
Jian Tao
jtao@tamu.edu

HPRC Short Course

10/1/2021

Introduction to Deep Learning
with TensorFlow

Part I

Setting up a working
environment (35 mins)

Part III

Introduction to
TensorFlow (50 mins)

Part II

Introduction to Deep
Learning (50 mins)

03

01 02

Introduction to Deep Learning with TensorFlow

Q&A
(5 mins/part)

Part I. Working Environment

HPRC Portal

* VPN is required for off-campus users.

https://portal-terra.hprc.tamu.edu/pun/sys/dashboard

Login HPRC Portal (Grace)

Grace Shell Access - I

Grace Shell Access - II

Python Virtual Environment - CPU

Create a VENV

Install Python
Modules

Activate the VENV

Deactivate
(Optional)

Load Modules

clean up and load Anaconda
cd $SCRATCH
module purge
module load GCCcore/9.3.0 GCC/9.3.0 Python/3.8.2

create a Python virtual environment
python -m venv mylab

activate the virtual environment
source mylab/bin/activate

install required package to be used in the portal
pip install -U pip setuptools
pip install jupyterlab tensorflow sklearn matplotlib

deactivate the virtual environment
source deactivate

Check out Exercises

git clone (check out) the Jupyter notebooks for the short courses
git clone https://github.com/jtao/shortcourses.git

Go to JupyterLab Page

Set Virtual Environment

enter your virtualenv
/scratch/user/YOUR_NETID/mylab/bin/activate

Connect to JupyterLab

Create a Jupyter Notebook

Test JupyterLab

Part II. Introduction to Deep
Learning

Deep Learning
by Ian Goodfellow, Yoshua Bengio, and Aaron Courville
http://www.deeplearningbook.org/

Animation of Neutron Networks
by Grant Sanderson
https://www.3blue1brown.com/

http://www.deeplearningbook.org/
https://www.3blue1brown.com/

Relationship of AI, ML, and DL

Artificial Intelligence

Machine Learning

Deep Learning

● Artificial Intelligence (AI)
is anything about
man-made intelligence
exhibited by machines.

● Machine Learning (ML) is
an approach to achieve AI.

● Deep Learning (DL) is one
technique to implement
ML.

Machine Learning
Traditional Modeling

Machine Learning (Supervised Learning)
Sample

Data
Expected

Output

Computer Model

Data

Scientific
Model

Computer Prediction

Model

Data
Computer Prediction

Types of ML Algorithms
● Supervised Learning

○ trained with labeled data;
including regression and
classification problems

● Unsupervised Learning
○ trained with unlabeled data;

clustering and association rule
learning problems.

● Reinforcement Learning
○ no training data; stochastic

Markov decision process; robotics
and self-driving cars.

Supervised Learning

Reinforcement Learning

Unsupervised Learning

Machine Learning

Supervised Learning

When both input variables - X and output variables - Y are known, one can
approximate the mapping function from X to Y.

Training Data ML Algorithm

Model Test Data

Step 1: Training

Step 2: Testing

Unsupervised Learning

When only input variables - X are known and the training data is neither
classified nor labeled. It is usually used for clustering problems.

Data Class 1

Class 2

Class 3

Reinforcement Learning
When the input variables are only available via interacting with the
environment, reinforcement learning can be used to train an "agent".

(Image Credit: Wikipedia.org) (Image Credit: deeplearning4j.org)

Why Deep Learning?

● Limitations of traditional machine learning algorithms
○ not good at handling high dimensional data.
○ difficult to do feature extraction and object recognition.

● Advantages of deep learning
○ DL is computationally expensive, but it is capable of

handling high dimensional data.
○ feature extraction is done automatically.

What is Deep Learning?

Deep learning is a class of machine learning algorithms that:
● use a cascade of multiple layers of nonlinear processing units

for feature extraction and transformation. Each successive
layer uses the output from the previous layer as input.

● learn in supervised (e.g., classification) and/or unsupervised
(e.g., pattern analysis) manners.

● learn multiple levels of representations that correspond to
different levels of abstraction; the levels form a hierarchy of
concepts.

(Source: Wikipedia)

Artificial Neural Network

(Image Credit: Wikipedia)

Input OutputHidden Layers

Inputs and Outputs
256 X 256

Matrix

4-Element Vector

DL model

1
2
3
4
5
6

A
C
T
G

M
F

With deep learning, we are searching for a surjective
(or onto) function f from a set X to a set Y.

X Y

25

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

Dataset

= 5

Learning Principle - I

Credit: nvidia.com

26

Learning Principle

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

= 15

Credit: nvidia.com

Learning Principle - II

27

Learning Principle

x

1

x

2

x

n

…..

-Error:

Output/Prediction

Target Output

= 2.5

Credit: nvidia.com

Learning Principle - III

28

Deep Neural Network as a Universal Approximator

X3

X2

X1

Input Output

● Training: given input and output, find best-fit F

● Inference: given input and F, predict output

Backward Propagation

Forward Propagation

y1

y2

Universal Approximation Theorem
(Cybenko, 1989)

Universal approximation theorems imply
that neural networks can represent a
wide variety of functions.

Pinkus Theorem
(Pinkus, 1999)

Pinkus theorems imply that neural
networks can represent directives of a
function simultaneously.

Supervised Deep Learning with Neural Networks

X3

X2

X1

Y3

Input OutputHidden Layers

W1

W2

W3

From one layer to the next

f is the activation function,
Wi is the weight, and bi is
the bias.

Training - Minimizing the Loss

X3

X2

X1

Y2

Input Output

W3, b3

The loss function with regard to weights
and biases can be defined as

W2, b2

W1, b1

L

The weight update is computed by moving
a step to the opposite direction of the cost
gradient.

Iterate until L stops decreasing.

Convolution in 2D

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution Kernel

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolution on Image

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Activation Functions

Image Credit: towardsdatascience.com

https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044

Introducing Non Linearity (ReLU)

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

Max Pooling

(Image Credit: Applied Deep Learning | Arden Dertat)

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Pooling - Max-Pooling and Sum-Pooling

Image Credit: Deep Learning Methods for Vision | CVPR 2012 Tutorial

https://cs.nyu.edu/~fergus/tutorials/deep_learning_cvpr12/

CNN Implementation - Drop Out

(Image Credit: Applied Deep Learning | Arden Dertat)

Dropout is used to prevent overfitting. A neuron is temporarily
“dropped” or disabled with probability P during training.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

CNN Implementation - Data Augmentation (DA)

(Image Credit: Applied Deep Learning | Arden Dertat)

DA helps to popular
artificial training
instances from the
existing train data sets.

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Convolutional Neural Networks
A convolutional neural network (CNN, or ConvNet) is a class of deep, feed-forward
artificial neural networks that explicitly assumes that the inputs are images, which allows
us to encode certain properties into the architecture.

LeNet-5 Architecture (image Credit: https://becominghuman.ai)

Deep Learning for Facial Recognition

(Image Credit: www.edureka.co)

Best Practice Guide for Training ML/DL Models
Model Capacity (what can the model learn?)
● Overtain on a small data set
● Synthetic data (with known features and properties)

Optimization Issues (can we make the model learn?)
● Look at the learning curves (testing vs training errors)
● Monitor gradient update ratios
● Hand-pick parameters for synthetic data

Other Model "Bugs" (is the model doing what I want it to do?)
● Generate samples from your model (if you can)
● Visualize learned representations (e.g., embeddings, nearest neighbors)
● Error analysis (examples where the model is failing, most "confident" errors)
● Simplify the problem/model
● Increase capacity, sweep hyperparameters

https://youtu.be/zCEYiCxrL_0

MNIST - Introduction
● MNIST (Mixed National

Institute of Standards and
Technology) is a database for
handwritten digits, distributed
by Yann Lecun.

● 60,000 examples, and a test
set of 10,000 examples.

● 28x28 pixels each.
● Widely used for research and

educational purposes.
(Image Credit: Wikipedia)

MNIST - CNN Visualization

(Image Credit: http://scs.ryerson.ca/~aharley/vis/)

http://scs.ryerson.ca/~aharley/vis/conv/

Neural Network Playground

(Image Credit: http://playground.tensorflow.org/)

http://playground.tensorflow.org/

Part III. Introduction to TensorFlow

46

TensorFlow Official Website
http://www.tensorflow.org

https://www.tensorflow.org/
http://www.tensorflow.org

A Brief History of TensorFlow
TensorFlow is an end-to-end FOSS (free and open source software)
library for dataflow, differentiable programming. TensorFlow is one of
the most popular program frameworks for building machine learning
applications.
● Google Brain built DistBelief in 2011 for internal usage.
● TensorFlow 1.0.0 was released on Feb 11, 2017
● TensorFlow 2.0 was released in Jan 2018.
● The latest stable version of TensorFlow is 2.4.1 as of May 2021.

TensorFlow, Keras, and PyTorch

Keras is a high-level
neural networks API,
written in Python and
capable of running on
top of TensorFlow,
CNTK, or Theano. It
was developed with a
focus on enabling fast
experimentation.

TensorFlow is an
end-to-end open
source platform for
machine learning. It
has a comprehensive,
flexible ecosystem to
build and deploy ML
powered applications.

PyTorch is an open
source machine
learning framework
that accelerates the
path from research
prototyping to
production
deployment.

Google Trends for Popular ML Frameworks

(Image Credit: https://trends.google.com/)

Caffe paper
published in
Jun 2014

Keras
released in
Mar 2015

Tensorflow
released in
Nov 2015

PyTorch
released in
Sep 2016

https://trends.google.com/

TensorFlow 2.0 Toolkits

(Image Credit: tensorflow.org)

Architecture of TF 2.0

(Image Credit: tensorflow.org)

What is a Tensor in TensorFlow?

● TensorFlow uses a tensor
data structure to represent all
data. A TensorFlow tensor as
an n-dimensional array or
list. A tensor has a static type,
a rank, and a shape.

Name Rank Tensor

Scalar 0 [5]

Vector 1 [1 2 3]

Matrix 2 [[1 2 3 4],
[5 6 7 8]]

Tensor 3 ...

Computational Graph in TF 2.0
x = tf.random.normal(shape=(10,10))
w = tf.Variable(tf.random.normal(shape=(10,5)))
b = tf.Variable(tf.random.normal(shape=(5,)))
linear_model = w * x + b

x

w b

Multiply

Add

(Image Credit: Plumber Game by Mobiloids)

A Connected Pipeline for the Flow of Tensors

TensorFlow Data Types

Basic TensorFlow data types include:

● int[8|16|32|64], float[16|32|64], double
● bool
● string

With tf.cast(), the data types of variables could be
converted.

Hello World with TensorFlow

import tensorflow as tf

v = tf.constant("Hello World!")

tf.print(v)

TensorFlow Constants

import tensorflow as tf

x = tf.constant(1, tf.int32)
zeros = tf.zeros([2, 3], tf.int32)
ones = tf.ones([2, 3], tf.int32)
y = x *(zeros + ones + ones)

tf.print(y)

TensorFlow provides several operations to generate constant tensors.

TensorFlow Variables

TensorFlow variables can represent shared, persistent state manipulated by
your program. Weights and biases are usually stored in variables.

import tensorflow as tf

W = tf.Variable(tf.random.normal([2,2], stddev=0.1),
name = "W")
b = tf.Variable(tf.zeros(shape=(2)), name="b")

GPU Acceleration
TensorFlow automatically decides if to use the CPU or GPU. One can
explicitly pick a device to use. The string ends with CPU/GPU:<N> if the
tensor is placed on the N-th CPU/GPU on the host.

Force execution on CPU
with tf.device("CPU:0"):

do_something()

Force execution on GPU #0/1/2/... if available
if tf.config.experimental.list_physical_devices("GPU"):

with tf.device("GPU:0"):
do_something_else()

Machine Learning Workflow with tf.keras

Step 1

Prepare Train Data

The preprocessed data set needs
to be shuffled and splitted into
training and testing data.

Step 2

Define Model

A model could be defined with
tf.keras Sequential model for a
linear stack of layers or tf.keras
functional API for complex
network.

Step 3

Training Configuration

The configuration of the training
process requires the
specification of an optimizer, a
loss function, and a list of
metrics.

Step 4

Train Model

The training begins by calling the
fit function. The number of
epochs and batch size need to be
set. The measurement metrics
need to be evaluated.

tf.keras Built-in Datasets

● tf.keras provides many popular reference datasets that could be used
for demonstrating and testing deep neural network models. To name a
few,
○ Boston Housing (regression)
○ CIFAR100 (classification of 100 image labels)
○ MNIST (classification of 10 digits)
○ Fashion-MNIST (classification of 10 fashion categories)
○ Reuters News (multiclass text classification)

● The built-in datasets could be easily read in for training purpose. E.g.,

from tensorflow.keras.datasets import boston_housing
(x_train, y_train), (x_test, y_test) = boston_housing.load_data()

Prepare Datasets for tf.keras

In order to train a deep neural network model with
Keras, the input data sets needs to be cleaned,
balanced, transformed, scaled, and splitted.
● Balance the classes. Unbalanced classes will

interfere with training.
● Transform the categorical variables into

one-hot encoded variables.
● Extract the X (variables) and y (targets) values

for the training and testing datasets.
● Scale/normalize the variables.
● Shuffle and split the dataset into training and

testing datasets

Dog Cat Horse
1 0 0
0 1 0
0 0 1

Dog Cat Horse
1 2 3

One-hot encoding

Numerical encoding

Create a tf.keras Model

● Layers are the fundamental
building blocks of tf.keras
models.

● The Sequential model is a
linear stack of layers.

● A Sequential model can be
created with a list of layer
instances to the constructor or
added with the .add() method.

● The input shape/dimension of
the first layer need to be set.

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,
Activation

model = Sequential([
 Dense(64, activation='relu', input_dim=20),
 Dense(10, activation='softmax')
])

Input OutputHidden Layers

Compile a tf.keras Model

The compile method of a Keras model configures the learning
process before the model is trained. The following 3 arguments need
to be set (the optimizer and loss function are required).
● An optimizer: Adam, AdaGrad, SGD, RMSprop, etc.
● A loss function: mean_squared_error, mean_absolute_error,

mean_squared_logarithmic_error, categorical_crossentropy,
kullback_leibler_divergence, etc.

● A list of measurement metrics: accuracy, binary_accuracy,
categorical_accuracy, etc.

Train and Evaluate a tf.keras Model

Model: "sequential_1"

Layer (type) Output Shape Param #
===
dense_11 (Dense) (None, 64) 1344

dense_12 (Dense) (None, 10) 650
===
Total params: 1,994
Trainable params: 1,994
Non-trainable params: 0

None

tf.keras is trained on NumPy arrays of input
data and labels. The training is done with the
● fit() function of the model class. In the fit

function, the following two
hyperparameters can be set:
○ number of epochs
○ batch size

● evaluate() function returns the loss value
& metrics values for the model in test
mode.

● summary() function prints out the
network architecture.

Make Predictions and More

After the model is trained,
● predict() function of the model class could be used to

generate output predictions for the input samples.
● get_weights() function returns a list of all weight tensors in

the model, as Numpy arrays.
● to_json() returns a representation of the model as a JSON

string. Note that the representation does not include the
weights, only the architecture.

● save_weights(filepath) saves the weights of the model as a
HDF5 file.

Monitoring Training with Tensorboard

● TensorBoard is a User
Interface (UI) tools
designed for TensorFlow.

● More details on
TensorBoard can be found
at TensorBoard.

● Once you’ve installed
TensorBoard, these utilities
let you log TensorFlow
models and metrics into a
directory for visualization
within the TensorBoard UI.

https://www.tensorflow.org/tensorboard/

Hands-on Session #1
Getting Started with TensorFlow

https://www.tensorflow.org/

Hands-on Session #2
Classify Handwritten Digits with

TensorFlow

