# TEXAS A&M HIGH PERFORMANCE RESEARCH COMPUTING

# Introduction to Quantum Mechanics Short Course

Lecture 3 of 6



TEXAS A&M UNIVERSITY Division of Research

## Quantum Mechanics

# Time-independent Schrödinger Equation

# $\hat{H}\psi\text{=}\mathsf{E}\psi$

- Ĥ Hamiltonian Operator
- $\psi$  Wavefunction (eigenfunction)
- E Energy of the system (eigenvalue)

## Quantum Mechanics

Approximations made in the Hamiltonian

- 1) Neglect relativistic effect
- 2) Neglect coupling of electronic states (adiabatic approximation)
- 3) Neglect coupling of the electronic and nuclear motion (Born-Oppenheimer approximation)

Quantum Mechanics – Many e<sup>-</sup> Hamiltonian

$$\hat{H} = -\sum_{A=1}^{M} \frac{1}{2M_A} \nabla_A^2 - \sum_{i=1}^{N} \frac{1}{2} \nabla_i^2 - \sum_{i=1}^{N} \sum_{A=1}^{M} \frac{Z_A}{r_{iA}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}} + \sum_{A=1}^{M} \sum_{B>A}^{M} \frac{Z_A Z_B}{r_{AB}}$$

$$\hat{H} = \hat{T}_n + \hat{T}_e + V_{ne} + V_{ee} + V_{nn}$$

$$\hat{T}_n = \text{Kinetic energy operator for the nuclei}$$

$$\hat{T}_e = \text{Kinetic energy operator for the electrons}$$

$$V_{ne} = \text{Coulombic attraction between the electrons and nuclei}$$

$$V_{ee} = \text{Coulombic repulsion between the nuclei}$$

### Quantum Mechanics

$$\begin{aligned} \hat{H} &= \hat{T}_{n} + \hat{T}_{e} + V_{ne} + V_{ee} + V_{nn} \\ \hat{H} &= \hat{H}_{n} + \hat{H}_{e} = \hat{H}_{n} + \hat{H}^{o} + \hat{H}^{1} = (\hat{T}_{n} + V_{nn}) + (\hat{T}_{e} + V_{ne}) + (V_{ee}) \\ \psi^{o} &= \text{Slater Determinant} \\ &= \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_{1}(1) & \overline{\phi_{1}(1)} & \cdots & \phi_{N/2}(1) & \overline{\phi_{N/2}(1)} \\ \phi_{1}(2) & \phi_{1}(2) & \cdots & \phi_{N/2}(2) & \overline{\phi_{N/2}(2)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{vmatrix}$$

$$\sqrt{N!}$$
  $\vdots$   $\frac{1}{\phi_1(N)}$   $\frac{1}{\phi_1(N)}$   $\cdots$   $\frac{1}{\phi_{N/2}(N)}$   $\frac{1}{\phi_{N/2}(N)}$ 

Satisfies indistinguishability of the electrons and antisymmetry requirement of the wavefunction.

$$\hat{H}_{e} = -\frac{1}{2} \sum_{i=1}^{N} \nabla_{i}^{2} - \sum_{i=1}^{N} \frac{Z}{r_{i}} + \sum_{i=1}^{N} \sum_{j>i}^{N} \frac{1}{r_{ij}}$$

$$\hat{H}_{e} = \hat{T}_{e} + \hat{V}_{ne} + \hat{V}_{ee} - 2e^{-} \text{ interactions}$$
Sum of 1e<sup>-</sup> interactions

N = number of electrons

 $\hat{T}_e$  = Kinetic energy operator for the electrons

 $\hat{V}_{ne}$  = Coulombic attraction between the electrons and the nuclei

 $\hat{V}_{ee}$  = Coulombic repulsion between the electrons

Potential for electron 1 in atomic units:

$$V_{1} = \sum_{i=2}^{N} \int \frac{|\chi_{i}|^{2}}{r_{1i}} dv_{i} - \frac{Z}{r_{1}}$$

1e<sup>-</sup> Schrödinger equation:

 $\left[\frac{1}{2}\nabla_1^2 + V_1(r_1)\right]\chi_1(1) = \varepsilon_1\chi_1(1) \quad \varepsilon_1 = \text{ energy of the orbital for electron } 1$ 

Hartree - Fock Eigenvalue Problem :  $\hat{F}\chi_i = \varepsilon_i \chi_i$  i = 1, 2, 3, ..., NFor a closed - shell system of N electrons and A nuclei :  $\varepsilon_i = f_i = h_i + \sum_{j=1}^{N/2} (2J_{ij} - K_{ij})$   $h_i = \langle \chi_i | \frac{1}{2} \nabla_i^2 - \sum_A \frac{Z_A}{|R_A - r_i|} | \chi_i \rangle$ Coulomb Integrals:  $J_{ij} = \langle \chi_i(1)\chi_j(2) | \frac{1}{r_{ij}} | \chi_i(1)\chi_j(2) \rangle = \langle ij|ij \rangle$ Exchange Integrals:  $K_{ij} = \langle \chi_i(1)\chi_j(2) | \frac{1}{r_{ij}} | \chi_j(1)\chi_i(2) \rangle = \langle ij|ji \rangle$  $f(x_i) = \langle \chi_i(1)\chi_j(2) | \frac{1}{r_{ij}} | \chi_j(1)\chi_i(2) \rangle = \langle ij|ji \rangle$ 

Hartree - Fock Eigenvalue Problem :  $\hat{F}\chi_i = \varepsilon_i\chi_i$  i = 1, 2, 3, ..., NFor a closed - shell system of N electrons and A nuclei :

$$\varepsilon_{i} = f_{i} = h_{i} + \sum_{j=1}^{N/2} (2J_{ij} - K_{ij})$$

$$E_{HF} = 2\sum_{i=1}^{N/2} h_{i} + \sum_{i=1}^{N/2} \sum_{j=1}^{N/2} (2J_{ij} - K_{ij}) + V_{nuclei}$$

$$E_{HF} = 2\sum_{i=1}^{N/2} \varepsilon_{i} - \sum_{i=1}^{N/2} \sum_{j=1}^{N/2} (2J_{ij} - K_{ij}) + V_{nuclei}$$

 $E_{HF} \neq$  sum of orbital energies

 $|F_{rs} - \varepsilon_i S_{rs}| = 0$ Secular equation with roots equal to  $\varepsilon_i$  $FC = SC\varepsilon$ If S=I then diagonalizing F solves for  $\varepsilon$ Find a matrix X such that  $X^+SX = I$ Roo<br/>Set C=XC'Set C=XC'Roo<br/>Set C $FXC'=SXC'\varepsilon$ Solve<br/>Solve $X^+FXC'=X^+SXC'\varepsilon$ Me<br/>(set $F'C' = C'\varepsilon$ Diagonalize F' to solve for  $\varepsilon$ Transform the new C' back to C using<br/>C=XC' and compare with old C

*F<sub>rs</sub>* - Fock Matrix *S<sub>rs</sub>* - Overlap Matrix

<u>Roothan equations</u>: Set of non-linear equations Solved using matrix methods and iteratively (self consistent)

### Geometry Optimization



#### Hartree-Fock Limit

Hydrogen Fluoride molecule Bond Energy (DE<sub>bond</sub>) vs Basis set



### Hartree-Fock

Hartree-Fock Theory:

Variational (E<sub>HF</sub>≥E<sub>1</sub>)

```
Size-Extensive (E_A \dots A = E_A + E_A)
```

```
Size-extensive:

2E_A = E_{A \cdots A}

Where, E_A is the energy of molecule A and E_{A \cdots A} is the energy of two molecules of

A separated by a large distance (ie non-interacting)

Size-intensive:

2E_A \neq E_{A \cdots A}
```

Neglects instantaneous e<sup>-</sup> correlation

## **Electron Correlation**

- Electron Correlation the motion of electrons are correlated
  - Coulomb hole the probability of finding an electron of opposite spin near another electron is small
  - - Hartree-Fock theory included electron correlation of electrons of the same spin (Fermi Hole) but does not include electron correlation of electrons of opposite spin.
- How to include electron correlation for electrons of the opposite spin (instantaneous e<sup>-</sup> correlation)?
  - post-scf: Møller-Plesset Perturbation theory (MPx (x=2, 3, 4, ...)), Configuration Interaction (CI), Coupled-Cluster (CC), ....
  - Density Functional Theory

#### Perturbation Theory

 $\hat{H} = \hat{H}_{o} + \lambda \hat{H}'$   $\lambda = \text{Perturbation Parameter ranging from 0 to 1}$   $\hat{H}\psi_{o} = (\hat{H}_{o} + \lambda \hat{H}')\psi_{o} = E_{o}\psi_{o}$ Expand  $\psi_{o}$  and  $E_{o}$  as a Taylor series in powers of  $\lambda$   $\psi_{o} = \psi_{o}^{(0)} + \lambda \psi_{o}^{(1)} + \lambda^{2}\psi_{o}^{(2)} + \dots \quad : \quad \psi_{o}^{(k)} = \frac{1}{k!} \frac{\partial^{k}\psi_{o}}{\partial\lambda^{k}}\Big|_{\lambda=0}$   $E_{o} = E_{o}^{(0)} + \lambda E_{o}^{(1)} + \lambda^{2}E_{o}^{(2)} + \dots \quad : \quad E_{o}^{(k)} = \frac{1}{k!} \frac{d^{k}E_{o}}{d\lambda^{k}}\Big|_{\lambda=0}$   $k = 1, 2, 3, \dots$   $\psi_{o}^{(k)}$  and  $E_{o}^{(k)}$  are the k<sup>th</sup> order correction to the wavefunction and the energy

#### Møller-Plesset Perturbation Theory

$$\begin{aligned} \text{M} & \emptyset \text{ller-Plesset Perturbation theory sets:} \\ \hat{H}_{o} &= \sum_{i=1}^{N} f_{i} \quad (\text{sum of } 1 \text{ e}^{-} \text{ fock operators}) \\ E_{o} (MP1) &= E_{o}^{(0)} + E_{o}^{(1)} = \left\langle \psi_{o}^{(0)} \middle| \hat{H}_{o} \middle| \psi_{o}^{(0)} \right\rangle + \left\langle \psi_{o}^{(0)} \middle| \hat{H}' \middle| \psi_{o}^{(0)} \right\rangle = E_{HF} \\ \text{To include dynamic electron correlation, we must go to } 2^{\text{nd}} \text{ order} \\ E_{o} (MP2) &= E_{o}^{(0)} + E_{o}^{(1)} + E_{o}^{(2)} \\ E_{o} (MP2) &= \left\langle \psi_{o}^{(0)} \middle| \hat{H}_{o} \middle| \psi_{o}^{(0)} \right\rangle + \left\langle \psi_{o}^{(0)} \middle| \hat{H}' \middle| \psi_{o}^{(0)} \right\rangle + \sum_{m \neq 0} \frac{\left| \left\langle \psi_{m}^{(0)} \middle| \hat{H}' \middle| \psi_{o}^{(0)} \right\rangle \right|^{2}}{E_{o}^{(0)} - E_{m}^{(0)}} \\ E_{o} (MP2) &= E_{HF} + \sum_{m \neq 0} \frac{\left| \left\langle \psi_{m}^{(0)} \middle| \hat{H}' \middle| \psi_{o}^{(0)} \right\rangle \right|^{2}}{E_{o}^{(0)} - E_{m}^{(0)}} \end{aligned}$$

#### Møller-Plesset Perturbation Theory

$$\begin{split} E_{o}\left(MP3\right) &= E_{o}^{(0)} + E_{o}^{(1)} + E_{o}^{(2)} + E_{o}^{(3)} = E_{HF} + E_{o}^{(2)} + E_{o}^{(3)} \\ E_{o}^{(3)} &= \sum_{\substack{n \ n \neq 0 \ m \neq 0}} \sum_{\substack{m \ n \neq 0 \ m \neq 0}} \frac{\left\langle \psi_{o}^{(0)} \middle| \hat{H}' \middle| \psi_{n}^{(0)} \right\rangle \left\langle \psi_{n}^{(0)} \middle| \hat{H}' \middle| \psi_{m}^{(0)} \right\rangle \left\langle \psi_{n}^{(0)} \middle| \hat{H}' \middle| \psi_{o}^{(0)} \right\rangle}{\left(E_{o}^{(0)} - E_{n}^{(0)}\right) \left(E_{o}^{(0)} - E_{m}^{(0)}\right)} - E_{o}^{(1)} \sum_{\substack{n \ n \neq 0 \ m \neq 0}} \frac{\left| \left\langle \psi_{o}^{(0)} \middle| \hat{H}' \middle| \psi_{n}^{(0)} \right\rangle \right|^{2}}{E_{o}^{(0)} - E_{n}^{(0)}} \end{split}$$

MP4 - includes singles, doubles, triples and quadruple excitations. Triples are expensive and are often not computed by default: MP4(SDQ)  $E_o(MP2) < E_o(MP1) = E_{HF}$  $E_o(MP3) > E(MP2)$ 

- MP is size-extensive but NOT variational
- Solved non-iteratively
- Core e<sup>-</sup> not included in excitation by default in G16



## **Configuration Interaction**



## Quadratic Configuration Interaction (QCI)

- QCISD Takes CISD and adds excitations to make it sizeextensive at the cost of making it non-variational.
- QCISD(T) QCISD with triple excitations added perturbatively.
- QCI is Size-extensive but non-variational.
- Solved iteratively.
- Core e<sup>-</sup> not included in excitation by default in G16

#### Coupled Cluster

$$\begin{split} \left|\psi_{CC}\right\rangle &= \left|e^{\hat{T}}\psi_{0}\right\rangle \\ e^{\hat{T}} &= 1 + \hat{T} + \frac{1}{2}\hat{T}^{2} + \frac{1}{6}\hat{T}^{3} + \dots = \sum_{k=0}^{\infty}\frac{1}{k!}\hat{T}^{k} \quad ; \quad \hat{T} = \hat{T}_{1} + \hat{T}_{2} + \dots + \hat{T}_{N} \\ \hat{T}_{1}\psi_{0} &= \sum_{i}^{occ}\sum_{a}^{vir}t_{i}^{a}\psi_{i}^{a} \quad ; \quad \hat{T}_{2}\psi_{0} = \sum_{i>j}^{occ}\sum_{a>b}^{vir}t_{ij}^{ab}\psi_{ij}^{ab} \quad ; \quad etc. \\ t_{i}^{a}, t_{ij}^{ab}, \ \dots \ \text{are the coupled - cluster amplitudes} \\ \left\langle\psi_{o}\left|\hat{H}e^{\hat{T}}\right|\psi_{o}\right\rangle = E_{CC} \\ \text{To solve for the coupled - cluster amplitudes :} \\ \left\langle\psi_{i}^{a}\left|\hat{H}e^{\hat{T}}\right|\psi_{0}\right\rangle = 0 \quad ; \quad \left\langle\psi_{ii}^{ab}\left|\hat{H}e^{\hat{T}}\right|\psi_{0}\right\rangle = 0 \quad ; \quad etc. \end{split}$$

Coupled sets of non - linear equations : solve iteratively

#### Truncated Coupled-Cluster

Truncated CC:

- *CCD*:  $\hat{T} = \hat{T}_2$ ;  $e^{\hat{T}_2} = 1 + \hat{T}_2 + \frac{1}{2}\hat{T}_2^2 + \frac{1}{6}\hat{T}_2^3 + \cdots$
- $CCSD: \quad \hat{T} = \hat{T}_1 + \hat{T}_2 \quad ; \quad e^{(\hat{T}_1 + \hat{T}_2)} = 1 + (\hat{T}_1 + \hat{T}_2) + \frac{1}{2}(\hat{T}_1 + \hat{T}_2)^2 + \cdots$

$$CCSDT: \quad \hat{T} = \hat{T}_1 + \hat{T}_2 + \hat{T}_3 \quad ; \quad e^{(\hat{T}_1 + \hat{T}_2 + \hat{T}_3)} = 1 + (\hat{T}_1 + \hat{T}_2 + \hat{T}_3) + \frac{1}{2}(\hat{T}_1 + \hat{T}_2 + \hat{T}_3)^2 + \cdots$$

CCSD(T): CCSD with perturbative Triples

- Truncated CC is size-extensive but non-variational
- Solved iteratively
- Core e<sup>-</sup> not included in excitation by default in G16

## Ab initio Summary

- HF<MP2<CISD<MP4(SDQ)~CCSD<MP4<CCSD(T)</li>
  - note: MP4 includes less e<sup>-</sup> correlation but more triple excitations than CCSD(T)
  - Hartree-Fock does not include dynamic e<sup>-</sup> correlation
  - o PROS:
    - ★ Hierarchy which includes more e<sup>-</sup> correlation as you move up the hierarchy
  - o CONS:
    - Computational cost for post-scf calculations is high.
    - The accuracy of post-scf (post-HF) levels of theory are highly dependent on the quality of the basis set

### Hartree-Fock and Post-HF (Post-SCF)

#### H + F → HF

| Method                      | ΔE <sub>bond</sub> (kcal mol <sup>-1</sup> ) |  |  |
|-----------------------------|----------------------------------------------|--|--|
| HF/STO-3G                   | 73.9                                         |  |  |
| HF/6-311++G(3df,3pd)        | 97.9                                         |  |  |
| MP2/6-311++G(3df,3pd)       | 144.9                                        |  |  |
| MP3/6-311++G(3df,3pd)       | 137.9                                        |  |  |
| MP4/6-311++G(3df,3pd)       | 141.8                                        |  |  |
| QCISD/6-311++G(3df,3pd)     | 138.8                                        |  |  |
| QCISD(T) /6-311++G(3df,3pd) | 140.6                                        |  |  |
| Experimental                | 141.2                                        |  |  |

## **Computational Cost**

| Level of Theory           | Scaling                       |  |
|---------------------------|-------------------------------|--|
| HF                        | N <sup>3</sup> iterative      |  |
| Density Functional Theory | N <sup>3</sup> iterative      |  |
| MP2                       | N <sup>5</sup> non-iterative  |  |
| MP3, MP4(SDQ)             | N <sup>6</sup> non-iterative  |  |
| CISD, CCSD, QCISD         | N <sup>6</sup> iterative      |  |
| MP4(SDTQ)                 | N <sup>7</sup> non-iterative  |  |
| MP5                       | N <sup>8</sup> non-iterative  |  |
| CISDT, CCSDT, QCISDT      | N <sup>8</sup> iterative      |  |
| MP6                       | N <sup>9</sup> non-iterative  |  |
| MP7                       | N <sup>10</sup> non-iterative |  |
| CISDTQ, CCSDTQ, QCISDTQ   | N <sup>10</sup> iterative     |  |

N ~ number of basis functions

## Single-reference vs. Multi-reference

- Single-reference
  - o The molecular orbitals of a single wavefunction are optimized.
  - o HF, DFT, MPx, CCSD(T), CISD, etc
- Multi-reference
  - A linear combination of optimized wavefunctions with optimized wavefunction coefficient.
  - CASSCF (MCSCF), CAS-PT2, MRCI, RASSCF
  - $\circ \psi = c_1 \Phi_1 + c_2 \Phi_2 + c_3 \Phi_3 + \dots$ 
    - $\star$   $\Phi_{\rm x}$  are optimized wavefunctions and are generally referred to as Configuration State Functions (CSF).
    - c<sub>1</sub> are optimized coefficients of the CSF's
- Test for MR Character
  - o CCSD TI Diagnostic
    - TI > 0.02 indicates that single reference methods will give poor results
    - D1 > 0.025 indicates that single reference methods will give poor results.

#### Multi-Reference Character



#### CASSCF

#### Complete Active Space Self-Consistent Field (CASSCF)



## Multi-Reference Character

- Internal rotation in ethylene
  - o FV active space is (12,12)
  - ο Minimum active space includes only C-C  $\sigma, \pi, \pi^*, \sigma^*$  (4,4)
  - o The two active spaces give ~same internal rotation barrier
  - This active space cannot account for other processes, such as C-H bond cleavage

## # of CSF in an CASSCF(n,m) where m=n

| n                                             | # of CSF's                           |  |  |
|-----------------------------------------------|--------------------------------------|--|--|
| 2                                             | 3                                    |  |  |
| 4                                             | 20                                   |  |  |
| 6                                             | 175                                  |  |  |
| 8                                             | 1,764                                |  |  |
| 10                                            | 19,404                               |  |  |
| 12                                            | 226,512                              |  |  |
| 14                                            | 2,760,615                            |  |  |
| CSFs for CASSCF(2,2)                          | > <u>1} 1} / </u>                    |  |  |
|                                               | $\Phi_1 \qquad \Phi_2 \qquad \Phi_3$ |  |  |
| $\psi = c_1 \Phi_1 + c_2 \Phi_2 + c_3 \Phi_3$ |                                      |  |  |

#### How to select your active space

- For each occupied bonding orbital select the corresponding virtual (unoccupied) antibonding orbital
- Use HF Natural orbitals to help pick out the important orbitals
   Diagonal ρ matrix eigenvalues are occupation numbers which range from zero to two.
  - o include orbitals that deviate from zero or two

## CAS-PT2

- CAS-PT2 CASSCF + MP2 correction to the energy for important CSF's
- Determine the CSF coefficient cutoff.
- Check the CASSCF results of the systems/conformations that you are comparing to determine if the cutoff should be changed.

#### RASSCF

#### Restricted Active Space Self-Consistent Field (RASSCF)



#### Multi-Reference Character

OsC  $C_{\infty v}$ 



| 3∑-                             | 3∆                      |
|---------------------------------|-------------------------|
| CCSD(T)                         | B3LYP                   |
| MP2                             | CASSCF(6,6)<br>σσδδσ*σ* |
| CASSCF(10,10)<br>ππσσδδσ*σ*π*π* |                         |
| CAS-PT2                         |                         |
| CAS-PT2(10,10)                  |                         |

## MRCI

- Multi-Reference Configuration Interaction
- Similar to CAS-PT2 but uses CISD to correct the energy of the CSF.
- Generally, which CSF's to include in the CISD correction are chosen via a cutoff or manually.

## Variational and Size Extensive

| Level of Theory                                                | Variational | Size Extensive | Dynamic e-<br>correlation |
|----------------------------------------------------------------|-------------|----------------|---------------------------|
| HF                                                             | yes         | yes            | No                        |
| Density Functional Theory                                      | yes         | yes            | Yes                       |
| DFT Current Implementation                                     | no          | yes            | Yes                       |
| MPx (x=2, 3, 4, etc)                                           | no          | yes            | Yes                       |
| Coupled-Cluster (Truncated, CCD, CCSD, CCSD(T))                | no          | yes            | Yes                       |
| Quadratic Configuration Interaction<br>(QCID, QCISD, QCISD(T)) | no          | yes            | Yes                       |
| Configuration Interaction (Truncated, CISD)                    | yes         | no             | Yes                       |
| Full CI                                                        | yes         | yes            | Yes                       |
| CASSCF                                                         | yes         | Maybe yes      | No                        |
| CASPT2                                                         | no          | yes            | yes                       |
| MRCI (Truncated)                                               | Yes         | No             | yes                       |