Introduction to CUDA
Programming

Jian Tao
jtao@tamu.edu

Spring 2020 HPRC Short Course
03/27/2020

High Performance TEXAS A&M

ﬁ ‘ Texas A&M Engineering }'&Fw Research Computing }'\II.VI Institute of
Experiment Station DIVISION OF RESEARCH Data Science



Schedule

e Partl. GPU as an Accelerator (70 mins)
e Break (10 mins)
e Partll. CUDA C/C++ Basics (30 mins)

e Part lll. CUDA Programming Abstractions (40 mins)



Part l. GPU as an
Accelerator




CPU GPU Accelerator




NVIDIA Tesla V100 with 21.1 Billion Transistors

NVIDIA Tesla V100 GPU is built on a 12 nm process size using HBM2 memory with 900
GB/s of bandwidth. It was announced in May 2017 and was NVIDIA's first chip to feature
Tensor cores, which have better deep learning performance than regular CUDA cores.



Why Computing Perf/Watt Matters?

4 N )
2.3 PFlops 7000 homes
fRAAAAAAAR CPU GPU Accelerator
ﬁﬁﬁ@ﬁﬁﬁﬁﬁﬁ Opt]mlzed for Optlmlzed for Many
Cnfwgr g g Serial Tasks Parallel Tasks
gl ]
ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ i o [
ucfencfenefensnsoss s s 3 S
fRAAAAAAAA mEmmmEm= mEmmamms
7‘0 7‘0 (= IE -- E E:.-:EJ
Megawatts Megawatts
\_ J /
Traditional CPUs are GPU-accelerated computing

not economically feasible started a new era



GPU Computing Applications

Libraries and Middleware

GPU Computing
Applications

Programming Languages

Directives

s (e.g. OpenACC)

Wrappers

Volta Architecture S ERASERES
(compute capabilities 7.x)
Pascal Architecture GeForce 1000 Series Quadro P Series Tesla P Series
(compute capabilities 6.x)

Maxwell Architecture Tegra X1 GeForce 900 Series Quadro M Series Tesla M Series
(compute capabilities 5.x)

Kepler Architecture Tegra K1 GeForce 700 Series Quadro K Series Tesla K Series
(compute capabilities 3.x) GeForce 600 Series

-_ . / ’\

Embedded > ! PPSfessional % {a Center
BSKEOp/L-aptop Workstation — &

[




Add GPUs: Accelerate Science Applications

Application Code

oy

Rest of Sequential
CPU Code

CPU

€

Compute-Intensive

G P U Functions

Use GPU to
Parallelize

o




HPC - Distributed Heterogeneous System

Accelerators (GPU, Xeon Phi, FPGA, etc) Accelerators (GPU, Xeon Phi, FPGA, etc)
C1 C2 C1 C2 C1 c2 C1 C2
L1 S1 L1 L1 S2 | L1 S1 L1 L1 | S2 |

ey e

Programming Models: MPI + (CUDA, OpenCL, OpenMP, OpenACC, etc.)



Amdahl's Law

1
(1-p)+2

Slatency (3 ) —

Sis the theoretical speedup of
the execution of the whole task;
s is the speedup of the part of
the task that benefits from
improved system resources; p
is the proportion of execution
time that the part benefiting
from improved resources
originally occupied.




CUDA Parallel Computing Platform

https://developer.nvidia.com/cuda-toolkit

r
Programming Libraries OpenACC RIS
Directives Languages

N Approaches “Drop-in” Acceleration Easily Accelerate Apps Maximum Flexibility
J
{ Nsight IDE h
Development . . CUDA-GDB debugger
N S Racanc Windows NVIDIA Visual Profiler
Environment GPU Debugging and Profiling
\ J

Open Compiler @LLVM Enables compiling new languages to CUDA platform, and
. = R CUDA languages to other architectures
Tool Chain f

ILE
INFRASTRUCTUR

Dynamic Parallelism HyperQ GPUDirect
Hardware

Capabilities



https://developer.nvidia.com/cuda-toolkit

3 Ways to Accelerate Applications

é Y

Applications
4 N N ( ™)
. . OpenACC Programmin
Libraries p . J J
Directives Languages
" J J y
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility



3 Ways to Accelerate Applications

[ Applications
4 N ( R
L OpenACC Programming
or— Directives Languages
" J
“Drop-in” Easily Accelerate Maximum

Acceleration Applications Flexibility



Libraries: Easy, High-Quality Acceleration

Using libraries enables GPU acceleration without in-depth
knowledge of GPU programming

Many GPU-accelerated libraries follow standard APls, thus
enabling acceleration with minimal code changes

Libraries offer high-quality implementations of functions
encountered in a broad range of applications

NVIDIA libraries are tuned by experts



Some GPU-accelerated Libraries

https://developer.nvidia.com/gpu-accelerated-libraries

NVIDIA cuBLAS NVIDIA cuRAND

GPU USIPL | IR
\Y Signal GPU Accel d Algeb GPI ]
Ima%%tgrroé?égsaing Linea?%lgigg JMatrg;\d Ag/\iltﬂacgr"e P“ NVIDIA cuFFT
~ o
.lI .I- | | | =
ROGUE WAVE

SOFTWARE ArrayFire Matrix Sparse Linear 0 C++ STL Features 0
IMSL Library Computations Algebra opan souts for CUDA Ay



http://code.google.com/p/thrust/downloads/list
https://developer.nvidia.com/gpu-accelerated-libraries

CUDA-accelerated Application with Libraries

* Step 1: Substitute library calls with equivalent CUDA library calls
saxpy ( .. ) — cublasSaxpy ( .. )

e Step 2: Manage data locality

- with CUDA: cudaMalloc (), cudaMemcpy (), etc.
- with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

* Step 3: Rebuild and link the CUDA-accelerated library

snvcc myobj.o —1 cublas



Explore the CUDA (Libraries) Ecosystem

A NVIDIA ACCELERATED COMPUTING

* CUDA Tools and
Ecosystem described
in detail on NVIDIA
Developer Zone.

,C

Accelerated
Solutions

GPUs are accelerating
many applications across
numerous industries.

Learn more >

Language and
APIs

GPU acceleration can be
accessed from most
popular programming
languages.

Key Technologies
Learn more about parallel
computing technologies
and architectures.

_earn more >

Downlo Training

Numerical
Analysis Tools
GPU acceleration for
applications with high
arithmetic density.
Learn more >

Performance
Analysis Tools

Find the best solutions for
analyzing your
application's performance
profile.

Accelerated Web
Services

Micro services with visual
and intelligent capabilities
using deep learning.

Learn more >

https://developer.nvidia.com/tools-ecosyste

m

Forums

GPU-Accelerated
Libraries

Application accelerating
can be as easy as calling a

library function.

Learn more >

Debugging
Solutions
Powerful tools can help
debug complex parallel
applications in intuitive
ways.

Learn more >

Cluster
Management
Managing your cluster and
job scheduling can be
simple and intuitive.

Learn more »


https://developer.nvidia.com/tools-ecosystem
https://developer.nvidia.com/tools-ecosystem

3 Ways to Accelerate Applications

[ Applications ]
4 )

OpenACC Programming

Directives Languages
. J

4 )

Libraries

“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility



OpenACC Directives

CPU GPU

(

b(ogram myscience
. serial code ..
'Sacc kernels

do k = 1,nl
do i = 1,n2
. parallel code .,r
enddo

OpenACC
compiler
Hint

enddo
!Sacc end kernels

End Program myscience

Simple Compiler hints

Compiler Parallelizes
code

Works on many-core
GPUs & multicore CPUs



OpenACC [L8/shilalH e

More Science, Less Programming

The Standard for GPU Directives

* Easy: Directives are the easy path to accelerate compute
intensive applications

* Open: OpenACCis an open GPU directives standard, making
GPU programming straightforward and portable across
parallel and multi-core processors

 Powerful: GPU Directives allow complete access to the
massive parallel power of a GPU



Directives: Easy & Powerful

Real-Time Object Valuation of Stock Portfolios Interaction of Solvents and
Detection using Monte Carlo Biomolecules
Global Manufacturer of Global Technology Consulting | University of Texas at San Antonio
Navigation Systems Company

5x in 40 Hours 2x in 4 Hours 5x in 8 Hours



3 Ways to Accelerate Applications

[ Applications ]
(- (- )
. . OpenACC Programmin
Libraries Pen” J J
Directives Languages
. . J
“Drop-in” Easily Accelerate Maximum
Acceleration Applications Flexibility



GPU Programming Languages

Numerical analytics
Fortran

C

C++

Python

Julia / Java

>

v VvV VvV V V

MATLAB, Mathematica, LabVIEW
OpenACC, CUDA Fortran
OpenACC, CUDA C, OpenCL
Thrust, CUDA C++, OpenCL
PyCUDA, PyOpenCL, Copperhead
CUDAnative/JCuda



Rapid Parallel C++ Development

Resembles C++ STL
High-level interface
* Enhances developer productivity

* Enables performance portability
between GPUs and multicore

CPUs
Flexible
* CUDA, OpenMP, and TBB
backends

* Extensible and customizable
* Integrates with existing software
Open source

//:;;ust:

thrust:

thrust:
thrust:

thrust:

4

:host _vector<int> h _vec (32 << 20);
:generate (h_vec.begin(),

h vec.end(),
rand) ;

:device vector<int> d _vec = h_vec;

:sort(d_vec.begin(), d vec.end()):

:copy (d_vec.begin() ,

d _vec.end(),
h vec.begin())

~

/

https://thrust.github.io/



https://thrust.github.io/

Learn More

These languages are supported on all CUDA-capable GPUs.
You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++ Alea GPU
http://developer.nvidia.com/cuda-toolkit http://www.aleagpu.com

Thrust C++ Template Library

http://developer.nvidia.com/thrust MATLAB
http://www.mathworks.com/discovery/
CUDA Fortran matlab-gpu.html
https://developer.nvidia.com/cuda-fortran
Mathematica
PyCUDA (Python) http://www.wolfram.com/mathematica/

httQS://develoger.nVidia.Com/QYCUda neW_in_8/Cuda_and_ODenc|_SuDport/



http://www.mathworks.com/discovery/matlab-gpu.html
http://www.mathworks.com/discovery/matlab-gpu.html
http://developer.nvidia.com/cuda-toolkit
http://developer.nvidia.com/thrust
https://developer.nvidia.com/cuda-fortran
http://www.aleagpu.com
https://developer.nvidia.com/pycuda
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/
http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/

Part Il. CUDA C/C++ BASICS

<ANVIDIA.
| CUDA. |




What is CUDA?

* CUDA Architecture
— Used to mean “Compute Unified Device Architecture”

— Expose GPU parallelism for general-purpose computing
— Retain performance

e CUDA C/C++
— Based on industry-standard C/C++

— Small set of extensions to enable heterogeneous
programming
— Straightforward APIs to manage devices, memory etc.



A Brief History of CUDA

Researchers used OpenGL APIs for general purpose
computing on GPUs before CUDA.

In 2007, NVIDIA released first generation of Tesla GPU for
general computing together their proprietary CUDA
development framework.

Current stable version of CUDA is 10.2 (as of Mar. 2020).



Heterogeneous Computing

= Terminology:
The CPU and its memory (host memory)
The GPU and its memory (device memory)

eo“

R
ot
_ \o;e cs:% «\\\1

; gca\a,«-\""




Heterogeneous Computing

#include <iostream>
#include <algorithm>

using namespace std;

#define N 1024
#define RADIUS 3
#define BLOCK_SIZE 16

__global_ void stencil_1d(int *in, int *out) {
__shared__ int temp[BLOCK_SIZE + 2 * RADIUS};
int gindex = threadidx.x + blockldx.x * blockDim.x;
int lindex = threadldx.x + RADIUS;

I/ Read input elements into shared memory
templiindex] = in[gindex];
if (threadidx.x < RADIUS) {

temp[lindex - RADIUS] = in[gindex - RADIUS];

s e AT ~ parallel function

I/ Synchronize (ensure all the data is available)
__syncthreads();

1/ Apply the stencil

int result =

for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
result += temp[lindex + offset];

1/ Store the result

outlgindex] = result; -
) .
void fill_ints(int *x, int n) {

fil_n(x, n, 1);
}

int main(void) { o
int *in, *out; I/ host copies of a, b, ¢

M UpeRedate serial code
int size = (N + 2'RADIUS) * sizeof(int); -

I/ Alloc space for host copies and setup values

in = (int “)malloc(size); fill_ints(in, N +2"RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);

I/ Alloc space for device copies
cudaMalloc((void **)&d_in, size);
cudaMalloc((void **)&d_out, size);

II Copy to device q

{_in, in, size, ToDevice);

Cout, out, size, fostToDevice); L p a ra e ( '0 e
II Launch stencil_1d() kernel on GPU.
stencil_1d<<<N/BLOCK_SIZE,BLOCK_SIZE>>>(d_in + RADIUS, d_out +

RADIUS);

1l Copy result back to host
d_out, size, DeviceToHost);

o | serial code

free(in); free(out);
cudaFree(d_in); cudaFree(d_out);
return 0;




Simple Processing Flow

1. Copy input data from CPU memory
to GPU memory




Simple Processing Flow

e

1. Copy input data from CPU memory to
GPU memory

2. Load GPU program and execute,
caching data on chip for performance




Simple Processing Flow

PU
< PCI Bus > —

CPU Memory N

[T
P4
7
L adiim

Copy input data from CPU memory to
GPU memory

Load GPU program and execute,
caching data on chip for performance
Copy results from GPU memory to
CPU memory

DRAM




Unified Memory

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016

! $ ‘ !

Unified Memory



Unified Memory

A managed memory space where all processors see a
single coherent memory image with a common address
space.

Memory allocation with cudaMallocManaged().
Synchronization with cudaDeviceSynchronize ().

Eliminates the need for cudaMemcpy () .
Enables simpler code.

Hardware support since Pascal GPU.



Hello World!

main ( ) {
printf ("Hello World!\n");
0; Output:
}

$ nvcc hello world.cu
$ ./a.out

e Standard C that runs on the host $ Hello World!

e NVIDIA compiler (nvcc) can be
used to compile programs with no
device code



Hello World! with Device Code

mykernel ( ) {

main ( ) |
mykernel<<<1l,1>>>() ;
printf ("Hello World!\n") ;
0;
}

= Two new syntactic elements...



Hello World! with Device Code

~_global  void mykernel (void) {
}

* CUDA C/C++ keyword global  indicates a function that:

— Runs on the device
— Is called from host code
* nvcc separates source code into host and device components

— Device functions (e.g. mykernel () ) processed by NVIDIA
compiler

— Host functions (e.g. main () ) processed by standard host
compiler

* gCC, icc, etc.



Hello World! with Device Code

mykernel<<<1l,1>>>() ;

* Triple angle brackets mark a call from host code to device
code

— Also called a “kernel launch”
— We'll return to the parameters (1, 1) in a moment

* That’s all that is required to execute a function on the GPU!



Hello World! with Device Code

mykernel ( ) {
}
main ( ) |
mykernel<<<1l,1>>>() ; Output:
printf ("Hello World'\n");
0; Snvce hello.cu
} $./a.out

Hello World!

 mykernel () does nothing!



Parallel Programming in CUDA C/C++

« But wait... GPU computing is about
massive parallelism!

 We need a more interesting example...

« We'll start by adding two integers and
build up to vector addition



Addition on the Device
e Asimple kernel to add two integers

add ( *a, *b, *c) {
*c = *a + *b;

}
* As before is a CUDA C/C++ keyword
meaning
— add() Will execute on the device
— add() Will be called from the host



Addition on the Device

* Note that we use pointers for the variables

add ( *a, *b, *c) {
*c = *a + *b;

}
* add() runs on the device, so a, b, and ¢ must
point to device memory

* We need to allocate memory on the GPU.



Memory Management

 Host and device memory are separate entities
pointers point to GPU memory
May be passed to/from host code
May not be dereferenced in host code
pointers point to CPU memory
May be passed to/from device code
May not be dereferenced in device code

* Simple CUDA API for handling device memory

— cudaMalloc (), cudaFree (), cudaMemcpy ()
— Similar to the C equivalentsmalloc (), free (), memcpy ()




Addition on the Device: add ()

e Returning to our add() kernel

add ( *a, *b, *c) {

*c = *a + *b;

e Let’s take a look at main()...



Addition on the Device: main ()

int main(void) {
int a, b, c¢;
int *d_a, *d b, *d c;

int size = sizeof (int);

cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);



Addition on the Device: main ()

cudaMemcpy (d_a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

add<<<1l,1>>>(d a, d b, d c);
cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

cudaFree (d_a); cudaFree(d b); cudaFree(d c);

return O;



Moving to Parallel

 GPU computing is about massive parallelism

— So how do we run code in parallel on the device?

add<<< 1, 1 >>>();

add<<< 1M, 1 >>>();

* Instead of executing add () once, execute N
times in parallel



Vector Addition on the Device

 With add () running in parallel we can do vector addition

 Terminology: each parallel invocation of add () is referred to as a
block

— The set of blocks is referred to as a grid

— Each invocation can refer to its block index using blockIdx.x
__global  wvoid add(int *a, int *b, int *c) {

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* ByusingblockIdx.xtoindexinto the array, each block handles
a different element of the array.



Vector Addition on the Device

__global  void add(int *a, int *b, int *c) {
c[blockIdx.x] a[blockIdx.x] + b[blockIdx.x];

* On the device, each block can execute in parallel:

Block O Block 1 Block 2 Block 3

c[0] = a[0] + b[0]; c[l] = a[l] + b[1l]; c[2] = a[2] + b[2]; c[3] = al[3] + b[3];



Vector Addition on the Device: add ()
e Returning to our parallelized aqa() kernel

~_global  void add(int *a, int *b, int *c) {
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

* Let’s take a look at main()...



Vector Addition on the Device: main ()

main(void) {

*d_a, *d_b, *d_c;

size = (int);
(( **)&d _a, size);
(( **)&d b, size);
(( **)&d c, size);
a = ( *) (size); random ints(a, N);
b = ( *) (size); random ints(b, N);
c = ( *) (size);



Vector Addition on the Device: main ()

(d_a, a, size, cudaMemcpyHostToDevice) ;
(d_ b, b, size, cudaMemcpyHostToDevice) ;

add<<<i,1>>>(d_a, d b, d c);
(c, d ¢, size, cudaMemcpyDeviceToHost) ;

(a); (b) ; (c);
(d_a); (d_b); (d_c);

return O0;



Vector Addition with Unified Memory

__global  void VecAdd(int *ret, int a, int b) {
ret[blockIdx.x] = a + b + blockIdx.x;
}

int main() {
int *ret;
cudaMallocManaged (&ret, 1000 * sizeof(int));
VecAdd<<< 1000, 1 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf ("%d: A+B = %d\n", i, ret[i]);

cudaFree (ret) ;

return O0;




Vector Addition with Managed Global Memory

device =~ managed = int ret[1000];

__global  void VecAdd(int *ret, int a, int b) {
ret[blockIdx.x] = a + b + blockIdx.x;

}

int main() {
VecAdd<<< 1000, 1 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf("%d: A+B = %d\n", i, ret[i]):

return O;




Profiling with nvprof

==28491== Profiling result:

Time (%) Time Calls
43.45% 4.3520us 1
30.35% 3.0400us 2
26.20% 2.6240us 1

==28491== API calls:

Time (%) Time Calls
99.34% 231.73ms 3

0.33% 766.63us 182
0.15% 357.72us 2
0.08% 175.05us 3
0.03% 75.722us 1
0.03% 74.091us 3
0.03% 65.073us 2
0.00% 4.6390us 3
0.00% 4.4490us 3
0.00% 2.7070us 6
0.00% 1.9940us 1

Avg
4 .3520us
1.5200us
2.6240us

Avg
77.242ms
4.2120us
178.86us
58.351us
75.722us
24 .697us
32.536us
1.5460us
1.4830us

451ns
1.9940us

Min
4.3520us
1.3120us
2.6240us

Min
6.1990us

171ns
173.06us
6.6470us
75.722us
10.865us
30.391us
221ns
434ns
196ns
1.9940us

Max
4.3520us
1.7280us
2.6240us

Max
231.71ms
143.74us
184 .67us
147.94us
75.722us
35.014us
34.682us
3.9590us
3.3590us

777ns
1.9940us

$nvprof add parallel

Name

add (int*, int*, int*)
[CUDA memcpy HtoD]
[CUDA memcpy DtoH]

Name

cudaMalloc
cuDeviceGetAttribute
cuDeviceTotalMem
cudaFree
cudalaunch
cudaMemcpy
cuDeviceGetName
cudaSetupArgument
cuDeviceGetCount
cuDeviceGet
cudaConfigureCall



Review (1 of 2)

 Difference between host and device
— CPU
— GPU

e Using to declare a function as device code
— Executes on the device
— Called from the host

* Passing parameters from host code to a device
function



Review (2 of 2)

* Basic device memory management

— cudaMalloc()
— cudaMemcpy()

— cudaFree()

* Launching parallel kernels

— Launch N copies of add() with add<<<N,1>>>(...).
— Use to access block index.

— Use nvprof for collecting & viewing profiling data.



More Resources

® You can learn more about the details at

o CUDA Programming Guide (docs.nvidia.com/cuda)

o CUDA Zone —tools, training, etc. (developer.nvidia.com/cuda-zone)
o Download CUDA Toolkit & SDK (www.nvidia.com/getcuda)
o Nsight IDE (Eclipse or Visual Studio) (www.nvidia.com/nsight)

® Intermediate CUDA Programming Short Course

o GPU memory management and unified memory
o Parallel kernels in CUDA C

o Parallel communication and synchronization

o Running a CUDA code on Ada

o Profiling and performance evaluation


http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-zone
http://www.nvidia.com/getcuda
http://www.nvidia.com/nsight

Part lll. CUDA Programming
Abstractions




Key Programming Abstractions

Three key abstractions that are exposed to
CUDA programmers as a minimal set of
language extensions:

e a hierarchy of thread groups
e shared memories

* barrier synchronization



Glossary

« Thread is an abstract entity that represents
the execution of the kernel, which is a small
program or a function.

e Grid is a collection of Threads. Threads in a
Grid execute a Kernel Function and are
divided into Thread Blocks.

* Thread Block is a group of threads which
execute on the same multiprocessor (SMX).
Threads within a Thread Block have access
to shared memory and can be explicitly
synchronized.

Gnrd

Block (0 0)

Blodk (1, 0)

Block (2. 0)

Block (@ 1)

Blodk (1, 1)

% (2 1)

Block (1, 1)




CUDA Kernels

* CUDA kernels are C functions that, when called, are executed
N times in parallel by N different CUDA threads.

* Akernelis defined with _ global  declaration specifier.

// Kernel definition
~_global  void VecAdd(float* A, float* B, float* C)
{

int 1 = threadIdx.x;
C[i] = A[i] + B[i];
}



Kernel Invocation

® The number of CUDA threads that execute a kernel is specified
using a new <<<. . . >>>execution configuration syntax.

e Each thread that executes the kernel is given a unique thread ID
that is accessible within the kernel through the built-in
3-component vector threadIdx.

// Kernel Invocation with N threads
VecAdd<<<l, N>>>(A, B, C);



Example 1 - Kernel Definition

// Kernel definition

__global void MatAdd(float A[N] [N], float B[N][N],
float C[N] [N])

{

int i = threadldx.x;

int j = threadIdx.y;

C[i][3] = A[1][3J] + B[i]l[3]~
}



Example 1 - Kernel Invocation

// Kernel invocation
int main|()

{

// Call kernel with one block of N * N * 1 threads
int numBlocks = 1;
dim3 threadsPerBlock (N, N);
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);



Hierarchy of Threads




Thread Hlerarchy -

1D, 2D, or 3D threads can form 1D,
2D, or 3D thread blocks.

1D, 2D, or 3D blocks can form 1D,

2D, or 3D grid of thread blocks

 The number of threads per block

and the number of blocks per grid

are specified in the <<<.. . .>>>

e 2 e A o o o

Grid 1

+ Block

(0,0)

Block
(1,0)

@1

Block” |

Block |
(1,1 |
T

’ '
2, -
Grid2
< '

Block (1. 1




Thread Hierarchy -

rd

* Each block within the grid can be
identified by an index accessible within
the kernel through the built-in

G

Block (@ 0) || Blodk (1, 0) | Block (2. 0)
Block (0 1) Blodk (1, 1)

3-component vector blockIdx.

%(2 1)

 The dimension of the thread block is
accessible within the kernel through
the built-in 3-component vector

Block (1, 1)

blockDim.




Thread Index and Thread ID

1D

thread ID is the same as the index of a thread

2D
for a two-dimensional block of size (blockDim.x, blockDim.y),
the thread ID of a thread of index (x, y) is (x +y * blockDim. x)

3D

for a three-dimensional block of size (blockDim.x, blockDim.y,
blockDim. z), the thread ID of a thread of index (x, y, z)is

(x+ y*blockDim.x + z*blockDim.x * blockDim.y)



Indexing Arrays with Blocks and Threads

* Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x
0/1/2/3/4/5/6/7/012345867

\ A
Y Y

blockIdx.x = 2 blockIdx.x = 3

e WithblockDim.x threads/block, the thread is given by:
index = threadIdx.x + blockIdx.x * blockDim.x;



Indexing Arrays: Example

e Which thread will operate on the red element?

‘0 112/3/4,6/6|7(8|9/10/11 12131415161718192022232425262728293031]

threadIdx.x = 5
/

‘ 012346701234567’
\

v J
blockIdx.x = 2

int index = threadIdx.x + blockIdx.x * blockDim.x;
5 + 2 * 8

21



Example 2 - Kernel Definition

// Kernel definition

__global void MatAdd(float A[N] [N], float B[N][N],
float C[N] [N])

{

int 1

blockIdx.x * blockDim.x + threadIdx.x;
int j = blockIdx.y * blockDim.y + threadIdx.y;
if (1 < N && j < N)

Clil[j] = A[i]1[j] + BIil[3];



Example 2 - Kernel Invocation

// Kernel invocation
int main()

{

// run kernel with multiple blocks of 16*16*1 threads
dim3 threadsPerBlock (16, 16) ;

dim3 numBlocks (N / threadsPerBlock.x, N /
threadsPerBlock.y) ;
MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);



Handling Arbitrary Vector Sizes

« Typical problems are not friendly multiples of

o Avoid accessing beyond the end of the arrays:

VecAdd ( *A, *B, *C, n) {
index = threadIdx.x + blockIdx.x *
if (index < n)
C[index] = A[index] + B[index];

}
Update the kernel launch:M = blockDim. x
VecAdd<<k< , M>>>(A, B, C, ) ;



Why Bother with Threads?

* Threads seem unnecessary
— They add a level of complexity
— What do we gain?

* Threads within a block can cooperate by sharing
data through some shared memory

* by synchronizing their execution to coordinate
memory accesses with _ syncthreads ()



Memory Hierarchy

L o




Hierarchical Memory Structure

e Each thread has access to registers
and private local memory.

 Each thread block has shared
memory visible to all threads of the
block and with the same lifetime as

the block.

* All threads have access to global

nmoarnmnvrn/

= _ Per-thread locl
memory

Thread Block

W e 3 Per-block shared
- e Y




Memory Spaces

* Register, local, shared, global, constant (read only),
and texture (read only) memory are the memory
spaces available.

e Only register and shared memory reside on GPU.

e The global, constant, and texture memory spaces
are cached and persistent across kernel launches by
the same application.



Memory: Scope and Performance

Data in register memory is visible only to the thread and lasts only for the lifetime
of that thread.

Local memory has the same scope rules as register memory, but performs slower.

Data stored in shared memory is visible to all threads within that block and lasts
for the duration of the block.

Data stored in global memory is visible to all threads within the application
(including the host), and lasts for the duration of the host allocation.

Constant memory is used for data that will not change over the course of a kernel
execution and is read only.

Texture memory is another variety of read-only memory on the device.



Using Global Memory

e Linear memory is typically allocated using
cudaMalloc () and freed using cudaFree () and
data transfer between host and device is done using

cudaMemcpy () .

e Linear memory can also be allocated through
cudaMallocPitch () and cudaMalloc3D () and
transferred using cudaMemcpy2D () and
cudaMemcpy3D () with better memory alignment.



Using Shared Memory

e Much faster than global memory.

e Allocated usingthe  shared memory space
specifier.

shared float A[BLOCK SIZE] [BLOCK SIZE];

e Shared memory shall be used as a cache for global
memory to exploit locality of the code.



Example 3 - Matrix Multiplication w/o SM

dth-1

[~ B.wi

Each thread computes one element of C i ¥
by accumulating results into Cvalue.

__global  void MatMulKernel (Matrix A, Matrix B,
Matrix C)
{ 1A C
float Cvalue = 0;
int row = blocklIdx.y * blockDim.y + threadIdx.y;
int col = blockIdx.x * blockDim.x + threadIdx.x;
for (int e = 0; e < A.width; ++e)
Cvalue += A.elements[row * A.width + e] * Ak @
B.elements[e * B.width + col];
C.elements[row * C.width + col] = Cvalue;
} A.width B.width

B.height

A.height

\ 4

v
A

“

A.hei_ght»l



Example 4 - Matrix Multiplication with SM

Each thread computes one element of
Csub // by accumulating results into
Cvalue

for (int m = 0; m < (A.width / BLOCK SIZE); ++m) {
Matrix Asub = GetSubMatrix (A, blockRow, m);
Matrix Bsub = GetSubMatrix (B, m, blockCol) ;
__shared  float As[BLOCK SIZE] [BLOCK SIZE];
__shared  float Bs[BLOCK_SIZE] [BLOCK SIZE];
As[row] [col] = GetElement (Asub, row, col);
Bs[row] [col] = GetElement (Bsub, row, col);
__syncthreads() ;
for (int e = 0; e < BLOCK_SIZE; ++e)

Cvalue += As[row] [e] * Bs[e] [col];

__syncthreads() ;

1o

| |BLOCK_SIZE

—r———>
BLOCK_SIZE BLOCK_SIZE

A.width

< I
L 2 L

BLOCK_SIZE BLOCK_SIZE

<
<

BLOCK_SIZE-1

0 col

1= |

S
BLOCK_SIZE

E

BLOCK_SIZE

B.width

B.height

A.height

>
ol

3
A4
A

v



Review - 1

* Launching parallel kernels

— Launch ~ copies of adda () With ada<<<w/m,M>>>(..) ;
— Use biockIdx.x tO access block index

— Use thread1dx.x to access thread index within block

e Allocate elements to threads:

int index = threadlIdx.x + blockIdx.x * blockDim.x;



Review - 2

* Launching parallel threads

— Launch x blocks with b1ockpim.x threads per block with
kernel<<<N, blockDim.x>>>(..);

— Use b1ock1dx.x t0 access block index within grid

— Use tnreadrdx.x to access thread index within block

e Allocate elements to threads:

int index = threadIdx.x + blockIdx.x * blockDim.x;



Review - 3

 Use shared to declare a variable/array in
shared memory

— Data is shared between threads in a block

— Not visible to threads in other blocks

* Use syncthreads() as a barrier

— Use to prevent data hazards



Unified Memory
Programming




Unified Memory

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016

i ﬂ i
1 1 ¢




Unified Memory

* A managed memory space where all
processors see a single coherent memory
image with a common address space.

* Eliminates the need for cudaMemcpy () .

* Enables simpler code.

e Equipped with hardware support since Pascal.



Example 5 - Vector Addition w/o UM

__global  void VecAdd( int *ret, int a, int Db) {
ret[threadIldx.x] = a + b + threadIdx.x;
}
int main() {
int *ret;
cudaMalloc (&ret, 1000 * sizeof(int)) ;
VecAdd<<< 1, 1000 >>>(ret, 10, 100);
int *host ret = (int *)malloc (1000 * sizeof(int));
cudaMemcpy (host_ret, ret, 1000 * sizeof(int), cudaMemcpyDefault) ;
for(int i=0; i<1000; i++)
printf ("%d: A+B = %d\n", i, host ret[i]);
free (host ret);
cudaFree (ret) ;

return O0;



Example 6 - Vector Addition with UM

__global  void VecAdd(int *ret, int a, int b) {

}

ret[threadldx.x] = a + b + threadIdx.x;

int main() {

int *ret;
cudaMallocManaged (&ret, 1000 * sizeof (int));
VecAdd<<< 1, 1000 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)

printf ("%d: A+B = %d\n", i, ret[i]);
cudaFree (ret) ;
return O;



Example 7 - Vector Addition with
Managed Global Memory

__device =~ managed  int ret[1000];

__global  void VecAdd(int *ret, int a, int b) {

ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {
VecAdd<<< 1, 1000 >>>(ret, 10, 100);
cudaDeviceSynchronize () ;
for(int i=0; i<1000; i++)
printf("%d: A+B = %d\n", i, ret[i]):
return O;



Managing Devices




Coordinating Host & Device

* Kernel launches are asynchronous

— Control returns to the CPU immediately

* CPU needs to synchronize before consuming the results

cudaMemcpy ()

cudaMemcpyAsync ()

cudaDeviceSynchronize ()

Blocks the CPU until the copy is complete. Copy
begins when all preceding CUDA calls have
completed

Asynchronous, does not block the CPU

Blocks the CPU until all preceding CUDA calls have
completed



Reporting Errors

* All CUDA API calls return an error code (cudakrror t)
— Error in the API call itself or
— Error in an earlier asynchronous operation (e.g. kernel)

e Get the error code for the last error:
cudaError t cudaGetLastError (void)

e Get a string to describe the error:

char *cudaGetErrorString(cudaError t)
printf ("$s\n",cudaGetErrorString (cudaGetLastError ())

) ;



Device Management

* Application can query and select GPUs

cudaGetDeviceCount (int *count)

cudaSetDevice (int device)

cudaGetDevice (int *device)

cudaGetDeviceProperties (cudaDeviceProp *prop, int device)

* Multiple threads can share a device

* Asingle thread can manage multiple devices

Select current device: cudasetDevice (i)
For peer-to-peer copies: cudaMemcpy (...)

“¥ requires OS and device support



GPU Computing Applications

Libraries and Middleware

TensorRT CURAND ' X JDUAY Mathematica
CUSPARSE

GPU Computing ‘ i
Capability

Programming Languages

Lz Directives
Fortran Python DirectCompute

The compute capability of a Wrappers o
device is represented by a \ /| CUDA-Enabled NVIDIA GPUs

version number that identifies
the features supported by the
GPU hardware and is used by i CREEALIS || el
applications at runtime to
determine which hardware

features and/or instructions sy ceraeon sci RN e e
are available on the present /= e >

// Embedded 8 Can [ epmfessional W enter
G P U . _ _Workstation =

Volta Architecture Tesla V Series
(compute capabilities 7.x)

Maxwell Architecture Tegra X1 GeForce 900 Series Quadro M Series Tesla M Series
(compute capabilities 5.x)




More Resources

You can learn more about CUDA at

— CUDA Programming Guide (docs.nvidia.com/cuda)

— CUDA Zone —tools, training, etc.
(developer.nvidia.com/cuda-zone)

— Download CUDA Toolkit & SDK
(www.nvidia.com/getcuda)

— Nsight IDE (Eclipse or Visual Studio)
(www.nvidia.com/nsight)



http://docs.nvidia.com/cuda/index.html
https://developer.nvidia.com/cuda-zone
http://www.nvidia.com/getcuda
http://www.nvidia.com/nsight

Acknowledgements

e Educational materials from NVIDIA via its Academic
Programs.

® Supports from the Texas A&M Engineering
Experiment Station (TEES), the Texas A&M Institute of
Data Science, and the Texas A&M High Performance
Research Computing (HPRC).

100



Appendix



1D Grid of Blocks in 1D, 2D, and 3D

__device  int getGlobalIldx 1D 1D ()
{
return blockIdx.x * blockDim.x + threadlIdx.x;

}

__device  int getGlobalIldx 1D 2D ()
{
return blockIdx.x * blockDim.x * blockDim.y + threadldx.y * blockDim.x +
threadIdx.x;

}

__device  int getGlobalIdx 1D 3D ()
{
return blockIdx.x * blockDim.x * blockDim.y * blockDim.z
+ threadlIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x +
threadIdx.x;



2D Grid of Blocks in 1D, 2D, and 3D

__device__ int getGlobalIldx 2D 1D ()

{
int blockId = blockIdx.y * gridDim.x + blockIdx.x;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;

__device__ int getGloballdx 2D 2D ()
{
int blocklId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId =
blockId * (blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;

__device__ int getGlobalIldx 2D 3D ()
{
int blockId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
+ (threadIdx.z * (blockDim.x * blockDim.y))
+ (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;



3D Grid of Blocks in 1D, 2D, and 3D

__device__ int getGloballdx 3D 1D ()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;

}

__device__ int getGloballdx 3D 2D ()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * (blockDim.x * blockDim.y)
+ (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;

}

__device__ int getGloballdx 3D 3D ()
{
int blockId = blockIdx.x
+ blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int threadlId = blockId * (blockDim.x * blockDim.y * blockDim.z)
+ (threadIdx.z * (blockDim.x * blockDim.y))
+ (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;



Running CUDA Code on Ada

https://qgithub.com/jtao/coehpc

# load CUDA module
Sml CUDA/9.1.85

# copy sample code to your scratch space
$cd $SCRATCH
$Scp -r /scratch/training/CUDA .

# compile CUDA code
Scd CcuDa
$nvcc hello world host.cu -o hello world

# edit job script & submit your first GPU job
$bsub < cuda run.sh


https://github.com/jtao/coehpc

Tesla V100 GPU Node

Device 0: "Tesla V100-PCIE-32GB"

CUDA Driver Version / Runtime Version 10.1 / 9.0

CUDA Capability Major/Minor version number: 7.0

Total amount of global memory: 32480 MBytes (34058272768 bytes)
(80) Multiprocessors, ( 64) CUDA Cores/MP: 5120 CUDA Cores
GPU Max Clock rate: 1380 MHz (1.38 GHz)
Memory Clock rate: 877 Mhz

Memory Bus Width: 4096-bit

L2 Cache Size: 6291456 bytes

Warp size: 32

Run time limit on kernels: No

Device has ECC support: Enabled

Device supports Unified Addressing (UVA): Yes

Supports Cooperative Kernel Launch: Yes



