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Part I. Working Environment

HPRC Portal

* VPN is required for off-campus users.

https://portal-terra.hprc.tamu.edu/pun/sys/dashboard


Login HPRC Portal (Grace)



Grace Shell Access - I



Grace Shell Access - II



Python Virtual Environment - CPU

Create a VENV

Install Python 
Modules

Activate the VENV 

Deactivate 
(Optional)

Load Modules

# clean up and load Anaconda
cd $SCRATCH
module purge
module load GCCcore/9.3.0 GCC/9.3.0 Python/3.8.2

# create a Python virtual environment 
python -m venv mylab 

# activate the virtual environment
source mylab/bin/activate

# install required package to be used in the portal
pip install -U pip setuptools
pip install jupyterlab tensorflow sklearn matplotlib

# deactivate the virtual environment
# source deactivate



Check out Exercises

# git clone (check out) the Jupyter notebooks for the short courses
git clone https://github.com/jtao/shortcourses.git



Go to JupyterLab Page



Set Virtual Environment

# enter your virtualenv
/scratch/user/YOUR_NETID/mylab/bin/activate



Connect to JupyterLab



Create a Jupyter Notebook



Test JupyterLab



Part II. Introduction to Deep 
Learning

Deep Learning
by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
http://www.deeplearningbook.org/

Animation of Neutron Networks
by Grant Sanderson
https://www.3blue1brown.com/

http://www.deeplearningbook.org/
https://www.3blue1brown.com/


Relationship of AI, ML, and DL

Artificial Intelligence

 

Machine Learning

 

Deep Learning

● Artificial Intelligence (AI)  
is anything about 
man-made intelligence 
exhibited by machines.

● Machine Learning (ML) is 
an approach to achieve AI.

● Deep Learning (DL) is one 
technique to implement 
ML.



Machine Learning
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Types of ML Algorithms
● Supervised Learning

○ trained with labeled data; 
including regression and 
classification problems

● Unsupervised Learning
○ trained with unlabeled data; 

clustering and association rule 
learning problems.

● Reinforcement Learning
○ no training data; stochastic 

Markov decision process; robotics 
and self-driving cars.

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Machine Learning



Supervised Learning

When both input variables - X and output variables - Y are known, one can 
approximate the mapping function from  X to Y.

Training Data ML Algorithm

Model Test Data

Step 1: Training

Step 2: Testing



Unsupervised Learning

When only input variables - X are known and the training data is neither 
classified nor labeled. It is usually used for clustering problems.

Data Class 1

Class 2

Class 3



Reinforcement Learning
When the input variables are only available via interacting with the 
environment, reinforcement learning can be used to train an "agent".

(Image Credit: Wikipedia.org) (Image Credit: deeplearning4j.org)



Why Deep Learning?

● Limitations of traditional machine learning algorithms
○ not good at handling high dimensional data.
○ difficult to do feature extraction and object recognition.

● Advantages of deep learning
○ DL is computationally expensive, but it is capable of 

handling high dimensional data.
○ feature extraction is done automatically.



What is Deep Learning?

Deep learning is a class of machine learning algorithms that:
● use a cascade of multiple layers of nonlinear processing units 

for feature extraction and transformation. Each successive 
layer uses the output from the previous layer as input.

● learn in supervised (e.g., classification) and/or unsupervised 
(e.g., pattern analysis) manners.

● learn multiple levels of representations that correspond to 
different levels of abstraction; the levels form a hierarchy of 
concepts.

(Source: Wikipedia)



Artificial Neural Network

(Image Credit: Wikipedia)

Input OutputHidden Layers



Inputs and Outputs 
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With deep learning, we are searching for a surjective 
(or onto) function f from a set X to a set Y. 

X Y



25 

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

Dataset

= 5

Learning Principle - I

Credit: nvidia.com
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Learning Principle
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Learning Principle - II
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Learning Principle

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

= 2.5

Credit: nvidia.com

Learning Principle - III
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Deep Neural Network as a Universal Approximator

X3

X2

X1

Input Output

● Training: given input and output, find best-fit F

● Inference: given input and F, predict output

Backward Propagation

Forward Propagation

y1

y2

Universal Approximation Theorem 
(Cybenko, 1989)

Universal approximation theorems imply 
that neural networks can represent a 
wide variety of functions. 

Pinkus Theorem 
(Pinkus, 1999)

Pinkus theorems imply that neural 
networks can represent directives of a 
function simultaneously.



Supervised Deep Learning with Neural Networks

X3

X2

X1

Y3

Input OutputHidden Layers

W1

W2

W3

From one layer to the next

f is the activation function,
Wi is the weight, and bi is 
the bias.



Training - Minimizing the Loss 

X3

X2

X1

Y2

Input Output

W3, b3

The loss function with regard to weights 
and biases can be defined as

W2, b2

W1, b1

L

The weight update is computed by moving 
a step to the opposite direction of the cost 
gradient. 

Iterate until L stops decreasing.



Convolution in 2D

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Convolution Kernel 

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Convolution on Image

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


Activation Functions

Image Credit: towardsdatascience.com

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044


Introducing Non Linearity (ReLU)

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


Max Pooling 

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Pooling - Max-Pooling and Sum-Pooling

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/


CNN Implementation - Drop Out

(Image Credit: Applied Deep Learning | Arden Dertat)

Dropout is used to prevent overfitting. A neuron is temporarily 
“dropped” or disabled with probability P during training.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


CNN Implementation - Data Augmentation (DA)

(Image Credit: Applied Deep Learning | Arden Dertat)

DA helps to popular  
artificial training 
instances from the 
existing train data sets. 

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2


Convolutional Neural Networks
A convolutional neural network (CNN, or ConvNet) is a class of deep, feed-forward 
artificial neural networks that explicitly assumes that the inputs are images, which allows 
us to encode certain properties into the architecture.

LeNet-5 Architecture (image Credit: https://becominghuman.ai)



Deep Learning for Facial Recognition 

(Image Credit: www.edureka.co)



Best Practice Guide for Training ML/DL Models
Model Capacity (what can the model learn?)
● Overtain on a small data set
● Synthetic data (with known features and properties)

Optimization Issues (can we make the model learn?)
● Look at the learning curves (testing vs training errors)
● Monitor gradient update ratios
● Hand-pick parameters for synthetic data

Other Model "Bugs" (is the model doing what I want it to do?)
● Generate samples from your model (if you can)
● Visualize learned representations (e.g., embeddings, nearest neighbors)
● Error analysis (examples where the model is failing, most "confident" errors)
● Simplify the problem/model
● Increase capacity, sweep hyperparameters

https://youtu.be/zCEYiCxrL_0



MNIST - Introduction
● MNIST (Mixed National 

Institute of Standards and 
Technology) is a database for 
handwritten digits, distributed 
by Yann Lecun.

● 60,000 examples, and a test 
set of 10,000 examples.

● 28x28 pixels each.
● Widely used for research and 

educational purposes.
(Image Credit: Wikipedia)



MNIST - CNN Visualization

(Image Credit: http://scs.ryerson.ca/~aharley/vis/)

http://scs.ryerson.ca/~aharley/vis/conv/


Neural Network Playground

(Image Credit: http://playground.tensorflow.org/)

http://playground.tensorflow.org/


Part III. Introduction to TensorFlow

46

TensorFlow Official Website
http://www.tensorflow.org

https://www.tensorflow.org/
http://www.tensorflow.org


A Brief History of TensorFlow
TensorFlow is an end-to-end FOSS (free and open source software) 
library for dataflow, differentiable programming. TensorFlow is one of 
the most popular program frameworks for building machine learning 
applications.
● Google Brain built DistBelief in 2011 for internal usage.
● TensorFlow 1.0.0 was released on Feb 11, 2017
● TensorFlow 2.0 was released in Jan 2018.
● The latest stable version of TensorFlow is 2.4.1 as of May 2021.



TensorFlow, Keras, and PyTorch

Keras is a high-level 
neural networks API, 
written in Python and 
capable of running on 
top of TensorFlow, 
CNTK, or Theano. It 
was developed with a 
focus on enabling fast 
experimentation.

TensorFlow is an 
end-to-end open 
source platform for 
machine learning. It 
has a comprehensive, 
flexible ecosystem to 
build and deploy ML 
powered applications.

PyTorch is an open 
source machine 
learning framework 
that accelerates the 
path from research 
prototyping to 
production 
deployment.



Google Trends for Popular ML Frameworks

(Image Credit: https://trends.google.com/)

Caffe paper 
published in 
Jun 2014

Keras 
released in 
Mar 2015

Tensorflow 
released in 
Nov 2015

PyTorch 
released in 
Sep 2016

https://trends.google.com/


TensorFlow 2.0 Toolkits

(Image Credit: tensorflow.org)



Architecture of TF 2.0

(Image Credit: tensorflow.org)



What is a Tensor in TensorFlow?

● TensorFlow uses a tensor 
data structure to represent all 
data. A TensorFlow tensor as 
an n-dimensional array or 
list. A tensor has a static type, 
a rank, and a shape.

Name Rank Tensor

Scalar 0 [5]

Vector 1 [1 2 3]

Matrix 2 [[1 2 3 4],
[5 6 7 8]]

Tensor 3 ...



Computational Graph in TF 2.0
x = tf.random.normal(shape=(10,10))
w = tf.Variable(tf.random.normal(shape=(10,5)))
b = tf.Variable(tf.random.normal(shape=(5,)))
linear_model = w * x + b

x

w b

Multiply

Add



(Image Credit: Plumber Game by Mobiloids)

A Connected Pipeline for the Flow of Tensors



TensorFlow Data Types 

Basic TensorFlow data types include:

● int[8|16|32|64], float[16|32|64], double
● bool 
● string

With tf.cast(), the data types of variables could be 
converted.



Hello World with TensorFlow

import tensorflow as tf

v = tf.constant("Hello World!")

tf.print(v)



TensorFlow Constants

import tensorflow as tf

x = tf.constant(1, tf.int32)
zeros = tf.zeros([2, 3], tf.int32)
ones = tf.ones([2, 3], tf.int32)
y = x *(zeros + ones + ones)

tf.print(y)

TensorFlow provides several operations to generate constant tensors. 



TensorFlow Variables

TensorFlow variables can represent shared, persistent state manipulated by 
your program. Weights and biases are usually stored in variables.

import tensorflow as tf

W = tf.Variable(tf.random.normal([2,2], stddev=0.1), 
name = "W")
b = tf.Variable(tf.zeros(shape=(2)), name="b")



GPU Acceleration
TensorFlow automatically decides if to use the CPU or GPU. One can 
explicitly pick a device to use. The string ends with CPU/GPU:<N> if the 
tensor is placed on the N-th CPU/GPU on the host.

# Force execution on CPU
with tf.device("CPU:0"):

do_something()

# Force execution on GPU #0/1/2/... if available
if tf.config.experimental.list_physical_devices("GPU"):

with tf.device("GPU:0"):
do_something_else()



Machine Learning Workflow with tf.keras

Step 1

Prepare Train Data

The preprocessed data set needs 
to be shuffled and splitted into 
training and testing data.

  

Step 2

Define Model

A model could be defined with 
tf.keras Sequential model for a 
linear stack of layers or tf.keras 
functional API for complex 
network.

  

Step 3

Training Configuration

The configuration of the training 
process requires the 
specification of an optimizer, a 
loss function, and a list of 
metrics.

  

Step 4

Train Model

The training begins by calling the 
fit function. The number of 
epochs and batch size need to be 
set. The measurement metrics 
need to be evaluated.

  



tf.keras Built-in Datasets

● tf.keras provides many popular reference datasets that could be used 
for demonstrating and testing deep neural network models. To name a 
few,
○ Boston Housing (regression)
○ CIFAR100 (classification of 100 image labels)
○ MNIST (classification of 10 digits)
○ Fashion-MNIST (classification of 10 fashion categories)
○ Reuters News (multiclass text classification)

● The built-in datasets could be easily read in for training purpose. E.g.,

from tensorflow.keras.datasets import boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()



Prepare Datasets for tf.keras

In order to train a deep neural network model with 
Keras, the input data sets needs to be cleaned, 
balanced, transformed, scaled, and splitted.
● Balance the classes. Unbalanced classes will 

interfere with training.
● Transform the categorical variables into 

one-hot encoded variables. 
● Extract the X (variables) and y (targets) values 

for the training and testing datasets.
● Scale/normalize the variables.
● Shuffle and split the dataset into training and 

testing datasets

Dog Cat Horse
1 0 0
0 1 0
0 0 1

Dog Cat Horse
1 2 3

One-hot encoding

Numerical encoding



Create a tf.keras Model

● Layers are the fundamental 
building blocks of tf.keras 
models. 

● The Sequential model is a 
linear stack of layers.

● A Sequential model can be 
created with a list of layer 
instances to the constructor or 
added with the .add() method.

● The input shape/dimension of 
the first layer need to be set.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, 
Activation

model = Sequential([
    Dense(64, activation='relu', input_dim=20),
    Dense(10, activation='softmax')
])

Input OutputHidden Layers



Compile a tf.keras Model

The compile method of a Keras model configures the learning 
process before the model is trained. The following 3 arguments need 
to be set (the optimizer and loss function are required).
● An optimizer: Adam, AdaGrad, SGD, RMSprop, etc.
● A loss function: mean_squared_error, mean_absolute_error, 

mean_squared_logarithmic_error, categorical_crossentropy, 
kullback_leibler_divergence, etc.

● A list of measurement metrics: accuracy, binary_accuracy, 
categorical_accuracy, etc.



Train and Evaluate a tf.keras Model

Model: "sequential_1"
_______________________________________________
Layer (type)                 Output Shape              Param #   
=============================================
dense_11 (Dense)             (None, 64)                1344      
_______________________________________________
dense_12 (Dense)             (None, 10)                650       
=============================================
Total params: 1,994
Trainable params: 1,994
Non-trainable params: 0
_______________________________________________
None

tf.keras is trained on NumPy arrays of input 
data and labels. The training is done with the 
● fit() function of the model class. In the fit 

function, the following two 
hyperparameters can be set:
○ number of epochs
○ batch size

● evaluate() function returns the loss value 
& metrics values for the model in test 
mode.

● summary() function prints out the 
network architecture.



Make Predictions and More

After the model is trained, 
● predict() function of the model class could be used to 

generate output predictions for the input samples.
● get_weights() function returns a list of all weight tensors in 

the model, as Numpy arrays.
● to_json() returns a representation of the model as a JSON 

string. Note that the representation does not include the 
weights, only the architecture. 

● save_weights(filepath) saves the weights of the model as a 
HDF5 file.



Monitoring Training with Tensorboard

● TensorBoard is a User 
Interface (UI) tools 
designed for TensorFlow.

● More details on 
TensorBoard can be found 
at TensorBoard.

● Once you’ve installed 
TensorBoard, these utilities 
let you log TensorFlow 
models and metrics into a 
directory for visualization 
within the TensorBoard UI. 

https://www.tensorflow.org/tensorboard/


Hands-on Session #1
Getting Started with TensorFlow

https://www.tensorflow.org/


Hands-on Session #2
Classify Handwritten Digits with 

TensorFlow


