Introduction to NGS
Data Analysis on the HPRC Clusters
Your Login Password

- Both state of Texas law and TAMU regulations prohibit the sharing and/or illegal use of computer passwords and accounts
- Don’t write down passwords
- Don’t choose easy to guess passwords
- Change passwords frequently

There will be a 10 minute break halfway through today's short course
For More Help...

Website: hprc.tamu.edu
Email: help@hprc.tamu.edu
Telephone: (979) 845-0219
Visit us in person: Henderson Hall, Room 114A

Help us, help you -- we need more info

- Which Cluster
- UserID/NetID
- Job id(s) if any
- Location of your jobfile, input/output files
- Application used if any
- Module(s) loaded if any
- Error messages
- Steps you have taken, so we can reproduce the problem
Using SSH - MobaXterm (on Windows)
Next Generation Sequencing (NGS)
Illumina Sequencing Technology

<table>
<thead>
<tr>
<th>NovaSeq 5000</th>
<th>Same as HiSeq</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.illumina.com/systems/sequencing-platforms.html</td>
<td>1 - 6 Tb</td>
</tr>
<tr>
<td>(Oct 2017)</td>
<td>6.6 billion</td>
</tr>
<tr>
<td></td>
<td>2 x 150 bp</td>
</tr>
<tr>
<td></td>
<td>19 - 40 hrs</td>
</tr>
<tr>
<td></td>
<td>no</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Methods</th>
<th>MiniSeq System</th>
<th>MiSeq Series</th>
<th>NextSeq Series</th>
<th>HiSeq Series</th>
<th>HiSeq X Series*</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Maximum Output</th>
<th>7.5 Gb</th>
<th>15 Gb</th>
<th>120 Gb</th>
<th>1500 Gb</th>
<th>1800 Gb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Reads per Run</td>
<td>25 million</td>
<td>25 million*</td>
<td>400 million</td>
<td>5 billion</td>
<td>6 billion</td>
</tr>
<tr>
<td>Maximum Read Length</td>
<td>2 x 150 bp</td>
<td>2 x 300 bp</td>
<td>2 x 150 bp</td>
<td>2 x 150 bp</td>
<td>2 x 150 bp</td>
</tr>
<tr>
<td>Run Time</td>
<td>4–24 hours</td>
<td>4–55 hours</td>
<td>12–30 hours</td>
<td><1–3.5 days (HiSeq 3000/HiSeq 4000) 7 hours–6 days (HiSeq 2500)</td>
<td><3 days</td>
</tr>
<tr>
<td>Benchtop Sequencer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Illumina Sequencing Technology

- small whole genomes, targeted sequencing, (non-metagenomic)
Illumina Sequencing Libraries

single end

- Genomic DNA
- Fragment (200-500bp)
- Ligate Adapters
- Sequenced region (read length) (~400 bp)

paired ends

- Genomic DNA
- Fragment (200-500bp)
- Ligate Adapters
- Sequenced regions (read length) (~400 bp)

mate pairs

- Genomic DNA (linearized) and the ends of the genomic DNA joined
- Sequenced region (~400 bp)

- Insert size (~2,000 bp)

- Fragment size (~400 bp)

illumina.com
Paired End Reads

Read 1 of a pair
100 base read length
dsDNA

~200 bp

~400 bp fragment size

Read 2 of a pair
100 base read length

Read 1 pair fastq file

```
@M00861:1:000000000-A36BE:1:1101:14650:1529 1:N:0:8
TTCTTAAAAATACCATAAAAGGCTTAAACTTGCCATTTACGACGGATTAATTCCAACTCTTTTCGGCTATCTTCATCTTTTAAGGTTAAATGACTCATAACGG
+
FFFHBFHIIIIIIFHIIIHFHHFHCGEFGHHIHHHIIHD/?DGHHH@DEB,5EGHGHHIHFIF?FGGHHCBBDFDHFGDFHGFDFHH?DFHDFHFFFHFFHHH
```

FASTQ format

Read 2 pair fastq file

```
@M00861:1:000000000-A36BE:1:1101:14650:1529 2:N:0:8
ACTAAAAATCAATTTTATCAATTTCAAGCTCTACCTTATTTACTCATTATTTTAGTGATGGCCACTTTAATAAAAATATTGGTAGCATATTTGCAATAGCGG
+
BFFHIHHHHFHHGDHIHHHHHGGHHHHFHHDFHHIIHIHH=AAFHIIHFHGHHHHGGHHHIIHFHGFHFEFFFFHGDHHH/CGHIFHFFHH
```
 Maintain Read Pair Order

Left Read 1 paired end fastq file

Right Read 2 paired end fastq file

DNA Fragment lengths will be different but sequence reads may all be the same length
MiSeq Can Perform Initial QC Trimming

DNA Fragment lengths will be different but sequence reads can have different lengths

Left Read 1 paired end fastq file

Right Read 2 paired end fastq file
PacBio Long Read Sequencing

Sequel Sequencer

Read lengths >20 kb
Data per SMRT Cell: 5–8 Gb

Half of data in reads: >20 kb
Top 5% of reads: >35 kb
Maximum read length: >60 kb

pacb.com
PacBio Long Read Sequencing

SMRTbell Template

Polymerase Read

+ Strand yellow
- Strand purple

Circular Consensus Sequence (Read of Insert)

Subreads

Shorter DNA fragment (5kb) equals more subreads and higher accuracy than longer (60kb)

pacb.com

m$\text{mmdd}_1\text{hmmmss}_2\text{hmmmss}_3\text{hmmmss}_4\text{hmmmss}_5$.bam

[1] "m" = movie
[2] Instrument Serial Number
PacBio Sequencing Tools

- **Sequence Alignments**
 - Minimap2, pbalign, blasr (pbbioconda)

- **Correct PacBio reads with Illumina reads (computationally intensive)**
 - Proovread,
 - LSC

- **Genome Assembly**
 - Canu: PacBio long read assembler
 - run in grid mode on Curie with no SUs charged
 - Unicycler: bacterial genomes

- **Improve draft assemblies**
 - ArrowGrid_HPRC (Terra)
 - Purge_Haplotigs (Terra)
 - Circlator

https://hprc.tamu.edu/wiki/Bioinformatics:PacBio_tools
NGS Tools on Ada
Where to Find NGS Tools

- TAMU HPRC Documentation
 - https://hprc.tamu.edu/wiki/index.php/Ada:Bioinformatics
- Type the following UNIX commands to see which tools are already installed on Ada
 - `module avail`
 - `module spider toolname`
 - `module key assembly`
 (not case sensitive, but read the entire output)
 (some modules may be missed because this searches tool descriptions)
- If you find a tool that you want installed on Ada, send an email with the URL link to: help@hprc.tamu.edu
 - SeqAnswers http://seqanswers.com/wiki/Software/list
 - Omictools.com
 - slideshare.net – find shared NGS presentations
Ada Software Toolchains

- Use the same toolchains in your job scripts

```
module load Bowtie2/2.2.6-intel-2015B
module load TopHat/2.1.0-intel-2015B
module load Cufflinks/2.2.1-intel-2015B
```

- Avoid loading mixed toolchains:

```
module load Bowtie2/2.2.2-ictce-6.3.5
module load TopHat/2.0.14-goolf-1.7.20
module load Cufflinks/2.2.1-intel-2015B
```

- Avoid loading defaults which may have different toolchains

```
module load Bowtie2 TopHat Cufflinks
```
The GCCcore Toolchain

- To minimize the number of software builds, the GCCcore-6.3.0 toolchain modules can be loaded alone or with any one of the following 2017A toolchains
 - intel/2017A
 - iomkl/2017A
 - foss/2017A

- Example of loading a GCCcore module with a 2017A module

  ```
  module load Bowtie2/2.3.3.1-GCCcore-6.3.0
  module load TopHat/2.1.1-intel-2017A-Python-2.7.12
  ```

- See a short table of compatible toolchains

 [toolchains]

 [hprc.tamu.edu/wiki/SW:Toolchains]
Python-version-bare modules

- You need to load a non ‘-bare’ Python version along with the -bare module
 - If you do not, then the older default OS Python version will be used
- Used in conjunction with GCCcore builds in order to reduce the number of software modules built.

```
intel/2017A iomkl/2017A foss/2017A
```

Three Examples of loading GCCcore Python -bare and a Python module with a 2017A toolchain

1. `module load Cython/0.25.2-GCCcore-6.3.0-Python-2.7.12-bare`
 `module load Python/2.7.12-foss-2017A`

2. `module load Cython/0.25.2-GCCcore-6.3.0-Python-2.7.12-bare`
 `module load Python/2.7.12-iomkl-2017A`

3. `module load Cython/0.25.2-GCCcore-6.3.0-Python-2.7.12-bare`
 `module load HISAT2/2.1.0-intel-2017A-Python-2.7.12`

Loads Python indirectly
Use `\$TMPDIR` whenever possible

- Use the `\$TMPDIR` if the application you are running can utilize a temporary directory for writing temporary files which are deleted when the job ends.
- A temp directory (`\$TMPDIR`) is automatically assigned for each job which uses the disk(s) on the compute node not the `\$SCRATCH` shared file system:
 - Especially useful when a computational tool writes tens of thousands of temporary files which are deleted when the job is finished and are not needed for the final results.
 - This is useful since files on `\$TMPDIR` will not count against your file quota.
 - Don't use `\$TMPDIR` if your software uses temporary files for restarting where it left off if it should stop before completion.
 - Will significantly speed up an mpiBLAST job.

```
java -Xmx53g -jar $EBROOTPICARD/FastqToSam.jar TMP_DIR=$\$TMPDIR \ 
FASTQ=$pe1_1 FASTQ2=$pe1_2 OUTPUT=$outfile SAMPLE_NAME=$sample_name \ 
SORT_ORDER=$sort_order MAX_RECORDS_IN_RAM='null'
```
Template Job Scripts
Access GCATemplate Scripts for Ada from the HPRC wiki

https://hprc.tamu.edu/wiki/Bioinformatics:Sequence_QC#FastQC

Genomic Computational Analysis Templates

Click to see template script on github
```bash
#!/bin/bash

# uses the bash login shell to initialize the job's execution environment.

# job name
jobname=

# assigns 2 cores for execution
nCPU=2

# reserves 250MB memory per core
memperCPU=2500

# sets to 1 hour the job's runtime wall-clock limit.
maxruntime=3600

# directs the job's standard output to stdout.jobid
stdout=stdout.%jobid

# directs the job's standard error to stderr.%jobid
stderr=stderr.%jobid

module load FastQC/0.11.6-Java-1.8.0

# ...FastQC examples...
```
Finding NGS job template scripts using GCATemplates on Ada

- Select #4 then find the template that contains fastqc
- Final step will save a template job script file to your current working directory
- After you save the template file:
 - module purge

```bash
mkdir $SCRATCH/ngs_class

cd $SCRATCH/ngs_class

module load GCATemplates

gcatemplates
```

For practice, we will copy a template file.

Genomic Computational Analysis Templates
Sample GCATemplate Job Script (Ada)

```ada
#BSUB -L /bin/bash
#BSUB -J blastx
#BSUB -n 1
#BSUB -R "span[ptile=1]"
#BSUB -R "rusage[mem=2500]"
#BSUB -M 2500
#BSUB -W 2:00
#BSUB -o stdout.%J
#BSUB -e stderr.%J

module load BLAST+/2.2.31-intel-2015B-Python-3.4.3

<<README
README

# blastx: search protein databases using a translated nucleotide query

blastx -query mrna_seq1s_nt.fasta -db /scratch/datasets/blast/nr \ -outfmt 10 -out mrna_seq1s_nt_blastout.csv
```
Sample GCATemplate Job Script (Ada)

```bash
#BSUB -L /bin/bash
#BSUB -J blastx
#BSUB -n 1
#BSUB -R "span[ptile=1]"
#BSUB -R "rusage[mem=2500]"
#BSUB -M 2500
#BSUB -W 2:00
#BSUB -o stdout.%J
#BSUB -e stderr.%J

module load BLAST+/2.2.31-intel-2015B-Python-3.4.3

<<README


README

# blastx: search protein databases using a translated nucleotide query

blastx -query mrna_seqs_nt.fasta -db /scratch/datasets/blast/nr \
-outfmt 10 -out mrna_seqs_nt_blastout.csv
```

These parameters are read by the job scheduler

Load the required module(s) first

This is a section of comments

This is a single line comment and not run as part of the script

This is the command to run the application

This means the command is continued on the next line;
The space before the \ is required
Do not put a space after the \
Quality Control (QC)
QC Evaluation

- Use FastQC to visualize quality scores
 - Displays quality score distribution of a subset of ~200,000 reads
 - Input is a fastq file or files
 - Can disable grouping (binning) of sequence regions
 - Will alert you of poor read characteristics
 - Can be run as a GUI or a command line interface

- FastQC will process using one CPU core per file
 - If there are 10 fastq files to analyze and 4 cores used
 - 4 files will start processing and 6 will wait in a queue
 - If there is only one fastq file to process then using 10 cores does not speed up the process
FastQC Exercise

- Use the GCATemplate for FastQC to submit a job evaluating the two sequence files
 - `gedit run_fastqc_0.11.6_ada.sh &`
 - `bsub < run_fastqc_0.11.6_ada.sh`

- After your fastqc job is complete, unzip the results file and you can view the results files with `lynx` and `eog` (eog requires X11 login)
 - `unzip DR34_R1_fastqc.zip`
FastQC Report using lynx

```
--- press space for next page ---
Arrow keys: Up and Down to move. Right to follow a link; Left to go back.
Help Options Print Go Main screen Quit /=search [delete]=history list
```

[Image: FastQC FastQC Report
Wed 9 Mar 2016
DR34_R1.fastqc.gz

Summary

- [PASS] Basic Statistics
- [PASS] Per base sequence quality
- [PASS] Per tile sequence quality
- [PASS] Per sequence quality scores
- [FAIL] Per base sequence content
- [PASS] Per sequence QC content
- [PASS] Per base N content
- [WARNING] Sequence Length Distribution
- [PASS] Sequence Duplication Levels
- [WARNING] Overrepresented sequences
- [PASS] Adapter Content
- [FAIL] Kmer Content

[OK] Basic Statistics

<table>
<thead>
<tr>
<th>Measure</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filename</td>
<td>DR34_R1.fastqc.gz</td>
</tr>
<tr>
<td>File type</td>
<td>Conventional base calls</td>
</tr>
<tr>
<td>Encoding</td>
<td>Sanger / Illumina 1.9</td>
</tr>
<tr>
<td>Total Sequences</td>
<td>946744</td>
</tr>
<tr>
<td>Sequences flagged as poor quality</td>
<td>0</td>
</tr>
<tr>
<td>Sequence length</td>
<td>35-251</td>
</tr>
<tr>
<td>%GC</td>
<td>39</td>
</tr>
</tbody>
</table>
FastQC Output Image Quality Distribution

eog DR34_R1_fastqc/Images/per_base_quality.png

click for the next image in the same directory, or use the left/right arrow keys

Prior to QC trimming
FastQC Output Image Quality Distribution

@ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTGAAAAAAACACACACATGCTCCTTATT
+ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100
@ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100
GATGTTTTGTTACTGATTGGAACCATGATTGGTGCTTTACTTGGTTTCTTCATTTAACACACAAATCGCCAAAGTATTTATGGAATGTAGGTAGTT
+ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100
BCCFDEFFHHHHHJJJFHIJJJJJFHIJJJ

FASTQ format

TATTTTAAGTGACCAAGGAATGACTCCCCAATCATGGCTGTATCAACTCCAAATTTTCTGCAACACTGCTGAAATATCTGCAAAATGCTCCTTGTGGA
+ERR504787.5.1 M00368:15:000000000-A0HKH:1:2:16161:12630-1 length=100
TATTTTAAGTGACCAAGGAATGACTCCCCAATCATGGCTGTATCAACTCCAAATTTTCTGCAACACTGCTGAAATATCTGCAAAATGCTCCTTGTGGA
+ERR504787.5.1 M00368:15:000000000-A0HKH:1:2:16161:12630-1 length=100
FastQC Output Image Quality Distribution

@ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTGAAAAACAAAAACATAATGCCGTAAA
+ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100
@ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100
GATGTTTTGTTACTGATGATGATGATGCTTACTGCTTACTCTTCTACTTAAACACCACAGCTGCGCCAAAGTATTTATGGGAGATGAGTAGTTAGTT
+ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100
BCCFDEFFHHHHHJJJFHIJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ
@ERR504787.5.1 M00368:15:000000000-A0HKH:1:2:16161:12630-1 length=100
TATTGACAGCAAGTAACTCCCATCAGCCTGCTTACTGCTTACTCCAAAAATTCTGCAACAGTGTAGTTAAATATCTGCAAATGCGTTTGCGAA
+ERR504787.5.1 M00368:15:000000000-A0HKH:1:2:16161:12630-1 length=100
CCCFFFFHHHHHJJ

FASTQ format

Average quality score distribution at position one
FastQC Output Image Quality Distribution

@ERR504787.2.1 M00368:15:000000000-A0HKH:1:5:21261:10968-1 length=100
GATCGGAAGAGCACACGTCTGAACTCCAGTCACGATCAGATCTCGTATGCCGTCTTCTGCTTG

ADDADAB

+:+<A:

@ERR504787.3.1 M00368:15:000000000-A0HKH:1:3:12724:25677-1 length=100
GATGTGTTTTACTGATTGGAACCATGATTGGTGCTTTACTTGGTTTCTTCCTTCTATTTAACACAGCGCTGCAAAGTGATTTATGGGAGATGTAGGTAGTT

BCCFDEFFHHHHJ

@ERR504787.5.1 M00368:15:000000000-A0HKH:1:2:16161:12630-1 length=100
TATTTTTAATGACCAAGGAAATGACTCTCCCAATCATGCTGATCACAATCCTCAAAATTTCCTCGACACGTCGCAATACTCGCAAATATGCGCTGTGCC

CCCFFFFFHHHHJ

Positions are ‘binned’ after the first few positions
Illumina Transposon Insertion Site

![per_base_sequence_content.png](https://example.com/per_base_sequence_content.png)
Illumina Transposon Insertion Site

File Edit View Image Go Help

Previous Next

Log2 (Obs/Exp)

Position in read (bp)

GCCCTAG
CTAGGCT
GTACCAC
TATACAG
CTAGCAC
GTCACAG
FastQC Flowcell Quality Image

MiSeq flowcell

Flowcell quality mapping
Good per_tile quality

per_tile_quality.png

Position in read (bp)
good quality poor quality
FastQC Flowcell Quality Image

bottom of flowcell

MiSeq flowcell

top of flowcell

good quality
poor quality

per_tile_quality.png
Failed QC Examples
Example 1. Expired MiSeq mate-pair kit (9 months expired)

FastQC Output Image
Failed Per base sequence quality
Example 2. Sequence prep adapters still on ends of DNA library fragments
FastQC Output Image
Flowcell: not good per_tile quality

Example 3. Faulty flowcell

MiSeq flowcell

good quality poor quality
QC Quality Trimming

- Sequence quality trimming tools
 - Trimmomatic will maintain paired end read pairing after trimming
 - Trim reads based on quality scores
 - Trim the same number of bases from each read or
 - Use a sliding window to calculate average quality at ends of sequences
 - Decide if you want to discard reads with Ns
 - some assemblers replace Ns with As or a random base G, C, A or T
 - Trim adapter sequences
 - Trimmomatic has a file of Illumina adapter sequences

```
module spider Trimmomatic
```

```
module load Trimmomatic/0.38-Java-1.8.0
```

```
ls $EBROOTTRIMMOMATIC/adapters/
```
Paired End Short Reads

- dsDNA
- Read 1 of a pair
 - 100 base read length
- Read 2 of a pair
 - 100 base read length
- ~200 bp
- Read 1 pair fastq file
 - @M00861:1:000000000-A36BE:1:1101:14650:1529 1:N:0:8
 - TTCTTAAAAATACCATAAAAGGCTTTAAACTTGGCATTTACGAGGATTTAATTCCCAACTCCTTTTTCGGCTATCTCATCTCTTTCAGTTAATGACTCATAACGG
 - +
 - FFFHBFFHHIHIHHIHIIHHHIHHIHHIIHHHD/?DGHHH@DEB,5EGGHHIIHIF?FGGHHHCBFDGHDHGHDGDFH?DFHDFHFFHEFFHHH

- Read 2 pair fastq file
 - @M00861:1:000000000-A36BE:1:1101:14650:1529 2:N:0:8
 - ACTAAAAATCATTTTATCATTGGCTCTACTCTATTACTATTTATTTAGTGATGGCCACTTTAATAAAATATTGGTAGCATATTTTGCAATACGG
 - +
 - BFFHIHHHHFHHHDGHIHIIHHHHHFFHDFHIIHIHDFHHIIHIHII=AAFHIIIFGPHHHIIIHGHHHHHIFFGHHHDFHGHGHHH/CGHIFIFFFF

~400 bp fragment size

FASTQ format
Trimming PE Short Sequence Reads

File 1 from sequencer

File 2 from sequencer

100 bases

Q C trim

100 bases

Q C trim

50 bases

\[\text{minimum read length} = 40 \]

Resulting FASTQ Files with trimmed reads

Paired end 1 trimmed file

Paired end 2 trimmed file
Trimming PE Short Sequence Reads

File 1 from sequencer

100 bases

QC trim

100 bases

File 2 from sequencer

100 bases

QC trim

20 bases

minimum read length = 40

Resulting FASTQ Files with trimmed reads

Paired end 1 trimmed file

Paired end 2 trimmed file

Single end reads
Merge Overlapping Paired End Short Read Reads

fragment 1
- dsDNA

fragment 2
- dsDNA
Merge Overlapping Paired End Short Read Reads

fragment 1
- dsDNA

fragment 2
- dsDNA

Paired end read 1 (left)
- Green

Paired end read 2 (right)
- Blue
Merge Overlapping Paired End Short Reads

Tools for merging overlapping reads:
- module spider FLASH
- module spider Coperead
- module spider PEAR
Mapping Reads to a Reference Assembly
Mapping Reads to a Reference Assembly

- Align reads using bwa
 - `module spider BWA`
 - bwa index files for UCSC genomes found here
 - `/scratch/datasets/genome_indexes/ucsc/mm10/bwa_0.7.12_index/`

- Align reads using bowtie or bowtie2
 - `module spider Bowtie`
 - Bowtie index files for UCSC genomes found here:
 - `/scratch/datasets/genome_indexes/ucsc/mm10/bowtie_index/`
 - `module spider Bowtie2`
 - Bowtie2 index files for UCSC found here:
 - `/scratch/datasets/genome_indexes/ucsc/mm10/bowtie2_index/`
Visualize bam File Alignments
Sample bam and reference files

```
cd $SCRATCH/ngs_class
```

For this samtools demo, add symbolic links* to the example files in your working directory

```
ln -s /scratch/training/intro_to_ngs/alignments/dr34.sam
```

Add a symbolic link to the example reference genome fasta file

```
ln -s /scratch/training/intro_to_ngs/genomes/c_dubliniensiis.fa
```

Use the tab key when typing these long paths

* The symbolic links are used to make the commands shorter for demonstration purposes only. You do not need to make symbolic links in order to use `samtools tview`
Sorting Alignment sam/bam Files

- Sequence Alignment/Map format (sam)
 - view sam files using the UNIX command: `more dr34.sam`

- Binary Alignment/Map format (bam)
 - Compressed (binary) sam files need samtools to view
 - `module load SAMtools/1.8-GCCcore-6.3.0`
 - Recommended: sort sam/bam file based on coordinate into bam format
 - `samtools sort -@ 1 -m 2G -o dr34.bam dr34.sam`
 - Create an index of the bam file using samtools
 - A samtools index is needed prior to viewing bam files in browsers
 - `samtools index dr34.bam`
 - `dr34.bam.bai`
Viewing bam files using samtools

- `samtools view dr34.bam | more` (view only alignments)
- `samtools view -H dr34.bam` (view only header)
- `samtools view -h dr34.bam | more` (view header + alignments)
Sam Flags and Bits

- Flags describe alignments (the flag value is the sum of bits)

Flags describe alignments (the flag value is the sum of bits)

- Filter bam alignments based on bit in flag (-f and/or -F)
 - Keep only reads that are 'mapped in proper pair'
    ```
    samtools view -h -b -f 2 dr34.bam > dr34_paired_reads.bam
    ```
 - Keep all except reads that are 'PCR or optical duplicate'
    ```
    samtools view -h -b -F 1024 dr34.bam > dr34_dedup_reads.bam
    ```
Sam Flags and Bits

https://broadinstitute.github.io/picard/explain-flags.html

SAM Flag is the sum of Bits

99 = 64 + 32 + 2 + 1
Alignment Statistics

samtools flagstat dr34.bam

150000 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary
0 + 0 supplementary
0 + 0 duplicates
140150 + 0 mapped (93.43% : N/A)
150000 + 0 paired in sequencing
75002 + 0 read1
74998 + 0 read2
85639 + 0 properly paired (57.09% : N/A)
136854 + 0 with itself and mate mapped
3296 + 0 singletons (2.20% : N/A)
909 + 0 with mate mapped to a different chr
56 + 0 with mate mapped to a different chr (mapQ>=5)

Both reads in the pair are mapped on the same chromosome and in FR or RF orientation
SAMtools without a Reference Genome

Reference genome represented on top as NNNNNNNNNN

```
samtools tview dr34.bam
```
SAMtools with a Reference Genome

Reference genome sequence displayed on top

```
samtools tview dr34.bam c dubliniensis.fa
```
SAMtools with a Reference Genome

Type ? for help menu

```
samtools tview dr34.bam c_dubliniensis.fa
```
View at a Specific Coordinate

```
samtools tview dr34.bam c_dubliniensis.fa -p 1:315398
```
Sequence Error Correction
In Short Reads
Sequencing Errors in Short Reads

Tool for correcting sequencing errors: **module spider Lighter**
Digital Normalization
Digital Normalization

Reduce memory requirements by reducing the number of redundant sequence reads if you have a very high sequencing coverage (> 200x)

Use the \texttt{bbnorm.sh} script in the BBMap module

\textbf{A Reference-Free Algorithm for Computational Normalization of Shotgun Sequencing Data}

C. Titus Brown1,2,\ast, Adina Howe2, Qingpeng Zhang1, Alexis B. Pyrko2, Timothy H. Brom1

1 Computer Science and Engineering, Michigan State University, East Lansing, MI, USA
2 Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
3 USDA Avian Disease and Oncology Laboratory, East Lansing, MI, USA
\ast E-mail: ctb@msu.edu
Sequence Variant Calling
Sequence Variant Calling

- Start with aligning reads to a reference
 - GATK does not require QC trimming
 - Mark PCR duplicates with Picard
- Differentiate between sequencing errors and SNPs
 - Calling SNPs may require a min read depth of 10x (higher for indels)
 - Calling variants may require 1/3 of reads to contain SNP
 - Strand bias may result as a consequence of the sequencing chemistry's response to certain DNA sequence motifs but it can be detected computationally
- BLAST reads with SNPs to identify variant calls due to misalignments especially with duplicated genes
- Variant Call Format (vcf) – standard format of variant calls
- Identify multiple-nucleotide polymorphism (MNP)
 - Two SNPs within a single codon
 - When might MNPs not be accurate?

<table>
<thead>
<tr>
<th>Codon</th>
<th>Translation</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTT</td>
<td>Phe</td>
</tr>
<tr>
<td>TTA</td>
<td>Leu</td>
</tr>
<tr>
<td>TAT</td>
<td>Tyr</td>
</tr>
<tr>
<td>TAA</td>
<td>STOP</td>
</tr>
</tbody>
</table>
Marking PCR Duplicates

- PCR duplicates are artifacts resulting from a PCR amplification step during NGS library preparations.
- PCR duplicates should be removed/marked as to not bias the frequency of variants or gene expression levels
 - Use picard tools to mark duplicates
 - Freebayes will ignore marked duplicates during variant calling

module spider picard
Variant Calling Tools

Use bam file of sequence reads aligned to a reference as input for the following four work flows

1. **GATK**
 - **module spider** GATK picard SAMtools
 - No need to QC trim reads, the GATK best practices pipeline will perform the necessary steps including marking PCR duplicates
 - You need a set of known variants for your species (dbSNP) or you can bootstrap your population to get variant frequency
 - Used in conjunction with other tools
 - samtools
 - picard

2. **SAMtools and BCFtools**
3. **VarScan**
4. **FreeBayes**
##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37
##phasing=partial
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Data">
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth">
##INFO=<ID=AF,Number=.,Type=Float,Description="Allele Frequency">
##INFO=<ID=AA,Number=1,Type=String,Description="Ancestral Allele">
##INFO=<ID=DB,Number=0,Type=Flag,Description="dbSNP membership, build 129">
##INFO=<ID=H2,Number=0,Type=Flag,Description="HapMap2 membership">
##FILTER=<ID=q10,Description="Quality below 10">
##FILTER=<ID=s50,Description="Less than 50% of samples have data">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Quality">
##FORMAT=<ID=GT,Number=1,Type=String,Description="Genotype">
##FORMAT=<ID=DP,Number=1,Type=Integer,Description="Read Depth">
##FORMAT=<ID=HQ,Number=2,Type=Integer,Description="Haplotype Quality">

<table>
<thead>
<tr>
<th>CHROM</th>
<th>POS</th>
<th>ID</th>
<th>REF</th>
<th>ALT</th>
<th>QUAL</th>
<th>FILTER</th>
<th>INFO</th>
<th>GT:GQ:DP:HQ</th>
<th>Sample1</th>
<th>Sample2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4370</td>
<td>rs6057</td>
<td>G</td>
<td>A</td>
<td>29</td>
<td>.</td>
<td>NS=2;DP=13;AF=0.5;DB;H2</td>
<td>0</td>
<td>0:48:1:52,51</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>7330</td>
<td>.</td>
<td>T</td>
<td>A</td>
<td>3</td>
<td>q10</td>
<td>NS=5;DP=12;AF=0.017</td>
<td>0</td>
<td>0:46:3:58,50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>110696</td>
<td>rs6055</td>
<td>A</td>
<td>G,T</td>
<td>67</td>
<td>PASS</td>
<td>NS=2;DP=10;AF=0.333,0.667;AA=T;DB</td>
<td>1</td>
<td>2:21:6:23,27</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>130237</td>
<td>.</td>
<td>T</td>
<td>.</td>
<td>47</td>
<td>.</td>
<td>NS=2;DP=16;AA=T</td>
<td>0</td>
<td>0:54:7:56,60</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>134567</td>
<td>microsat1</td>
<td>GTCT</td>
<td>G,TACT</td>
<td>50</td>
<td>PASS</td>
<td>NS=2;DP=9;AA=G</td>
<td>0/1:35:4</td>
<td>0/2:17:2</td>
<td></td>
</tr>
</tbody>
</table>

3 more columns not shown due to width of rows
vcf File Column Descriptions

##fileformat=VCFv4.0
##fileDate=20110705
##reference=1000GenomesPilot-NCBI37

#INFO
- **ID=NS**, **Number=1**, **Type=Integer**, **Description="Number of Samples With Data"**
- **ID=DP**, **Number=1**, **Type=Integer**, **Description="Total Depth"**
- **ID=AF**, **Number=1**, **Type=Float**, **Description="Allele Frequency"**
- **ID=AA**, **Number=1**, **Type=String**, **Description="Ancestral Allele"**
- **ID=DB**, **Number=0**, **Type=Flag**, **Description="dbSNP membership, build 129"**
- **ID=H2**, **Number=0**, **Type=Flag**, **Description="HapMap2 membership"**
- **FILTER=q10**, **Description="Quality below 10"**
- **FILTER=s50**, **Description="Less than 50% of samples have data"**

##FORMAT
- **ID=GQ**, **Number=1**, **Type=Integer**, **Description="Genotype Quality"**
- **ID=GT**, **Number=1**, **Type=String**, **Description="Genotype"**
- **ID=DP**, **Number=1**, **Type=Integer**, **Description="Read Depth"**
- **ID=HQ**, **Number=2**, **Type=Integer**, **Description="Haplotype Quality"**

##CHROM POS ID REF ALT QUAL FILTER INFO FORMAT Sample1 Sample2
2 4370 rs6057 G A 29 . NS=2;DP=13;AF=0.5;DB:H2 GT:GQ:DP:HQ 0|0:48:1:52,51 1|0:48:8:51,51
2 7330 rs6059 T A 3 . NS=5;DP=12;AF=0.017 GT:GQ:DP:HQ 0|0:46:3:58,50 0|1:3:5:65,3
2 110696 rs6055 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1|2:21:6,23,27 2|1:2:0:18,2
2 130237 . G T 47 . NS=2;DP=16;AA=T GT:GQ:DP 0|0:135:4 0/2:17:2
2 134567 microsat1 GTCT G,GTACT 50 PASS NS=2;DP=9;AA=G GT:GQ:DP:HQ 0|0:48:4:56,51 0|0:48:4:56,51

For variants that are phased, haplotypes are inherited together (paternal):
- Sample1 haplotypes: GTGT and GTTT
- Sample2 haplotypes: ATTT and GAGT

https://www.broadinstitute.org/gatk/guide/tagged?tag=phasing
Summarizing Variant Calls from Different Tools

The mean percentage with standard deviation of confidence variant calls with equal to or higher than the quality score threshold of 20 are represented for (A) Illumina data sets.

Huang et al 2015 doi:10.1038/srep17875
Consequence of Amino Acid Change

- Assess consequence of amino acid change based on sequence conservation across multiple species using the PROVEAN tool
- Variants with a score equal to or below -2.5 are considered “deleterious”
Annotate Variants

- A file of variant calls in vcf format is needed
- A reference sequence with gene annotations is needed
- snpEff annotates a vcf file
 - There are > 2,500 pre-built databases available and you can build your own if needed
 - Annotates MNP (multiple nucleotide polymorphism)
- Codon change due to two SNPs: ACA → GGA

```
5       325795 .   AC    GG    23.8901 .
AB=0.428571;ABP=3.32051;AC=1;AF=0.5;AN=2;AO=3;CIGAR=2X;DP=7;DPB=7;DPRA=0;EPP=3.73412;
EPPR=3.0103;GTI=0;LEN=2;MEANALT=1;MQM=33;MQMR=48.5;NS=1;NUMALT=1;ODDS=5.49681;PAIRED=0;
PAIREDR=0.5;PAO=0;PQA=0;PQR=0;PRO=0;QA=114;QR=150;RO=4;RPL=3;RPP=9.52472;RPPR=3.0103;
RPR=0;RUN=1;SAF=2;SAP=3.73412;SAR=1;SRF=2;SRP=3.0103;SRR=2;TYPE=mnp;technology.ILLUMINA=1;
ANN=GG|missense_variant|MODERATE|CD36_51230|CD36_51230|transcript|CAX41505.1|
protein_coding|1/1|c.1657_1658delACinsGG|p.Thr553Gly|1657/1851|1657/1851|553/616|
```
Viewing SNPs in a Diploid Organism

Strand:
- Blue = +
- Red = -

heterozygous SNP

homozygous SNP
Example of Sequencing Strand Bias

Can identify/estimate strand bias using values in vcf file

Strand bias counts:
SRF, SRR, SAF, SAR

Bias estimate:
SAP

Ion Torrent Proton

Strand:
Blue = +
Red = -
RNA-seq Overview
RNA-seq Applications

- Differential Expression (DE) and transcript abundance
 - HISAT2, Bowtie, TopHat, Cufflinks, Cuffmerge, Cuffdiff
 - DESeq and DESeq2 (R package)
 - EdgeR (R package)
- Transcriptome assembly (find isoforms and rare transcripts)
 - de novo (Trinity, Oases, SOAPdenovo-Trans)
 - reference based (Trinity, StringTie)
- Genome Annotation
 - Align to assembly for validation of gene models
- Variant Calling
 - STAR/Picard/GATK (Haplotype Caller (HC) in RNA-seq mode)
- de novo genome assembly scaffolding
 - L_RNA_scaffolder
- Identify fusion transcripts
 - tophat-fusion
Using more biological replicates instead of increasing sequencing depth resulted in improved accuracy of expression estimation. Use more biological replicates at lower sequencing depth is more beneficial than fewer samples at a higher sequencing depth. Increasing sequence depth is beneficial for exon or transcript-specific expression studies.
RNA-seq Transcriptome Assembly

- Assembly with a reference genome
 - `module spider Trinity`
 - `module spider HISAT2 Cufflinks`
 - `module spider Scripture`
 - `module spider StringTie`

- *de novo* assembly without a reference genome
 - `module spider Trinity`
 - `module spider Oases`
Digital Normalization for Transcriptome Assembly

- Reduce memory requirements by reducing the number of redundant sequence reads if you have a very high sequencing coverage (> 200x)
- Trinity 2.4.0+ automatically normalizes reads to a depth of 50
- The `bbnorm.sh` script in BBMap can normalize reads

```
module spider BBMap
```
Trinity – How it works:

- RNA-Seq reads
- Linear contigs
- de-Bruijn graphs
- Transcripts + Isoforms

Thousands of disjoint graphs

ideally one graph per gene/transcript

Broad Institute

Running Trinity on Ada

- Trinity uses 100,000s of intermediate files
 - Contact help@hprc.tamu.edu and request a file quota increase before running Trinity or use the $TMPDIR in your job script
 - Run one Trinity job at a time and check resource usage
 - **showquota**
 - It is recommended not to run multiple Trinity jobs unless you are using $TMPDIR
 - Trinity creates checkpoints and can be restarted if it stops due to file/disk quota met, out of memory or runtime
 - Checkpoints are not available when running Trinity in Galaxy
 - Checkpoints are not available if you use $TMPDIR with Trinity
 - need to rsync results from $TMPDIR at end of job script
 - checkpoints are stored in $TMPDIR which is deleted after job ends
- See GCATemplates for sample Trinity scripts
ChIP-seq
Chromatin immunoprecipitation (ChIP) is a technique for identifying and characterizing elements in protein-DNA interactions involved in gene regulation or chromatin organization.

Chromatin immunoprecipitation sequencing (ChIP-Seq) on the SOLiD™ system
Chromatin immunoprecipitation sequencing (ChIP-Seq) on the SOLiD™ system. Nature Methods 6, (2009)
The goal is to find a consensus DNA sequence among the sequences at each peak which will give us the DNA sequence motif that a protein recognizes and binds.

A sequence logo can be used to represent the DNA sequence motif where the protein binds.

Generate a sequence logo with the R package seqLogo.

```bash
module load R_tamu/3.3.1-intel-2015B-default-mt
```
ChIP-seq Tools

- Protein-DNA interactions
 - module spider MACS
 - module spider MACS2

- Subdivision of ChIP-seq regions into discrete signal peaks
 - module spider PeakSplitter

- Peak caller
 - module spider PeakRanger
 - module spider BroadPeak

- Identify enriched domains from histone modification ChIP-seq data
 - module spider SICER
Trimmomatic Exercise using GCATemplates on Ada

Genomic Computational Analysis Templates

- gcatemplates

For practice, we will copy a template file

- Select #4 then find the template that contains trimmomatic
- Save the template script to your pwd
- Review the template script contents
- submit the template script to the scheduler
- Review the output files
HPRC Resources

- **Free Help**
 - Send an email to help@hprc.tamu.edu if you have any questions regarding Bioinformatics tools usage on HPRC clusters
 - First spend some time investigating the error
 - read log files, stdout file, stderr file, tool manual
 - Google search
 - Google user groups: many are tool specific
 - Include details about your issue
 - Which cluster or which Galaxy you are using
 - Which tool you are using
 - Which modules you have loaded
 - Commands you used in your job script
 - Error messages you are seeing

- **HPRC NGS data analysis tools Documentation**
 - https://hprc.tamu.edu/wiki/Bioinformatics
Thank you
Any questions?