
Introduction to Julia
Programming Language

Jian Tao
jtao@tamu.edu

HPRC Short Course

11/19/2021

https://hprc.tamu.edu/

Part I.
Julia - What and

Why?

Julia is a high-level general-purpose dynamic programming language primarily
designed for high-performance numerical analysis and computational science.

▪ Born in MIT's Computer Science and Artificial Intelligence Lab in 2009

▪ Combined the best features of Ruby, MatLab, C, Python, R, and others

▪ First release in 2012

▪ Latest stable release v1.6.3 as of Nov 16, 2021

▪ https://julialang.org/

▪ customized for "greedy, unreasonable, demanding programmers".

▪ Julia Computing established in 2015 to provide commercial support.

https://julialang.org/
https://juliacomputing.com/

Image Credit: Julialang.org

https://julialang.org/

Image Credit: RedMonk (https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/)

https://redmonk.com/sogrady/2021/08/05/language-rankings-6-21/

Major features of Julia:
● Fast: designed for high performance,
● General: supporting different programming patterns,
● Dynamic: dynamically-typed with good support for interactive

use,
● Technical: efficient numerical computing with a math-friendly

syntax,
● Optionally typed: a rich language of descriptive data types,
● Composable: Julia’s packages naturally work well together.

Mostly importantly, for many of us, Julia seems to be the language
of choice for Scientific Machine Learning.

"Julia is as programmable
as Python while it is as fast
as Fortran for number
crunching. It is like Python
on steroids."
--an anonymous Julia user
on the first impression of
Julia.

Juno IDE

Image Credit: Juno (http://junolab.org/)

● Juno is an Integrated
Development
Environment (IDE) for
the Julia language.

● Juno is built on Atom,
a text editor provided
by Github.

http://junolab.org/

Jupyter Notebook

Image Credit: Jupyter (http://jupyter.org/)

http://jupyter.org/

Julia REPL

● Julia comes with a full-featured interactive command-line
REPL (read-eval-print loop) built into the Julia executable.

● In addition to allowing quick and easy evaluation of Julia
statements, it has a searchable history, tab-completion,
many helpful keybindings, and dedicated help and shell
modes.

Part II.
Shell Access to
Grace @ HPRC

Grace Login Nodes
NVIDIA A100 GPU NVIDIA RTX 6000 GPU NVIDIA T4 GPU No GPU

Hostnames grace1.hprc.tamu.edu grace2.hprc.tamu.edu grace3.hprc.tamu.edu grace4.hprc.tamu.edu

grace5.hprc.tamu.edu

Processor Type Intel Xeon 6248R 3.0GHz 24-core

Memory 384GB DDR4 3200 MHz

Total Nodes 1 1 1 2

Cores/Node 48

Interconnect Mellanox HDR 100 InfiniBand

Local Disk Space per node: two 480 GB SSD drives, 1.6 TB NVMe

Connecting to HPRC Portal

HPRC Portal

* VPN is required for off-campus users.

https://portal-grace.hprc.tamu.edu/pun/sys/dashboard

Login HPRC Portal (Grace)

Grace Shell Access - Portal

Grace Shell Access - Shell

Using Pre-installed Julia Module
Step 1. Find the module to be loaded

$ module spider julia
...
Description:
 Julia is a high-level, high-performance dynamic
programming language
 for numerical computing

 Versions:
 Julia/1.5.3-linux-x86_64
 Julia/1.6.1-linux-x86_64
...

(You can also use the web-based interface to find
software modules available on HPRC systems.)

Step 2. Load the module

$ module load Julia/1.6.1-linux-x86_64

Step 3. Start Julia REPL

$ julia

SW:Julia - TAMU HPRC

https://hprc.tamu.edu/software/grace
https://hprc.tamu.edu/wiki/SW:Julia

Using Your Own Julia Installation
Step 1. Find the version to be installed

(You can find different versions of Julia at Download Julia,
The latest stable version of Julia is highly recommended.)

Step 2. Download & Unzip
$ cd $SCRATCH
$ wget https://.../julia-1.6.3-linux-x86_64.tar.gz
$ tar -zxvf julia-1.6.3-linux-x86_64.tar.gz

Step 3. Start Julia REPL

$ cd $SCRATCH/julia-1.6.3/bin; ./julia

SW:Julia - TAMU HPRC

https://julialang.org/downloads/
https://hprc.tamu.edu/wiki/SW:Julia

Install Julia Packages

export Julia Depot path (default to ~/.julia)
$export JULIA_DEPOT_PATH=$SCRATCH/.julia

start Julia
$julia

type ']' to open Pkg REPL
press backspace or ^C to quit Pkg REPL.
julia>]
(@v1.6) pkg> add Plots

Julia - Quickstart
The julia program starts the interactive REPL. You will be immediately
switched to the shell mode if you type a semicolon. A question mark
will switch you to the help mode. The <TAB> key can help with
autocompletion.

julia> versioninfo()
julia> VERSION

Special symbols can be typed with the escape symbol and <TAB>, but
they might not show properly on the web-based terminal.

julia> \sqrt <TAB>
julia> for i ∈ 1:10 println(i) end #\in <TAB>

Julia REPL Keybindings

Keybinding Descrition

^d Exit (when buffer is empty)

^c Interrupt or cancel

^l Clear console screen

Return/Enter, ^J New line, executing if it is complete

? or ; Enter help or shell mode (when at start of a line)

^R, ^S Incremental history search

] Enter Pkg REPL

Backspace or ^c Quit Pkg REPL

Part III.
Julia as an Advanced

Calculator

Image Credit: http://www.ti.com/

http://www.ti.com/

+ Addition (also unary plus)
- Subtraction (also unary minus)
* multiplication
/ division
\ inverse division
% mod
^ to the power of

Arithmetic Operators

More about Arithmetic Operators
1. The order of operations follows the math rules.
2. The updating version of the operators is formed by placing a

"=" immediately after the operator. For instance, x+=3 is
equivalent to x=x+3.

3. Unicode could be defined as operator.
4. A "dot" operation is automatically defined to perform the

operation element-by-element on arrays in every binary
operation.

5. Numeric Literal Coefficients: Julia allows variables to be
immediately preceded by a numeric literal, implying
multiplication.

julia> 10/5*2
julia> 5*2^3+4\2
julia> -2^4
julia> 8^1/3
julia> pi*ℯ #\euler <TAB>
julia> x=1; x+=3.1
julia> x=[1,2]; x = x.^(-2)

Some examples:

Arithmetic Expressions

== True, if it is equal
!=,≠ True, if not equal to #\ne <TAB>
< less than
> greater than
<=,≤ less than or equal to #\le <TAB>
>=,≥ greater than or equal to #\ge <TAB>

* try ≠(4,5), what does this mean? How about !=(4,5)

Relational Operators

Boolean and Bitwise Operators
&& Logical and
|| Logical or
! Not
⊻, xor()Exclusive OR
∣ Bitwise OR
~ Negate
& Bitwise And
>> Right shift
<< Left shift

NaN and Inf
NaN is a not-a-number value of type Float64.

Inf is positive infinity of type Float64.

-Inf is negative infinity of type Float64.

● Inf is equal to itself and greater than
everything else except NaN.

● -Inf is equal to itself and less then
everything else except NaN.

● NaN is not equal to, not less than, and
not greater than anything, including itself.

julia> NaN == NaN #false

julia> NaN != NaN
true

julia> NaN < NaN
false

julia> NaN > NaN
false

julia> isequal(NaN, NaN)
true

julia> isnan(1/0)
false

Variables
The basic types of Julia include float, int, char, string, and bool. A global
variable can not be deleted, but its content could be cleared with the
keyword nothing. Unicode can be used as variable names!

julia> b = true; typeof(b)
julia> varinfo()
julia> x = "Hi"; x > "He" # x='Hi' is wrong. why?
julia> y = 10
julia> z = complex(1, y)
julia> println(b, x, y, z)
julia> b = nothing; show(b)
julia> 🏈=2; 🏃=1 # \:football <TAB> \:runner: <TAB>

Naming Rules for Variables
 Variable names must begin with a letter or underscore

julia> 4c = 12

 Names can include any combinations of letters, numbers,
underscores, and exclamation symbol. Some unicode characters
could be used as well

julia> c_4 = 12; δ = 2
 Maximum length for a variable name is not limited
 Julia is case sensitive. The variable name A is different than the

variable name a.

Displaying Variables
We can display a variable (i.e., show its value) by simply typing
the name of the variable at the command prompt (leaving off the
semicolon).

We can also use print or println (print plus a new line) to
display variables.

julia> print("The value of x is:"); print(x)

julia> println("The value of x is:"); print(x)

Exercise
Create two variables: a = 4 and b = 17.2

Now use Julia to perform the following set of calculations:

 (b+5.4)1/3 b2-4b+5a
 a>b && a>1.0 a!=b

Basic Syntax for Statements (I)
1. Comments start with '#'

2. Compound expressions with begin blocks and (;) chains

julia> z = begin
 x = 1
 y = 2
 x + y
 end
julia> z = (x = 1; y = 2; x + y)

Basic Syntax for Statements (II)

The statements could be freely arranged with an optional
';' if a new line is used to separate statements.

julia> begin x = 1; y = 2; x + y end

julia> (x = 1;
 y = 2;
 x + y)

Numerical Data Types

Integer Data Types
Type Signed? Number of bits Smallest value Largest value
Int8 ✓ 8 -2^7 2^7 - 1

UInt8 8 0 2^8 - 1

Int16 ✓ 16 -2^15 2^15 - 1

UInt16 16 0 2^16 - 1

Int32 ✓ 32 -2^31 2^31 - 1

UInt32 32 0 2^32 - 1

Int64 ✓ 64 -2^63 2^63 - 1

UInt64 64 0 2^64 - 1

Int128 ✓ 128 -2^127 2^127 - 1

UInt128 128 0 2^128 - 1

Bool N/A 8 false (0) true (1)

Handling Big Integers
An overflow happens when a number goes beyond the
representable range of a given type. Juliat provides BigInt
type to handle big integers.

julia> x = typemax(Int64)

julia> x + 1

julia> x + 1 == typemin(Int64)

julia> x = big(typemax(Int64))^100

Floating Point Data Types
Type Precision Number of bits Range
Float16 half 16 -65504 to -6.1035e-05

6.1035e-05 to 65504

Float32 single 32 −3.402823E38 to −1.401298E-45
 1.401298E-45 to 3.402823E38

Float64 double 64 -1.79769313486232E308 to -4.94065645841247E-324
4.94065645841247E-324 to 1.79769313486232E308

● Additionally, full support for Complex and Rational Numbers is built
on top of these primitive numeric types.

● All numeric types interoperate naturally without explicit casting thanks
to a user-extensible type promotion system.

Handling Floating-point Types (I)
Perform each of the following calculations in your head.

julia> a = 4/3

julia> b = a - 1

julia> c = 3*b

julia> e = 1 - c

What does Julia get?

Handling Floating-point Types (II)
What does Julia get?

julia> a = 4/3 #1.3333333333333333

julia> b = a - 1 #0.33333333333333326

julia> c = 3*b #0.9999999999999998

julia> e = 1 - c #2.220446049250313e-16

 It is impossible to perfectly represent all real numbers using
 a finite string of 1's and 0's.

Handling Floating-point Types (III)
Now try the following with BigFloat

julia> a = big(4)/3

julia> b = a - 1

julia> c = 3*b

julia> e = 1 - c #-1.7272337110188...e-77

Next, set the precision and repeat the above

julia> setprecision(4096)

BigFloat variables can store floating point data with arbitrary precision with a
performance cost.

Complex and Rational Numbers
The global constant im is bound to the complex number i, representing
the principal square root of -1.

julia> 2(1 - 1im)

julia> sqrt(complex(-1, 0))

Note that 3/4im == 3/(4*im) == -(3/4*im), since a literal
coefficient binds more tightly than division. 3/(4*im)!=(3/4*im)

Julia has a rational number type to represent exact ratios of integers.
Rationals are constructed using the // operator, e.g., 9//27

Some Useful Math Functions

Function Descrition

round(x) round x to the nearest integer

floor(x) round x towards -Inf

ceil(x) round x towards +Inf

trunc(x) round x towards zero

div(x,y) truncated division; quotient rounded towards zero

fld(x,y) floored division; quotient rounded towards -Inf

cld(x,y) ceiling division; quotient rounded towards +Inf

rem(x,y) remainder; satisfies x == div(x,y)*y + rem(x,y);
sign matches x

gcd(x,y...) greatest positive common divisor of x, y,...

lcm(x,y...) least positive common multiple of x, y,...

Function Descrition
abs(x) a positive value with the magnitude of x

abs2(x) the squared magnitude of x

sign(x) indicates the sign of x, returning -1, 0, or +1

signbit(x) indicates whether the sign bit is on (true) or
off (false)

copysign(x,y) a value with the magnitude of x and the sign
of y

flipsign(x,y) a value with the magnitude of x and the sign
of x*y

Rounding and division functions Sign and absolute value functions

* The built-in math functions in Julia are
 implemented in C(openlibm).

https://github.com/JuliaMath/openlibm

Chars and Strings
Julia has a first-class type representing a single character, called
Char. Single quotes are & double quotes are used different in Julia.

julia> a = 'H' #a is a character object

julia> b = "H" #a is a string with length 1

Strings and Chars can be easily manipulated with built-in functions.
julia> c = string('s') * string('d')

julia> length(c); d = c^10*"4"; split(d,"s")

Handling Strings (I)
1. The built-in type used for strings in Julia is String. This supports the full

range of Unicode characters via the UTF-8 encoding.
2. Strings are immutable.
3. A Char value represents a single character.
4. One can do comparisons and a limited amount of arithmetic with Char.
5. All indexing in Julia is 1-based: the first element of any integer-indexed

object is found at index 1.

julia> str = "Hello, world!"

julia> c = str[1] #c = 'H'

julia> c = str[end] #c = '!'

julia> c = str[2:8] #c = "ello, w"

Handling Strings (II)
Interpolation: Julia allows interpolation into string literals using $,
as in Perl. To include a literal $ in a string literal, escape it with a
backslash:

julia> "1 + 2 = $(1 + 2)" #"1 + 2 = 3"

julia> print("\$100 dollars!\n")

Triple-Quoted String Literals: no need to escape for special
symbols and trailing whitespace is left unaltered.

Handling Strings (III)
Julia comes with a collection of tools to handle strings.

julia> str="Julia"

julia> occursin("lia", str)

julia> z = repeat(str, 10)

julia> firstindex(str)

julia> lastindex(str)

julia> length(str)

Julia also supports Perl-compatible regular expressions (regexes).

julia> ismatch(r"^\s*(?:#|$)", "# a comment")

Help

▪ For help on a specific function or macro, type ? followed by its name, and
press enter. This only works if you know the name of the function you want
help with. With ^S and ^R you can also do historical search.

Julia> ?cos

▪ Type ?help to get more information about help

Julia> ?help

Part IV.
Functions

function mandelbrot(a)
 z = 0
 for i=1:50
 z = z^2 + a
 end
 return z
end
for y=1.0:-0.05:-1.0
 for x=-2.0:0.0315:0.5
 abs(mandelbrot(complex(x, y))) < 2 ?
print("*") : print(" ")
 end
 println()
end

Definition of Functions
Two equivalent ways to define a
function

julia> function func(x,y)

 return x + y, x

 end

julia> Σ(x,y) = x + y, x

Operators are functions

julia> +(1,2); plusfunc=+

Julia> plusfunc(2,3)

Recommended style for function
definition: append ! to names of
functions that modify their
arguments

Functions with Optional Arguments
You can define functions with optional arguments with default
values.

julia> function point(x, y, z=0)
 println("$x, $y, $z")

 end
julia> point(1,2); point(1,2,3)

Keywords and Positional Arguments
Keywords can be used to label arguments. Use a semicolon
after the function's unlabelled arguments, and follow it with one
or more keyword=value pairs

julia> function func(a, b, c="one"; d="two")
println("$a, $b, $c, $d")

 end
julia> func(1,2); func(d="four", 1, 2, "three")

Anonymous Functions
As functions in Julia are first-class objects, they can be created
anonymously without a name.

julia> x -> 2x - 1

julia> function (x)

 2x - 1

 end

An anonymous function is primarily used to feed in other functions.
julia> map((x,y,z) -> x + y + z,

 [1,2,3], [4, 5, 6], [7, 8, 9])

"Dotted" Function
Dot syntax can be used to vectorize functions, i.e., applying
functions elementwise to arrays.

julia> func(a, b) = a * b

julia> func(1, 2)

julia> func.([1,2], 3)

julia> sin.(func.([1,2],[3,4]))

Function of Function
Julia functions can be treated the same as other Julia objects. You can
return a function within a function.

julia> function my_exp_func(x)

 f = function (y) return y^x end

 return f

 end

julia> squarer=my_exp_func(2); quader=my_exp_func(3)

julia> squarer(3)

julia> quader(3)

Part V.
Data Structures: Tuples,

Arrays, Sets, and
Dictionaries

Tuples
A tuple is an ordered sequence of elements. Tuples are good for
small fixed-length collections. Tuples are immutable.

julia> t = (1, 2, 3)

julia> t = ((1, 2), (3, 4))

julia> t[1][2]

Arrays
An array is an ordered collection of elements. In Julia, arrays are used for lists,
vectors, tables, and matrices. Arrays are mutable.

julia> a = [1, 2, 3] # column vecor

julia> b = [1 2 3] # row vector

julia> c = [1 2 3; 4 5 6] # 2x3 vector

julia> d = [n^2 for n in 1:5]

julia> f = zeros(2,3); g = rand(2,3)

julia> h = ones(2,3); j = fill("A",9)

julia> k = reshape(rand(5,6),10,3)

julia> [a a] # hcat

julia> [b;b] # vcat

Array & Matrix Operations

julia> b = [1 2 3; 4 5 7; 7 8 9]

julia> b .+ 10 # each element + 10

julia> sin.(b) # sin function

julia> b' # transpose (transpose(b))

julia> inv(b) # inverse

julia> b * b # matrix multiplication

julia> b .* b # element-wise multiplication

julia> b .^ 2 # element-wise square

Many Julia operators and functions can be used preceded with a dot.
These versions are the same as their non-dotted versions, and work on
the arrays element by element.

Sets
Examples:

julia> months=Set(["Nov","Dec","Dec"])
julia> typeof(months)
julia> push!(months,"Sept")
julia> pop!(months,"Sept")
julia> in("Dec", months)
julia> m=Set(["Dec","Mar","Feb"])
julia> union(m,months)
julia> intersect(m,months)
julia> setdiff(m,months)

 Sets are mainly used to
eliminate repeated numbers
in a sequence/list.

 It is also used to perform
some standard set
operations.

 A could be created with the
Set constructor function

Dictionaries
Examples:

julia> m=Dict("Oct"=>"October",
 "Nov"=>"November",

"Dec"=>"December")
julia> m["Oct"]
julia> get(m, "Jan", "N/A")
julia> haskey(m, "Jan")
julia> m["Jan"]="January"
julia> delete!(m, "Jan")
julia> keys(m)
julia> values(m)
julia> map(uppercase, collect(keys(m)))

 Dictionaries are mappings
between keys and items
stored in the dictionaries.

 Alternatively one can think of
dictionaries as sets in which
something stored against
every element of the set.

 To define a dictionary, use
Dict()

Part VI.
Conditional

Statements & Loops

Image Credit: https://www.geeksforgeeks.org

https://www.geeksforgeeks.org/

Controlling Blocks

Julia has the following controlling constructs
● ternary expressions
● boolean switching expressions
● if elseif else end - conditional evaluation
● for end - iterative evaluation
● while end - iterative conditional evaluation
● try catch error throw exception handling

Ternary and Boolean Expressions
A ternary expression can be constructed with the ternary operator

"?" and ":",
julia> x = 1

julia> x > 0 ? sin(x) : cos(x)

You can combine the boolean condition and any expression using
&& or ||,

julia> isodd(42) && println("That's even!")

Conditional Statements

Execute statements if
condition is true.

There is no "switch" and
"case" statement in Julia.

There is an "ifelse"
statement.

julia> a = 8
julia> if a>10

 println("a > 10")
 elseif a<10
 println("a < 10")
 else

 println("a = 10")
 end

julia> s = ifelse(false, "hello", "goodbye") * " world"

Loop Control Statements - for
for statements help repeatedly execute a block of code for a
certain number of iterations. Loop variables are local.

julia> for i in 0:1:10
if i % 3 == 0

 continue
 end
 println(i)
 end

julia> for l in "julia"
print(l, "-^-")

 end

Other Usage of for Loops
Array comprehension:

julia> [n for n in 1:10]

Array enumeration:
julia> [i for i in enumerate(rand(3))]

Generator expressions:
julia> sum(x for x in 1:10)

Nested loop:
 for x in 1:10, y in 1:10

@show (x, y)
if y % 3 == 0

break
end

end

Loop Control Statements - while
while statements repeatedly execute a block of code as long
as a condition is satisfied.

julia> n = 1
julia> s = 0
julia> while n <= 100
 s = s + n
 n = n + 1
 end
julia> println(s)

Exception Handling Blocks

try ... catch construction checks for errors and handles them
gracefully,

julia> s = "test"
julia> try
 s[1] = "p"
 catch
 println("caught an error: $e")
 println("continue with execution!")
 end

Part VII.
Plot with Julia
UnicodePlots

UnicodePlots

UnicodePlots is simple and
lightweight and it plots directly in
your terminal.

julia> using Plots

julia> unicodeplots()

julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

http://docs.juliaplots.org/latest/backends/#unicodeplots

Plotly Julia Library
Plotly creates leading open
source software for Web-based
data visualization and analytical
apps. Plotly Julia Library makes
interactive, publication-quality
graphs online.

julia> using Plots

julia> plotly()

julia> plot(rand(5,5),
linewidth=2, title="My
Plot")

https://plot.ly/julia/

GR Framework

GR framework is a universal
framework for cross-platform
visualization applications.

julia> using Plots

julia> gr()

julia> plot(rand(5,5),
linewidth=4, title="My
Plot", size=(1024,1024))

https://gr-framework.org/

Online Resources
Official Julia Document
https://docs.julialang.org/en/v1/
Julia Online Tutorials
https://julialang.org/learning/
Introducing Julia (Wikibooks.org)
https://en.wikibooks.org/wiki/Introducing_Julia
MATLAB–Python–Julia cheatsheet
https://cheatsheets.quantecon.org/
The Fast Track to Julia
https://juliadocs.github.io/Julia-Cheat-Sheet/

https://docs.julialang.org/en/v1/
https://julialang.org/learning/
https://en.wikibooks.org/wiki/Introducing_Julia
https://cheatsheets.quantecon.org/
https://juliadocs.github.io/Julia-Cheat-Sheet/

Acknowledgements

● The slides are created based on the materials from
Julia official website and the Wikibook Introducing
Julia at wikibooks.org.

● Supports from Texas A&M Engineering Experiment
Station (TEES) and High Performance Research
Computing (HPRC).

Appendix

Modules and Packages
Julia code is organized into files, modules, and packages. Files
containing Julia code use the .jl file extension. Modules can be defined
as

module MyModule

...

end

Julia manages its packages with Pkg
julia> Pkg.add("MyPackage")

julia> Pkg.status()

julia> Pkg.update()

julia> Pkg.rm("MyPackage")

ASCII Code

When you press a key on your computer keyboard, the
key that you press is translated to a binary code.

A = 1000001 (Decimal = 65)
a = 1100001 (Decimal = 97)
0 = 0110000 (Decimal = 48)

ASCII Code

ASCII stands for
American Standard
Code for Information
Interchange

Terminology
A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).
A byte is simply a string of 8 bits.
A kilobyte (KB) is 1,024 (2^10) bytes.
A megabyte (MB) is 1,024 KB or 1,024^2 bytes.
A gigabyte (GB) is 1,024 MB or 1,024^3 bytes.

How Computers Store Variables

Computers store all data (numbers, letters, instructions, …)
as strings of 1s and 0s (bits).

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).

