
by Yann Lecun.

● 60,000 examples, and a test
set of 10,000 examples.

● 28x28 pixels each.
● Widely used for research and

educational purposes.
(Image Credit: Wikipedia)

MNIST - CNN Visualization

(Image Credit: http://scs.ryerson.ca/~aharley/vis/)

http://scs.ryerson.ca/~aharley/vis/conv/

Hands-on Session #1
A Simple Deep Learning Example with

PyTorch - First Glance

Part III. Introduction to
PyTorch

45

PyTorch website:
https://pytorch.org/

Deep Learning with PyTorch:
https://pytorch.org/tutorials/

https://pytorch.org/
https://pytorch.org/tutorials/

A Brief History of PyTorch

PyTorch is an open source machine learning library based on the
Torch library, which was first released by Ronan Collobert, Koray
Kavukcuoglu, and Clement Farabet in Oct 2002.
● The first official release of PyTorch was by Facebook's AI

Research lab (FAIR) in Oct 2016.
● Version 1.0 that integrated both Caffe2 and ONNX was release in

May 2018.
● The latest release is version 1.4.0, as of Feb 13 2020.

Overview of PyTorch

PyTorch is an open-source machine learning library written in
Python, C++ and CUDA. PyTorch provides two high-level features:

● Tensor computing (like NumPy) with strong acceleration via
graphics processing units (GPU)

● Deep neural networks built on a tape-based autodiff system

In a layman's term, PyTorch is a fancy version of NumPy that runs on
GPUs and comes with a lot of machine learning functionalities.

TensorFlow, Keras, and PyTorch

Keras is a high-level
neural networks API,
written in Python and
capable of running on
top of TensorFlow,
CNTK, or Theano. It
was developed with a
focus on enabling fast
experimentation.

TensorFlow is an
end-to-end open
source platform for
machine learning. It
has a comprehensive,
flexible ecosystem to
build and deploy ML
powered applications.

PyTorch is an open
source machine
learning framework
that accelerates the
path from research
prototyping to
production
deployment.

Google Trends for Popular ML Frameworks

(Image Credit: https://trends.google.com/)

Caffe paper
published in
Jun 2014

Keras
released in
Mar 2015

Tensorflow
released in
Nov 2015

PyTorch
released in
Sep 2016

https://trends.google.com/

Major Components of PyTorch

Components Description

torch a Tensor library like NumPy, with strong GPU support

torch.autograd a tape-based automatic differentiation library that supports all differentiable Tensor
operations in torch

torch.jit a compilation stack (TorchScript) to create serializable and optimizable models from
PyTorch code

torch.nn a neural networks library deeply integrated with autograd designed for maximum
flexibility

torch.multiprocessing Python multiprocessing, but with magical memory sharing of torch Tensors across
processes. Useful for data loading and Hogwild training

torch.utils DataLoader and other utility functions for convenience

A Powerful Tensor Library - torch

● A PyTorch tensor is an
n-dimensional array that can live
on either the CPU or GPU. A
tensor has a static type, a rank,
and a shape.

Name Rank Tensor

Scalar 0 [5]

Vector 1 [1 2 3]

Matrix 2 [[1 2 3 4],
[5 6 7 8]]

Tensor 3 ...

(Image Credit: pytorch.org)

Tensors on CPU and GPU - torch

x = touch.randn(1)
check if a CUDA device is available
if torch.cuda.is_available():

 # a CUDA device object
 device = torch.device("cuda")

 # directly create y
 x = x.to(device)
 y = torch.ones_like(x, device=device)

 z = x + y
 print(z)
 print(z.to("cpu", torch.double))

Tape-Based AutoGrad - torch.autograd

● torch.autograd is central to all neural networks in PyTorch.
● The autograd package provides automatic differentiation for all

operations on Tensors.
● Use "requires_grad=True" to keep traction operations on a Tensor.

x = tensor([[1., 1.],
 [1., 1.]], requires_grad=True)

x = torch.ones(2, 2, requires_grad=True)

y = tensor([[3., 3.],
 [3., 3.]], grad_fn=<AddBackward0>)

y = x + 2

Tape-Based AutoGrad - torch.autograd

(Image Credit: Elliot Waite: https://youtu.be/MswxJw-8PvE)

● PyTorch uses and replays
a "tape recorder" to build
neural networks.

● The official name of the
method is called
reverse-mode
auto-differentiation.

● The dependent variable is
fixed and the derivative is
computed with respect to
each sub-expression
recursively.

● The method requires extra
storage to save
intermediate states.

https://youtu.be/MswxJw-8PvE

Dynamic Graph with PyTorch

(Image Credit: pytorch.org)

Neural Network - torch.nn

● torch.nn depends on
autograd to define models
and differentiate them.

● An nn.Module contains
layers, and a method
forward(input) that returns
the output.

import torch
import torch.nn as nn

define a neural network model
class Net(nn.Module):

 def __init__(self, param):
 super(Net, self).__init__()
 self.param = param

 def forward(self, x):
 return x * self.param

net = Net(torch.Tensor([3, 4, 5]))
print(net)

Procedure to Train a Neural Network - Given a Data Set

Definition

Define the neural
network that has
some learnable
parameters (or
weights)

Step 1

Iteration

Iterate over a dataset
of inputs

Step 2

Forward
Propagation

Process input through
the network

Step 3

Loss Calculation

Compute the loss
(how far is the output
from being correct)

Step 4

Backward
Propagation

Propagate gradients
back into the
network’s parameters

Step 5

Updating

Update the weights of
the network, typically
using a simple update
rule: weight = weight -
learning_rate *
gradient

Step 6

import torch.optim as optim

Net is a predefined nn model
net = Net(torch.Tensor([3, 4, 5]))
output = net(input)

define a dummy target
target = torch.randn(10)
target = target.view(1, -1)
criterion = nn.MSELoss()
loss = criterion(output, target)

use one of the update rules such as SGD,
Nesterov-SGD, Adam, RMSProp, etc
optimizer = optim.SGD(net.parameters(),

lr=0.01)

zero the gradient buffers

optimizer.zero_grad()

loss.backward()

optimizer.step()

Train a Neural Network - torch.nn

● Define the neural network that has
some learnable parameters.

● Iterate over a dataset of inputs
● Process input through the network
● Compute the loss (how far is the

output from being correct)
● Propagate gradients back into

the network’s parameters
● Update the weights of the

network.

Preparing Datasets for PyTorch

In order to train a decent deep neural network
model with PyTorch, the input data sets needs
to be cleaned, balanced, transformed,
scaled, and splitted.
● Balance the classes. Unbalanced classes

will interfere with training.
● Transform the categorical variables into

one-hot encoded variables.
● Extract the X (variables) and y (targets)

values for the training and testing
datasets.

● Scale/normalize the variables.
● Shuffle and split the dataset into training

and testing datasets

Dog Cat Horse
1 0 0
0 1 0
0 0 1

Dog Cat Horse
1 2 3

One-hot encoding

Numerical encoding

Predefined Datasets in torchvision

The torchvision package consists of popular
datasets, model architectures, and common image
transformations for computer vision. The datasets
include but not limited to MNIST, Fashion-MNIST,
ImageNet, CIFAR, etc. They all have two common
arguments:

● transform to transform the input.
● target_transform to transform the target

The datasets can all be passed to a
torch.utils.data.DataLoader, which can load
multiple samples parallelly using
torch.multiprocessing workers.

from torchvision import datasets

import ImageNet data set
imagenet_data =
datasets.ImageNet('./imagenet')

data_loader =
torch.utils.data.DataLoader(
 imagenet_data,
 batch_size=4,
 shuffle=True,
num_workers=args.nThreads)

Monitoring Training with Tensorboard

● TensorBoard is a User
Interface (UI) tools
designed for TensorFlow.

● More details on
TensorBoard can be found
at TensorBoard.

● Once you’ve installed
TensorBoard, these utilities
let you log PyTorch models
and metrics into a directory
for visualization within the
TensorBoard UI.

https://www.tensorflow.org/tensorboard/

Hands-on Session #2
Getting Started with PyTorch

Hands-on Session #3
Classify Fashion-MNIST with PyTorch

● Fashion-MNIST is a dataset of
Zalando's article images

● consisting of a training set of 60,000
examples and a test set of 10,000
examples.

● Each example is a 28x28 grayscale
image, associated with a label from 10
classes.

