TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

Introduction to Quantum Mechanics Short Course

Lecture 5 of 6

TEXAS A&M UNIVERSITY Division of Research

If the excited state has a different spin or symmetry, you can perform a Single Point Energy (SPE) or Geometry Optimization using the correct spin and/or orbital occupation.

O₂ triplet ground state singlet excited state

 OsC_2^+ in C_{2v} symmetry: ${}^{2}A_1, {}^{2}A_2, {}^{2}B_1, \text{ or } {}^{2}B_2$

C _{2v}	E	C ₂ (z)	$\sigma_v(xz)$	$\sigma_v(yz)$	linear functions, rotations	quadratic functions	cubic functions
A1	+1	+1	+1	+1	Z	x ² , y ² , z ²	$z^{3}, x^{2}z, y^{2}z$
A ₂	+1	+1	-1	-1	Rz	xy	xyz
B ₁	+1	-1	+1	-1	x, R _y	xz	xz ² , x ³ , xy ²
B ₂	+1	-1	-1	+1	y, R _x	yz	yz ² , y ³ , x ² y

Symmetry and Excited States

Orbital symmetries: Alpha Orbitals: Occupied (A1) (A1) (B2) (B1) $b_1 \ge a_1 \rightarrow {}^3B_1$ Virtual (B2) Beta Orbitals: Occupied (Al) (Al) (B2) (Al) Virtual (B1) (A1) (B2) The electronic state is 3-B1. Alpha occ. eigenvalues -- -20.43372 -1.43457 -0.70542 -0.63599 -0.62365 Alpha occ. eigenvalues --0.02368 Alpha virt. eigenvalues -- 0.56142 Beta occ. eigenvalues -- -20.38194 -1.19468 -0.62529 -0.50668 Beta virt. eigenvalues -- 0.27727 0.63457 0.70966 Alpha Molecular Orbital Coefficients 5 1 2 4 3 (A1)--0 (A1)--0 (B2)--0 (B1)--0 (A1)--0 EIGENVALUES ---20.43372 -1.43457 -0.70542 -0.63599 -0.62365 0 1S -0.07293 1 1 0.99408 -0.24869 0.00000 0.00000 25 0.02635 2 0.93457 0.00000 0.00000 0.36237 3 2PX 0.00000 0.00000 0.00000 1.00000 0.00000 4 2PY 0.00000 0.00000 0.63670 0.00000 0.00000 2PZ 5 -0.00306 -0.13811 0.00000 0.00000 0.87907 H 1S -0.00560 62 0.08032 0.41335 0.00000 -0.18056 -0.00560 73 H 1S 0.08032 -0.41335 0.00000 -0.18056 6 7 (A1)--O (B2)--V EIGENVALUES --0.02368 0.56142 1 1 0 1S 0.11965 0.00000 2S -0.80891 0.00000 2 2PX 0.00000 0.00000 3 2PY 0.00000 0.95591 4 5 2PZ 0.58523 0.00000 Н 1S 0.81596 -0.81581 62 73 Н 1S 0.81596 0.81581 Beta Molecular Orbital Coefficients. 1 2 3 5 (A1)--0 (B2)--0 (A1)--0 (B1)--V (A1)--0 EIGENVALUES ---20.38194 -1.19468 -0.62529 -0,50668 27727 0 1S 0.99466 -0.24048 0.00000 -0.06484 0.00000 1 1 2 2S 0.02379 0.88678 0.00000 0.35254 0.00000 3 2PX 0.00000 0.00000 0.00000 0.00000 1.00000 4 2PY 0.00000 0.00000 0.72027 0.00000 0.00000 2 P 7 -0.00255 -0.03603 0.00000 0.85179 0.00000 5 62 Н 1S-0.00495 0.13466 0.33814 -0.22974 0.00000

0.13466 -0.33814 -0.22974

73

H 1S

-0.00495

If we want the ${}^{3}A_{1}$ state, we will need to swap β orbitals 4 and 5 using the guess=(read,alter) keyword

AM Texas A&M University High Performance Research Computing https://hprc.tamu.edu

0.00000

CIS – Configuration Interaction Singles. CIS gives HF quality results for excited states.

RPA – Random Phase Approximation. Similar to CIS but includes double excitations in the calculation of the excited state energies.

CIS(D) – Configuration Interaction Singles with 2nd order Perturbative correction for the excitation energies.

Time-Dependent Density Functional Theory (TD-DFT)

• CIS – Configuration Interaction Singles.

• CIS gives HF quality results for excited states

TABLE III. Lowest lying singlet states of C_6H_6 at the $6-31+G^*$ level of theory using various theoretical methods.

Symmetry	CIS	RPA	B3LYP	BPW91	LSDA	Experiment
$B_{2u} (\pi \rightarrow \pi^*)$	6.15	5.96	5.40	5.19	5.31	4.9
$B_{1u} (\pi \rightarrow \pi^*)$	6.31	6.01	6.06	5.93	6.10	6.2
$E_{1g} (\pi \rightarrow 3s)$	7.13	7.12	6.34	6.34	6.36	6.33
A_{2u} ($\pi \rightarrow 3p$)	7.45	7.43	6.84	6.87	6.99	6.93
E_{2u} ($\pi \rightarrow 3p$)	7.75	7.74	6.88	6.85	6.98	6.95
$E_{1u} (\pi \rightarrow \pi^*)$	7.94	7.52	6.96	6.84	6.94	7.0

J. Chem. Phys., Vol. 109, 1998, 8218

• CIS

• Oscillator strengths are proportional to extinction coefficient

Excitation energies and oscillator strengths:

Excited State 1: 6.1546 eV 201.45 nm f=0.0000 <S**2>=0.000 Singlet-A 20 -> 27 0.47187 20 -> 38 -0.1593421 -> 28 0.47187 21 -> 39-0.15934 This state for optimization and/or second-order correction. Copying the excited state density for this state as the 1-particle RhoCI density. 6.3056 eV 196.63 nm f=0.0000 <S**2>=0.000 Excited State 2: Singlet-A 20 -> 28 -0.46761 20 -> 390.14725 21 -> 27 0.46763 21 -> 38 -0.14725Excited State 3: Singlet-A 7.1275 eV 173.95 nm f=0.0000 <S**2>=0.000 21 -> 22 0.65758 21 -> 34 -0.1157721 -> 48 0.11247

Benzene CIS output

UV/Vis spectra via TD-DFT

SAC-CI – Symmetry Adapted Cluster Configuration Interaction **EOM-CCSD** – Equation of Motion – Coupled Cluster Singles and Doubles.

Multi-Reference Excited State Methods:

CASSCF – Complete Active Space Self-Consistent Field. Multi-reference Hartree-Fock.

CAS-PT2 – Complete Active Space Self- Consistent Field with MP2 corrected energies.

MRCI – Multi-Reference Configuration Interaction.

Semi-empirical Calculations

- Based on HF formulism FC=SCε
 - Iterative
- core e⁻ are not treated explicitly
- each atom is described by 1STO
- 2e⁻ integrals are replaced with parameters (V_{ee})
- Parameterized to reproduce Heats of Formation
- Commonly used semi-empirical models
 - AM1 austin model 1 (Dewar)
 - \circ PM3 3rd parameterization of MNDO (Stewart)
 - PM7 7th parameterization of MNDO which includes more transition metals (http://openmopac.net/PM7_accuracy/PM7_accuracy.html).
 - ZINDO/S parameterized to calculate electronic spectra (primarily for organic species)

Semi-Empirical

- AM1 Austin Model 1
 - Heavily used for organic compound containing 1st row main group elements (ie C, N, O)
 - Reasonable geometries
 - Poor for hydrogen bonding
 - heavier elements are often represented with MNDO
- PM3 Parameter Model 3
 - Also heavily used with a wider range of elements available
 - o utilizes an extra molecular mechanics

term to accurately describe peptide bonds

ZINDO/S

AM Texas A&M Univershttp://PHBshspergfen/content/articlehtml/2009/im/b821568c

https://hprc.tamu.edu

Published in: Richard D. Adams; Erin M. Boswell; Burjor Captain; *Organometallics* **2008**, 27, 1169-1173. DOI: 10.1021/om701206r Copyright © 2008 American Chemical Society

http://www.chem.tamu.edu/jimp2

Fenske-Hall (FH)

- Based on Extended Hückel Theory
- Replaces the diagonal terms ($H_{\mu\mu}$) with an adjustable parameter to account for partial charge changes in molecules.
- Iterative
- Available in Jimp2: http://www.chem.tamu.edu/jimp2

Extended Hückel Theory (EHT)

Published in: Amitava Choudhury; Peter K. Dorhout; *Inorg. Chem.* Ahead of Print DOI: 10.1021/ic502418s Copyright © 2014 American Chemical Society

Total and partial (Sm, Ge, and S) DOSs calculated for **III**. The dashed line indicates the position of the Fermi level.

Composite/Compound/extrapolation Methods

Methods that try to extrapolate to the energy obtained using an infinite basis set and full electron correlation. Designed to accurately calculate thermochemical data.

Composite/Compound/extrapolation Methods

Basic Method:

- Select a level of theory for the Geometry (optimization)
- Select a level of theory for the zero-point energy (optimize and frequency calculation)
- Select a level of theory for the reference energy calculation (single point energy)
- Perform a variety of single point energy calculations with increasing basis set size and increasing level of theory to estimate basis set effects and dynamic electron correlation.
- Estimate the spin-paired correlation error

Koopmans Theorem

• The energy required to remove an electron from a closed shell atom or molecule is well approximated by the negative of the orbital energy that it is being removed from:

1st Ionization Energy ≅ -ε_{HOMO}

- Electron Affinity $\neq \varepsilon_{LUMO}$
- Unoccupied orbitals are not well treated. The coefficient matrix is optimized for the occupied orbitals.