# Introduction to CUDA Programming

#### Jian Tao

jtao@tamu.edu

Spring 2020 HPRC Short Course

03/27/2020



Texas A&M Engineering Experiment Station



High Performance Research Computing DIVISION OF RESEARCH



Institute of Data Science

## Schedule

- Part I. GPU as an Accelerator (70 mins)
- Break (10 mins)
- Part II. CUDA C/C++ Basics (30 mins)
- Part III. CUDA Programming Abstractions (40 mins)

# Part I. GPU as an Accelerator



#### **CPU**

#### **GPU** Accelerator





#### **NVIDIA** Tesla V100 with 21.1 Billion Transistors





NVIDIA Tesla V100 GPU is built on a 12 nm process size using HBM2 memory with 900 GB/s of bandwidth. It was announced in May 2017 and was NVIDIA's first chip to feature Tensor cores, which have better deep learning performance than regular CUDA cores.

## Why Computing Perf/Watt Matters?



Traditional CPUs are not economically feasible



GPU-accelerated computing started a new era

# **GPU Computing Applications**



## Add GPUs: Accelerate Science Applications



#### **HPC - Distributed Heterogeneous System**



**Programming Models**: MPI + (CUDA, OpenCL, OpenMP, OpenACC, etc.)

#### **Amdahl's Law**



$$S_{ ext{latency}}(s) = rac{1}{(1-p) + rac{p}{s}}$$

**S** is the theoretical speedup of the execution of the whole task; **s** is the speedup of the part of the task that benefits from improved system resources; **p** is the proportion of execution time that the part benefiting from improved resources originally occupied.

# CUDA Parallel Computing Platform <a href="https://developer.nvidia.com/cuda-toolkit">https://developer.nvidia.com/cuda-toolkit</a>

Programming Approaches

Libraries

"Drop-in" Acceleration

OpenACC Directives

Easily Accelerate Apps

Programming Languages

Maximum Flexibility

Development Environment



Nsight IDE Linux, Mac and Windows GPU Debugging and Profiling

CUDA-GDB debugger NVIDIA Visual Profiler

Open Compiler Tool Chain



Enables compiling new languages to CUDA platform, and CUDA languages to other architectures

Hardware Capabilities



**Dynamic Parallelism** 



**HyperQ** 



**GPUDirect** 



# 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

# 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

## Libraries: Easy, High-Quality Acceleration

- Ease of use: Using libraries enables GPU acceleration without in-depth knowledge of GPU programming
- "Drop-in": Many GPU-accelerated libraries follow standard APIs, thus enabling acceleration with minimal code changes
- Quality: Libraries offer high-quality implementations of functions encountered in a broad range of applications
- Performance: NVIDIA libraries are tuned by experts

#### **Some GPU-accelerated Libraries**

https://developer.nvidia.com/qpu-accelerated-libraries

















Vector Signal Image Processing



















## **CUDA-accelerated Application with Libraries**

• **Step 1:** Substitute library calls with equivalent CUDA library calls saxpy ( ... ) 

■ cublasSaxpy ( ... )

• Step 2: Manage data locality

```
    with CUDA: cudaMalloc(), cudaMemcpy(), etc.
    with CUBLAS: cublasAlloc(), cublasSetVector(), etc.
```

Step 3: Rebuild and link the CUDA-accelerated library

```
$nvcc myobj.o -l cublas
```

# **Explore the CUDA (Libraries) Ecosystem**

 CUDA Tools and Ecosystem described in detail on NVIDIA Developer Zone.



https://developer.nvidia.com/tools-ecosyste



# 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

## **OpenACC Directives**

Hint



Simple Compiler hints

Compiler Parallelizes code

Works on many-core GPUs & multicore CPUs

# **OpenACC**



#### The Standard for GPU Directives

- Easy: Directives are the easy path to accelerate compute intensive applications
- Open: OpenACC is an open GPU directives standard, making GPU programming straightforward and portable across parallel and multi-core processors
- Powerful: GPU Directives allow complete access to the massive parallel power of a GPU

# **Directives: Easy & Powerful**

### Real-Time Object Detection

Global Manufacturer of Navigation Systems



## Valuation of Stock Portfolios using Monte Carlo

Global Technology Consulting Company



### Interaction of Solvents and Biomolecules

University of Texas at San Antonio



5x in 40 Hours

2x in 4 Hours

5x in 8 Hours

# 3 Ways to Accelerate Applications

## **Applications**

Libraries

OpenACC Directives

Programming Languages

"Drop-in"
Acceleration

Easily Accelerate Applications

Maximum Flexibility

## **GPU Programming Languages**

Numerical analytics MATLAB, Mathematica, LabVIEW Fortran Denacc, CUDA Fortran C DenACC, CUDA C, OpenCL C++ Drust, CUDA C++, OpenCL **Python** PyCUDA, PyOpenCL, Copperhead Julia / Java CUDAnative/JCuda

# Rapid Parallel C++ Development

- Resembles C++ STI
- High-level interface
  - Enhances developer productivity
  - Enables performance portability between GPUs and multicore CPUs
- Flexible
  - CUDA, OpenMP, and TBB backends
  - Extensible and customizable
  - Integrates with existing software
- Open source

```
Thrust
  generate 32M random numbers on host
thrust::host vector<int> h vec(32 << 20);</pre>
thrust::generate(h vec.begin(),
                 h vec.end(),
                 rand);
// transfer data to device (GPU)
thrust::device vector<int> d vec = h vec;
  sort data on device
thrust::sort(d vec.begin(), d vec.end());
  transfer data back to host
thrust::copy(d vec.begin(),
             d vec.end(),
             h vec.begin());
```

https://thrust.github.io/

## **Learn More**

These languages are supported on all CUDA-capable GPUs.

You might already have a CUDA-capable GPU in your laptop or desktop PC!

CUDA C/C++

http://developer.nvidia.com/cuda-toolkit

Alea GPU

http://www.aleagpu.com

Thrust C++ Template Library

http://developer.nvidia.com/thrust

**MATLAB** 

http://www.mathworks.com/discovery/matlab-gpu.html

**CUDA Fortran** 

https://developer.nvidia.com/cuda-fortran

PyCUDA (Python)

https://developer.nvidia.com/pycuda

Mathematica

http://www.wolfram.com/mathematica/new-in-8/cuda-and-opencl-support/

# Part II. CUDA C/C++ BASICS



## What is CUDA?

- CUDA Architecture
  - Used to mean "Compute Unified Device Architecture"
  - Expose GPU parallelism for general-purpose computing
  - Retain performance
- CUDA C/C++
  - Based on industry-standard C/C++
  - Small set of extensions to enable heterogeneous programming
  - Straightforward APIs to manage devices, memory etc.

# A Brief History of CUDA

- Researchers used OpenGL APIs for general purpose computing on GPUs before CUDA.
- In 2007, NVIDIA released first generation of Tesla GPU for general computing together their proprietary CUDA development framework.
- Current stable version of CUDA is 10.2 (as of Mar. 2020).

# **Heterogeneous Computing**

- Terminology:
  - Host The CPU and its memory (host memory)
  - Device The GPU and its memory (device memory)



Host



Device

## **Heterogeneous Computing**

```
#include <iostream>
#include <algorithm>
using namespace std;
#define N 1024
#define RADIUS 3
#define BLOCK SIZE 16
__global__ void stencil_1d(int *in, int *out) {
                      shared__int temp[BLOCK_SIZE + 2 * RADIUS];
                     int gindex = threadIdx.x + blockIdx.x * blockDim.x;
                    int lindex = threadldx x + RADIUS:
                     // Read input elements into shared memory
                    temp[lindex] = in[gindex];
                    if (threadIdx.x < RADIUS)
                                        temp[lindex - RADIUS] = in[gindex - RADIUS];
temp[lindex + BLOCK_SIZE] = in[gindex +
BLOCK_SIZE];
                    // Synchronize (ensure all the data is available)
                     syncthreads();
                    // Apply the stencil
                    for (int offset = -RADIUS ; offset <= RADIUS ; offset++)
                                         result += temp[lindex + offset];
                    // Store the result
                    out[gindex] = result;
void fill ints(int *x, int n) {
int main(void) {
                                       // host copies of a, b, c
                    int *d_in, *d_out; // device copies of a, b, c
                    int size = (N + 2*RADIUS) * sizeof(int);
                    // Alloc space for host copies and setup values
                    in = (int *)malloc(size); fill_ints(in, N + 2*RADIUS);
out = (int *)malloc(size); fill_ints(out, N + 2*RADIUS);
                    // Alloc space for device copies
                    cudaMalloc((void **)&d in, size);
                    cudaMalloc((void **)&d_out, size);
                    cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice);
                    cudaMemcpy(d out, out, size, cudaMemcpyHostToDevice);
                    // Launch stencil_1d() kernel on GPU
                    stencil 1d<<<N/BLOCK SIZE,BLOCK SIZE>>>(d in + RADIUS, d out +
RADIUS):
                    cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost);
                    free(in): free(out):
                    cudaFree(d_in); cudaFree(d_out);
```



# **Simple Processing Flow**



# **Simple Processing Flow**



# **Simple Processing Flow**



# **Unified Memory**

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016



**Unified Memory** 

## **Unified Memory**

- A managed memory space where all processors see a single coherent memory image with a common address space.
- Memory allocation with cudaMallocManaged().
- Synchronization with cudaDeviceSynchronize().
- Eliminates the need for cudaMemcpy ().
- Enables simpler code.
- Hardware support since Pascal GPU.

## **Hello World!**

```
int main(void) {
   printf("Hello World!\n");
   return 0;
}
```

- Standard C that runs on the host
- NVIDIA compiler (nvcc) can be used to compile programs with no device code

#### **Output:**

```
$ nvcc hello_world.cu
$ ./a.out
$ Hello World!
```

```
__global__ void mykernel(void) {
int main(void) {
   mykernel<<<1,1>>>();
   printf("Hello World!\n");
   return 0;
```

Two new syntactic elements...

```
__global__ void mykernel(void) {
}
```

- CUDA C/C++ keyword \_\_global\_\_ indicates a function that:
  - Runs on the device
  - Is called from host code
- nvcc separates source code into host and device components
  - Device functions (e.g. mykernel ()) processed by NVIDIA compiler
  - Host functions (e.g. main ()) processed by standard host compiler
    - gcc, icc, etc.

- Triple angle brackets mark a call from host code to device code
  - Also called a "kernel launch"
  - We'll return to the parameters (1, 1) in a moment
- That's all that is required to execute a function on the GPU!

```
__global__ void mykernel(void) {
}
int main(void) {
   mykernel<<<1,1>>>();
   printf("Hello World!\n");
   return 0;
}
```

#### Output:

```
$nvcc hello.cu
$./a.out
Hello World!
```

mykernel() does nothing!

## Parallel Programming in CUDA C/C++

 But wait... GPU computing is about massive parallelism!

We need a more interesting example...

 We'll start by adding two integers and build up to vector addition



#### Addition on the Device

A simple kernel to add two integers

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
```

- As before \_\_global\_\_ is a CUDA C/C++ keyword meaning
  - add() will execute on the device
  - add() will be called from the host

#### Addition on the Device

Note that we use pointers for the variables

```
__global__ void add(int *a, int *b, int *c) {
   *c = *a + *b;
}
```

- add() runs on the device, so a, b, and c must point to device memory
- We need to allocate memory on the GPU.

## **Memory Management**

- Host and device memory are separate entities
  - Device pointers point to GPU memory
     May be passed to/from host code
     May not be dereferenced in host code

Host pointers point to CPU memory
 May be passed to/from device code
 May not be dereferenced in device code



- Simple CUDA API for handling device memory
  - cudaMalloc(), cudaFree(), cudaMemcpy()
  - Similar to the C equivalents malloc(), free(), memcpy()

## Addition on the Device: add()

Returning to our add() kernel

```
__global__ void add(int *a, int *b, int *c) {
   *c = *a + *b;
}
```

Let's take a look at main()...

## Addition on the Device: main()

```
int main(void) {
                // host copies of a, b, c
    int a, b, c;
    int *d a, *d b, *d c; // device copies of a, b, c
    int size = sizeof(int);
    // Allocate space for device copies of a, b, c
    cudaMalloc((void **)&d a, size);
    cudaMalloc((void **)&d b, size);
    cudaMalloc((void **)&d c, size);
    // Setup input values
    a = 2;
   b = 7;
```

## Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, &a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, &b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU
add <<<1,1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0:
```

# **Moving to Parallel**

- GPU computing is about massive parallelism
  - So how do we run code in parallel on the device?

```
add<<< 1, 1 >>>();
add<<< N, 1 >>>();
```

 Instead of executing add() once, execute N times in parallel

#### **Vector Addition on the Device**

- With add () running in parallel we can do vector addition
- Terminology: each parallel invocation of add () is referred to as a block
  - The set of blocks is referred to as a grid

```
— Each invocation can refer to its block index using blockIdx.x

__global___ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• By using blockIdx.x to index into the array, each block handles a different element of the array.

#### **Vector Addition on the Device**

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

• On the device, each block can execute in parallel:

```
Block 0 Block 1 Block 2 Block 3 c[0] = a[0] + b[0]; c[1] = a[1] + b[1]; c[2] = a[2] + b[2]; c[3] = a[3] + b[3];
```

## Vector Addition on the Device: add()

Returning to our parallelized add() kernel

```
__global__ void add(int *a, int *b, int *c) {
    c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}
```

Let's take a look at main()...

## Vector Addition on the Device: main()

```
#define N 512
int main(void) {
int *a, *b, *c;  // host copies of a, b, c
int *d_a, *d_b, *d_c;  // device copies of a, b, c
int size = N * sizeof(int);
// Alloc space for device copies of a, b, c
cudaMalloc((void **)&d a, size);
cudaMalloc((void **)&d b, size);
cudaMalloc((void **)&d c, size);
// Alloc space for host copies of a, b, c and set up input values
a = (int *)malloc(size); random ints(a, N);
b = (int *)malloc(size); random ints(b, N);
c = (int *)malloc(size);
```

## Vector Addition on the Device: main()

```
// Copy inputs to device
cudaMemcpy(d a, a, size, cudaMemcpyHostToDevice);
cudaMemcpy(d b, b, size, cudaMemcpyHostToDevice);
// Launch add() kernel on GPU with N blocks
add <<< N, 1>>> (d a, d b, d c);
// Copy result back to host
cudaMemcpy(c, d c, size, cudaMemcpyDeviceToHost);
// Cleanup
free(a); free(b); free(c);
cudaFree(d a); cudaFree(d b); cudaFree(d c);
return 0;
```

## **Vector Addition with Unified Memory**

```
global void VecAdd(int *ret, int a, int b) {
   ret[blockIdx.x] = a + b + blockIdx.x;
int main() {
   int *ret;
   cudaMallocManaged(&ret, 1000 * sizeof(int));
   VecAdd<<< 1000, 1 >>>(ret, 10, 100);
   cudaDeviceSynchronize();
   for(int i=0; i<1000; i++)
       printf("%d: A+B = %d\n", i, ret[i]);
    cudaFree(ret);
   return 0:
```

#### **Vector Addition with Managed Global Memory**

```
device managed int ret[1000];
global void VecAdd(int *ret, int a, int b) {
   ret[blockIdx.x] = a + b + blockIdx.x;
int main() {
   VecAdd<<< 1000, 1 >>>(ret, 10, 100);
   cudaDeviceSynchronize();
    for(int i=0; i<1000; i++)</pre>
       printf("%d: A+B = %d\n", i, ret[i]);
   return 0;
```

## **Profiling with nvprof**

\$nvprof add\_parallel

| ==28491== Profiling |         | result:      |       |          |          |          |                                  |
|---------------------|---------|--------------|-------|----------|----------|----------|----------------------------------|
|                     | Time(%) | Time         | Calls | Avg      | Min      | Max      | Name                             |
|                     | 43.45%  | 4.3520us     | 1     | 4.3520us | 4.3520us | 4.3520us | <pre>add(int*, int*, int*)</pre> |
|                     | 30.35%  | 3.0400us     | 2     | 1.5200us | 1.3120us | 1.7280us | [CUDA memcpy HtoD]               |
|                     | 26.20%  | 2.6240us     | 1     | 2.6240us | 2.6240us | 2.6240us | [CUDA memcpy DtoH]               |
|                     | 20401_  | - ADT colle. |       |          |          |          |                                  |
|                     |         | = API calls: |       |          |          |          |                                  |
|                     | Time(%) | Time         | Calls | Avg      | Min      | Max      | Name                             |
|                     | 99.34%  | 231.73ms     | 3     | 77.242ms | 6.1990us | 231.71ms | cudaMalloc                       |
|                     | 0.33%   | 766.63us     | 182   | 4.2120us | 171ns    | 143.74us | ${\tt cuDeviceGetAttribute}$     |
|                     | 0.15%   | 357.72us     | 2     | 178.86us | 173.06us | 184.67us | cuDeviceTotalMem                 |
|                     | 0.08%   | 175.05us     | 3     | 58.351us | 6.6470us | 147.94us | cudaFree                         |
|                     | 0.03%   | 75.722us     | 1     | 75.722us | 75.722us | 75.722us | cudaLaunch                       |
|                     | 0.03%   | 74.091us     | 3     | 24.697us | 10.865us | 35.014us | cudaMemcpy                       |
|                     | 0.03%   | 65.073us     | 2     | 32.536us | 30.391us | 34.682us | cuDeviceGetName                  |
|                     | 0.00%   | 4.6390us     | 3     | 1.5460us | 221ns    | 3.9590us | cudaSetupArgument                |
|                     | 0.00%   | 4.4490us     | 3     | 1.4830us | 434ns    | 3.3590us | cuDeviceGetCount                 |
|                     | 0.00%   | 2.7070us     | 6     | 451ns    | 196ns    | 777ns    | cuDeviceGet                      |
|                     | 0.00%   | 1.9940us     | 1     | 1.9940us | 1.9940us | 1.9940us | cudaConfigureCall                |
|                     |         |              |       |          |          |          |                                  |

## Review (1 of 2)

- Difference between host and device
  - Host CPU
  - Device GPU
- Using \_\_global\_\_ to declare a function as device code
  - Executes on the device
  - Called from the host
- Passing parameters from host code to a device function

## Review (2 of 2)

- Basic device memory management
  - cudaMalloc()
  - cudaMemcpy()
  - cudaFree()
- Launching parallel kernels
  - Launch N copies of add() with add<<<N,1>>>(...).
  - Use blockidx.x to access block index.
  - Use nvprof for collecting & viewing profiling data.

#### **More Resources**

- You can learn more about the details at
  - CUDA Programming Guide (<u>docs.nvidia.com/cuda</u>)
  - CUDA Zone tools, training, etc. (<u>developer.nvidia.com/cuda-zone</u>)
  - Download CUDA Toolkit & SDK (<u>www.nvidia.com/getcuda</u>)
  - Nsight IDE (Eclipse or Visual Studio) (<u>www.nvidia.com/nsight</u>)
- Intermediate CUDA Programming Short Course
  - GPU memory management and unified memory
  - Parallel kernels in CUDA C
  - Parallel communication and synchronization
  - Running a CUDA code on Ada
  - Profiling and performance evaluation

# Part III. CUDA Programming Abstractions

# **Key Programming Abstractions**

Three key abstractions that are exposed to CUDA programmers as a minimal set of language extensions:

- a hierarchy of thread groups
- shared memories
- barrier synchronization

# **Glossary**

- Thread is an abstract entity that represents the execution of the kernel, which is a small program or a function.
- Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are divided into Thread Blocks.
- Thread Block is a group of threads which execute on the same multiprocessor (SMX). Threads within a Thread Block have access to shared memory and can be explicitly synchronized.



#### **CUDA Kernels**

- CUDA kernels are C functions that, when called, are executed
   N times in parallel by N different CUDA threads.
- A kernel is defined with \_\_global\_\_ declaration specifier.

```
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
  int i = threadIdx.x;
  C[i] = A[i] + B[i];
}
```

## **Kernel Invocation**

- The number of CUDA threads that execute a kernel is specified using a new <<<...>>>execution configuration syntax.
- Each thread that executes the kernel is given a unique thread ID that is accessible within the kernel through the built-in 3-component vector threadIdx.

```
// Kernel Invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
```

## **Example 1 - Kernel Definition**

```
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
  int i = threadIdx.x;
  int j = threadIdx.y;
  C[i][j] = A[i][j] + B[i][j];
}
```

## **Example 1 - Kernel Invocation**

```
// Kernel invocation
int main()
// Call kernel with one block of N * N * 1 threads
  int numBlocks = 1;
  dim3 threadsPerBlock(N, N);
  MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

# **Hierarchy of Threads**



# **Thread Hierarchy - I**

- 1D, 2D, or 3D threads can form 1D,
   2D, or 3D thread blocks.
- 1D, 2D, or 3D blocks can form 1D,
   2D, or 3D grid of thread blocks
- The number of threads per block and the number of blocks per grid are specified in the <<< . . .>>>



-------

# **Thread Hierarchy - II**

- Each block within the grid can be identified by an index accessible within the kernel through the built-in 3-component vector blockIdx.
- The dimension of the thread block is accessible within the kernel through the built-in 3-component vector blockDim.



## Thread Index and Thread ID

• 1D thread ID is the same as the index of a thread

• 2D

for a two-dimensional block of size (blockDim.x, blockDim.y), the thread ID of a thread of index (x, y) is (x + y \* blockDim.x)

• 3D

for a three-dimensional block of size (blockDim.x, blockDim.y, blockDim.z), the thread ID of a thread of index (x, y, z) is (x + y \* blockDim.x + z \* blockDim.x \* blockDim.y)

## Indexing Arrays with Blocks and Threads

Consider indexing an array with one element per thread (8 threads/block)

```
threadIdx.x threadIdx.x threadIdx.x threadIdx.x 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6
```

With blockDim.x threads/block, the thread is given by:
 int index = threadIdx.x + blockIdx.x \* blockDim.x;

# **Indexing Arrays: Example**

Which thread will operate on the red element?

```
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31
                                                threadIdx.x = 5
 blockDim.x = 8
                                        blockIdx.x = 2
int index = threadIdx.x + blockIdx.x * blockDim.x;
                 = 21
```

## **Example 2 - Kernel Definition**

```
// Kernel definition
 global void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
  int i = blockIdx.x * blockDim.x + threadIdx.x;
  int j = blockIdx.y * blockDim.y + threadIdx.y;
  if (i < N && j < N)
   C[i][j] = A[i][j] + B[i][j];
```

## **Example 2 - Kernel Invocation**

```
// Kernel invocation
int main()
// run kernel with multiple blocks of 16*16*1 threads
  dim3 threadsPerBlock(16, 16);
  dim3 numBlocks(N / threadsPerBlock.x, N /
threadsPerBlock.y);
  MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
```

## **Handling Arbitrary Vector Sizes**

 Typical problems are not friendly multiples of blockDim.x

Avoid accessing beyond the end of the arrays:

```
__global__ void VecAdd(int *A, int *B, int *C, int n) {
    int index = threadIdx.x + blockIdx.x * blockDim.x;
    if (index < n)
        C[index] = A[index] + B[index];
}
Update the kernel launch: M = blockDim.x
        VecAdd<<<(N + M-1) / M, M>>>(A, B, C, N);
```

## Why Bother with Threads?

- Threads seem unnecessary
  - They add a level of complexity
  - What do we gain?
- Threads within a block can cooperate by sharing data through some shared memory
- by synchronizing their execution to coordinate memory accesses with \_\_syncthreads()

## **Memory Hierarchy**



## **Hierarchical Memory Structure**

- Each thread has access to registers and private local memory.
- Each thread block has shared
   memory visible to all threads of the
   block and with the same lifetime as
   the block.
- All threads have access to global





## **Memory Spaces**

- Register, local, shared, global, constant (read only), and texture (read only) memory are the memory spaces available.
- Only register and shared memory reside on GPU.
- The global, constant, and texture memory spaces are cached and persistent across kernel launches by the same application.

### **Memory: Scope and Performance**

- Data in **register memory** is visible only to the thread and lasts only for the lifetime of that thread.
- Local memory has the same scope rules as register memory, but performs slower.
- Data stored in **shared memory** is visible to all threads within that block and lasts for the duration of the block.
- Data stored in **global memory** is visible to all threads within the application (including the host), and lasts for the duration of the host allocation.
- Constant memory is used for data that will not change over the course of a kernel execution and is read only.
- Texture memory is another variety of read-only memory on the device.

## **Using Global Memory**

- Linear memory is typically allocated using cudaMalloc() and freed using cudaFree() and data transfer between host and device is done using cudaMemcpy().
- Linear memory can also be allocated through cudaMallocPitch() and cudaMalloc3D() and transferred using cudaMemcpy2D() and cudaMemcpy3D() with better memory alignment.

## **Using Shared Memory**

- Much faster than global memory.
- Allocated using the \_\_shared\_\_ memory space specifier.

```
__shared__ float A[BLOCK_SIZE][BLOCK_SIZE];
```

 Shared memory shall be used as a cache for global memory to exploit locality of the code.

#### Example 3 - Matrix Multiplication w/o SM

Each thread computes one element of C by accumulating results into Cvalue.



#### **Example 4 - Matrix Multiplication with SM**

Each thread computes one element of Csub // by accumulating results into Cvalue

```
for (int m = 0; m < (A.width / BLOCK SIZE); ++m) {</pre>
        Matrix Asub = GetSubMatrix(A, blockRow, m);
        Matrix Bsub = GetSubMatrix(B, m, blockCol);
         shared float As[BLOCK SIZE][BLOCK SIZE];
          shared float Bs[BLOCK SIZE][BLOCK SIZE];
        As[row][col] = GetElement(Asub, row, col);
        Bs[row][col] = GetElement(Bsub, row, col);
        syncthreads();
         for (int e = 0; e < BLOCK SIZE; ++e)</pre>
             Cvalue += As[row][e] * Bs[e][col];
           syncthreads();
```



#### Review - 1

- Launching parallel kernels
  - Launch N copies of add() with add<<<N/м,м>>>(...);
  - Use blockIdx.x to access block index
  - Use threadIdx.x to access thread index within block
- Allocate elements to threads:

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```

#### Review - 2

- Launching parallel threads
  - Launch N blocks with blockDim.x threads per block with kernel<<<N, blockDim.x>>>(...);
  - Use blockIdx.x to access block index within grid
  - Use threadIdx.x to access thread index within block
- Allocate elements to threads:

```
int index = threadIdx.x + blockIdx.x * blockDim.x;
```

#### Review - 3

- Use \_\_shared\_\_ to declare a variable/array in shared memory
  - Data is shared between threads in a block
  - Not visible to threads in other blocks
- Use \_\_syncthreads() as a barrier
  - Use to prevent data hazards

# Unified Memory Programming



## **Unified Memory**

Software: CUDA 6.0 in 2014 Hardware: Pascal GPU in 2016



**Unified Memory** 

## **Unified Memory**

- A managed memory space where all processors see a single coherent memory image with a common address space.
- Eliminates the need for cudaMemcpy ().
- Enables simpler code.
- Equipped with hardware support since Pascal.

### Example 5 - Vector Addition w/o UM

```
global void VecAdd(int *ret, int a, int b) {
   ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
   int *ret;
   cudaMalloc(&ret, 1000 * sizeof(int));
   VecAdd<<< 1, 1000 >>>(ret, 10, 100);
    int *host ret = (int *)malloc(1000 * sizeof(int));
   cudaMemcpy(host ret, ret, 1000 * sizeof(int), cudaMemcpyDefault);
   for(int i=0; i<1000; i++)</pre>
       printf("%d: A+B = %d\n", i, host ret[i]);
   free(host ret);
   cudaFree(ret);
   return 0;
```

#### **Example 6 - Vector Addition with UM**

```
global void VecAdd(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
    int *ret;
    cudaMallocManaged(&ret, 1000 * sizeof(int));
   VecAdd<<< 1, 1000 >>>(ret, 10, 100);
    cudaDeviceSynchronize();
    for(int i=0; i<1000; i++)</pre>
        printf("%d: A+B = %d\n", i, ret[i]);
    cudaFree(ret);
    return 0;
```

## Example 7 - Vector Addition with Managed Global Memory

```
device managed int ret[1000];
global void VecAdd(int *ret, int a, int b) {
   ret[threadIdx.x] = a + b + threadIdx.x;
int main() {
   VecAdd<<< 1, 1000 >>>(ret, 10, 100);
   cudaDeviceSynchronize();
    for(int i=0; i<1000; i++)</pre>
       printf("%d: A+B = %d\n", i, ret[i]);
    return 0;
```

## **Managing Devices**



## **Coordinating Host & Device**

- Kernel launches are asynchronous
  - Control returns to the CPU immediately
- CPU needs to synchronize before consuming the results

cudaMemcpy ()

Blocks the CPU until the copy is complete. Copy

begins when all preceding CUDA calls have

completed

**cudaMemcpyAsync ()**Asynchronous, does not block the CPU

cudaDeviceSynchronize() Blocks the CPU until all preceding CUDA calls have

completed

## Reporting Errors

- All CUDA API calls return an error code (cudaError\_t)
  - Error in the API call itself or
  - Error in an earlier asynchronous operation (e.g. kernel)
- Get the error code for the last error:

```
cudaError_t cudaGetLastError(void)
```

Get a string to describe the error:

```
char *cudaGetErrorString(cudaError_t)
printf("%s\n",cudaGetErrorString(cudaGetLastError());
```

## **Device Management**

Application can query and select GPUs

```
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)
```

- Multiple threads can share a device
- A single thread can manage multiple devices

```
Select current device: cudaSetDevice(i)
For peer-to-peer copies: cudaMemcpy(...)
```

## **GPU Computing Capability**

The compute capability of a device is represented by a version number that identifies the features supported by the GPU hardware and is used by applications at runtime to determine which hardware features and/or instructions are available on the present GPU.



#### **More Resources**

You can learn more about CUDA at

- CUDA Programming Guide (<u>docs.nvidia.com/cuda</u>)
- CUDA Zone tools, training, etc.(developer.nvidia.com/cuda-zone)
- Download CUDA Toolkit & SDK (<u>www.nvidia.com/getcuda</u>)
- Nsight IDE (Eclipse or Visual Studio)(www.nvidia.com/nsight)

## Acknowledgements

- Educational materials from NVIDIA via its Academic Programs.
- Supports from the Texas A&M Engineering Experiment Station (TEES), the Texas A&M Institute of Data Science, and the Texas A&M High Performance Research Computing (HPRC).

## **Appendix**

#### 1D Grid of Blocks in 1D, 2D, and 3D

```
device int getGlobalIdx 1D 1D ()
return blockIdx.x * blockDim.x + threadIdx.x;
device int getGlobalIdx 1D 2D ()
return blockIdx.x * blockDim.x * blockDim.y + threadIdx.y * blockDim.x +
  threadIdx.x;
device int getGlobalIdx 1D 3D ()
return blockIdx.x * blockDim.x * blockDim.y * blockDim.z
  + threadIdx.z * blockDim.y * blockDim.x + threadIdx.y * blockDim.x +
  threadIdx.x;
```

#### 2D Grid of Blocks in 1D, 2D, and 3D

```
device int getGlobalIdx 2D 1D ()
int blockId = blockIdx.y * gridDim.x + blockIdx.x;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;
device int getGlobalIdx 2D 2D ()
int blockId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId =
 blockId * (blockDim.x * blockDim.y) + (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
device int getGlobalIdx 2D 3D ()
int blockId = blockIdx.x + blockIdx.y * gridDim.x;
int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
  + (threadIdx.z * (blockDim.x * blockDim.y))
  + (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
```

#### 3D Grid of Blocks in 1D, 2D, and 3D

```
device int getGlobalIdx 3D 1D ()
int blockId = blockIdx.x
  + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * blockDim.x + threadIdx.x;
return threadId;
device int getGlobalIdx 3D 2D ()
int blockId = blockIdx.x
  + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * (blockDim.x * blockDim.y)
  + (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
device int getGlobalIdx 3D 3D ()
int blockId = blockIdx.x
  + blockIdx.y * gridDim.x + gridDim.x * gridDim.y * blockIdx.z;
int threadId = blockId * (blockDim.x * blockDim.y * blockDim.z)
  + (threadIdx.z * (blockDim.x * blockDim.y))
  + (threadIdx.y * blockDim.x) + threadIdx.x;
return threadId;
```

### Running CUDA Code on Ada

https://github.com/jtao/coehpc

```
# load CUDA module
$ml CUDA/9.1.85
# copy sample code to your scratch space
$cd $SCRATCH
$cp -r /scratch/training/CUDA .
# compile CUDA code
$cd CUDA
$nvcc hello world host.cu -o hello world
# edit job script & submit your first GPU job
$bsub < cuda run.sh
```

#### Tesla V100 GPU Node

#### Device 0: "Tesla V100-PCIE-32GB"

10.1 / 9.0 CUDA Driver Version / Runtime Version CUDA Capability Major/Minor version number: 7.0 Total amount of global memory: 32480 MBytes (34058272768 bytes) (80) Multiprocessors, (64) CUDA Cores/MP: 5120 CUDA Cores GPU Max Clock rate: 1380 MHz (1.38 GHz) 877 Mhz Memory Clock rate: Memory Bus Width: 4096-bit L2 Cache Size: 6291456 bytes 32 Warp size: Maximum number of threads per multiprocessor: 2048 1024 Maximum number of threads per block: Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)Concurrent copy and kernel execution: Yes with 7 copy engine(s) Run time limit on kernels: No Enabled Device has ECC support: Device supports Unified Addressing (UVA): Yes Supports Cooperative Kernel Launch: Yes