Python for MATLAB® Users

Jian Tao

jtao@tamu.edu

Spring 2018 HPRC Short Course
02/16/2018

Relevant Short Courses and Workshops
Introduction to MATLAB Programming

https://hprc.tamu.edu/training/intro matlab.html

Introduction to Python
https://hprc.tamu.edu/training/intro python.html

Introduction to Scientific Python
https://hprc.tamu.edu/training/intro_scientific_python.html

Bring-Your-Own-Code Workshop

https://coehpc.engr.tamu.edu/byoc/
Offered regularly

https://hprc.tamu.edu/training/intro_matlab.html
https://coehpc.engr.tamu.edu/byoc/
https://hprc.tamu.edu/training/intro_scientific_python.html
https://hprc.tamu.edu/training/intro_python.html

MATLAB

MATLAB is a commercial software tool (language + IDE) for:

= Performing mathematical computations and signal processing
= Analyzing and visualizing data (excellent graphics tools)

= Modeling physical systems and phenomena

= Testing engineering designs

* Functionalities enhanced via apps & packages

= https://www.mathworks.com/help/matlab/index.html

https://www.mathworks.com/help/matlab/index.html

Python

Python is an open source programming language that is empowered by a
large selection of open source libraries:

= With NumPy, one can operate large, multi-dimensional arrays and
matrices.

= With Matplotlib, one can visualize various types of data.

= With TensorFlow, one can build applications with machine intelligence.
= With Django, one can build sophisticated web sites.

* and many more...

= https://www.python.org/about/gettingstarted/

https://www.python.org/about/gettingstarted/

Round One: Python vs MATLAB

Matlab ecosystem

~

Core Matlab

- IDE

- interpreter

- programming lang.

- HUGE standard library
\.- GUI builder (sortof) /

File Simulink
exchange . <

Image processing TK

etc.

Python ecosystem

IDE's:
Core Python - Pyza
. - Spyder
- mterpreterl _ Ninja IDE
- programming lang. - Wing
- standard library - PyCharm

' Ty

Numpy [Matplotlib]

Scipy [PyQt4]

atc.

http://www.pyzo.org

® »
AV < U c U

http://www.pyzo.org

Round Two: Python vs MATLAB

Python MATLAB

Free & open source for both core & Expensive core & extra packages &
extra proprietary algorithms.

libraries.

Large scientific community & legacy code
Relatively small community in science & base.

engineering, but rapidly growing.
Single installation with a user friendly
Installation of different packages to set Integrated Development Environment &
up a functional development wonderful plotting tools.

environment which is not on par with
that of MATLAB so far. http://www.pyzo.org

http://www.pyzo.org

Python as an Advanced
Calculator

-+

o° N |

* N *

B ™~

Arithmetic Operators

Addition
Subtraction
division

mod
multiplication
integer division
to the power of

Arithmetic Operators and
Order of Operations

= Addition (+), Subtraction (-), Multiplication (*), Division (/), Power (**)

= Order of Operations (same rules you should already know from math
class and using a calculator)

1. Complete all calculations inside parentheses or
brackets using the precedent rules below

2. Powers (left to right)

3. Multiplication and Division (left to right)

4. Addition and Subtraction (left to right)

Arithmetic Expressions

Some examples:

>>>10/5%2

SOD>5*%2*%*34+4%2 #r -> **

>>>-1*%*4

>>>8%*1 /3

>>>pi #pi is not defined

Relational Operators

True, 1f it is equal
True, 1f not equal to
less than

greater than

less than or equal to
greater than or equal to

Boolean and Bitwise Operators

and Logical and
or Logical or
not Not

Exclusive OR
| Bitwise OR

~ Negate
& Bitwise And
>> Right shift

<< Left shift

Variables

The basic types of Python include float, int, str, complex,
and bool. A variable can be deleted with del

>>>b = True

>>>whos # works on iPython!
>>>type (b) # type of the variable
>>>x = "Hi"

>>>y = 10

>>>z = complex(1l, 2)
>>>print (b, x, y, z)
>>>del b; print (b)

Naming Rules for Variables

Variable names must begin with a letter
>>>4c = 12

Names can include any combinations of letters,

numbers, and underscores
>>>c 4 = 12

Maximum length for a variable name is not limited

Python is case sensitive. The variable name A is
different than the variable name a.

Exercise

Create two variables: a = 4 andb =

17.2

Now use Python to perform the following set of calculations:

(b+5.4)1/3
a>b and a>1.0

b?-4b+5a
al'=b

N -~

Basic Syntax for Statements

No spaces or tab are allowed at the start of a statement.
Comments start with '#'
Statements finish at the end of the line ("\' can e used to
indicate an unfinished line)
>>>1+2
>>> name = 'Adam' # Indentation Error!
>>>months = "Aug\

"

Displaying Variables

We can display a variable (i.e., show its value) by simply
typing the name of the variable at the command prompt
(leaving off the semicolon).

We can also use print to display variables.
Type the following commands at the command prompt:
>>>print ('The value of x is:');, print (x)

Numerical Data Types - NumPy

T

bool

int_

intc

intp

int8

int16

int32

int64

uint8
uint16
uint32
uint64
float
float16
float32
float64
complex_
complex64
complex128

Boolean (True or False) stored as a byte

Default integer type (same as C long; normally either int64 or int32)

Identical to C int (normally int32 or int64)

Integer used for indexing (same as C ssize_t; normally either int32 or int64)

Byte (-128 to 127)

Integer (-32768 to 32767)

Integer (-2147483648 to 2147483647)

Integer (-9223372036854775808 to 9223372036854775807)

Unsigned integer (0 to 255)

Unsigned integer (0 to 65535)

Unsigned integer (0 to 4294967295)

Unsigned integer (0 to 18446744073709551615)

Shorthand for float64.

Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

Shorthand for complex128.

Complex number, represented by two 32-bit floats (real and imaginary components)
Complex number, represented by two 64-bit floats (real and imaginary components)

Why should | care how data is
stored in a computer?

Perform each of the following calculations in your head.

a=4/3
b=a-1
c = 3*b
e=1-_c

What does Python get?

Why should | care how data is

stored in a computer?

What does Python get?
>>>a = 4/3 #1.3333333333333333

>>>b = a - 1 #0.33333333333333326
>>>c = 3*b #0.9999999999999998

>>e =1 - ¢ #2.220446049250313e-16
It is not possible to perfectly represent all real numbers using

f‘i a finite string of 1s and Os.

Creating Strings (Text Variables)

Single quotes & double quotes are the same in Python. '\’ can be
used if there is a quote in a string.

>>>month = 'Aug'
>>>my strl = 'Tom\'s toy'
>>>my str2 = "Tom's toy"

Some Useful Math Functions

Function Python Function Python
cosine Ccos square root sqrt
sine sin exponential exp
tangent tan logarithm (base 10) logio
arc cosine acos natural log (base e) log
arc sine asin round to nearest integer round
arc tangent atan round down to integer floor
Euclidean norm hypot round up to integer ceil

Note: All the functions are in the math package, which must be imported
before these functions can be used. Trigonometric functions assume input in
radians. Euclidean norm returns sqrt (x*x + y*y).

D
AV < U C U d c c cd U (J U (J [J

Help

The help command provide information about a function.
Type help ("math.cos") atthe command prompt.

This only works if you know the name of the function you
want help with.

Type help () to get the interactive help utility
help>math.cos

Data Structures:
Tuple, List, Set,
& Dictionary

Sets
Dictionaries
Arrays \ -

|

such as

v

~~are other
types of

/A
Collections |¢— 2are the most _
- popular type 07 Lists
T are
are not
* /
Mutable
are iterated
by are ordered
< "/_— groups of
often Loops
follow «— J
are reviewed

for elem in mylist:

ylist[ind] "_syntax

use

sequentially by —

/

are

located by

A/

can

Elements

can be of
type

which are

are created
using syntax

4

have

B

"V)

.append()

actually

/ \ be modified by
are needed

run forward

run backward

for

from

/

from

v

[0 to Iength-lj (—1 to Iengthj

Image Credit:

l

uses syntax

v

mylist[ind] = X

~a
\

()

https://medium.com/@meghamohan

https://medium.com/@meghamohan

Lists & Tuples

Lists are the most commonly e Tuples are similar to lists.

used data structure. e The elements in a list can be

A sequence of data that is changed (mutable), but in tuple
enclosed in square brackets. they can not be changed

Each element can be accessed (immutable).

by calling its index starting with e Each element can be accessed

0 by calling its index starting with O.

Lists are declared with 1ist () e Tuples are declared with
or []. tuple () or ().

Lists & Tuples

List examples:

>>>months=['0Oct', 'Nov', 'Dec']
>>>names=list ()

>>>type (months)

>>>months [0]

>>>months[-1] #try others
>>>months[0] = 'Sep'
>>>months

>>>m=tuple (months)

Tuple examples:

>>>months=('0Oct', '"Nov', 'Dec')
>>>names=tuple ()

>>>type (months)

>>>months[0]

>>>months[-1] #try others
>>>months[0] = 'Sep'
>>>months

>>>m=1list (months)

Sets

Sets are mainly used to eliminate Examples:
repeated numbers in a sequence/list.
_ >>>months={'0Oct', 'Nov', 'Dec', 'Dec'}
It is also used to perform some >>>names=set ()
standard set operations. >>>type (months)
Sets are declared with set () or {} >>>months[0] #error!

>>>months.add('Sep')

Also set ([sequence])can be >>>m=1ist (months)

executed to declare a set with
elements

Dictionaries

Dictionaries are mappings
between keys and items stored
in the dictionaries.

Alternatively one can think of
dictionaries as sets in which
something stored against every
element of the set.

Dictionaries are mutable.

To define a dictionary, equate a
variable to {} ordict ()

Examples:

>>>months={'0Oct': 'October', 'Nov': 'Nov
ember', 'Dec': 'December'}
>>>names=dict ()

>>>type (months)

>>>months|['Oct']

>>>months.update ({'Sep': 'September'})
>>>months|['Oct']='Current Month'
>>>m=list (months)

Conditional Statements &
Loops

Loop Control Statements - for

for statements help repeatedly execute a block of code for a
certain number of iterations

$matlab #python

x = zeros(1,10); import numpy as np

for n =1 : 10 X = np.zeros(10)
x(n) = n; for n in range(10) :

end x[n] = n

Loop Control Statements - while

while statements repeatedly execute a block of code as long

as a condition is satisfied.

gmatlab

n =1,

sum = 0;

while n <=
sum =

100
sum + n;

n=n-+1;

end

#python

n =1

sum = 0

while n <= 100:
sum = sum + n
n=n-+1

Conditional Statements

Execute statements if condition is true

gmatlab
if a>10
disp('a > 10');
elseif a<l1lo0
disp('a < 10')
else

disp('a 10"')

end

#python

if a>10:
print('a

elif a<10:
print('a

else:
print('a

> 10"')
< 10")

= 10")

Nested-Loop: Simple Example

$matlab
for r = 1:4

for c¢c = 1:4
fprintf (' (%1i,%i)\n',r,c);
end

end

#python
for r in range(1,5):
for ¢ in range(1,5):

print (' (%1i,%1) '$(xr, c))

Adding Break Statements

What if we add a break statement in the outer loop?

Smatlab
for r = 1:4
if r ==
break;
end

for ¢c=1:4
fprintf (' (%1i,%i)\n',xr,c);
end

end

#python
for r in range(1,5):
if r == 2:
break

for ¢ in range(1,5):

print (' (%1i,%1i) '$(r, c))

Adding Break Statements

What if we add a break statement in the inner loop?

$matlab
for r = 1:4
end

for ¢ =1:4
if r == 2
break;
fprintf (' (%1i,%i)\n',r,c);
end

end

#python
for r in range(1,5):
for ¢ in range(1,5):
if r ==
break

print (' (%i,%1i) '$(r, c))

Exercise: Output

Write a script that will display each of the following
shapes using asterisks *

* Kk ok kX * kX Kk k% *

)k k kX * * * Kk %

* Kk ok kX * * * Kk ok kX
* Kk k kX * * XKk KkKk kK
* ok k kX * ok k kX

Solid Square Open Square Triangle

Function

$Matlab
function[out]=myabs (number)
if number > 0
out = number
else
out = -number
end
end

#Python
def myabs (number) :
if number > 0:
return number
else:

return -number

NumPy

NumPYy is the fundamental package for scientific computing

with Python. It contains among other things:

e a powerful N-dimensional array object

e sophisticated (broadcasting) functions

e tools for integrating C/C++ and Fortran code

e useful linear algebra, Fourier transform, and random
number capabilities

Create an Array

There are multiple ways to create an array with numpy.

>>
>>
>>
>>
>>
>>
>>
>>
>>

>>>f#python
$matlab >>>import numpy as np
a=[123452%6 78 9] >>>a = np.array([1,2,3,4,5,6,7,8,9])
b=1[123;49 6;7 8 9] >>>b = np.array([[1,2,3],[4,9,6]1,[7,8,911)
c = zeros (3, 3) >>>c = np.zeros((3,3))
d = ones(3,3) >>>d = np.ones((3,3))
e = magic(8) >>>#no function to create magic matrix
f =0:10:100 >>>f = np.arange(0,100,10)
g = rand(3,5) >>>g = np.random.uniform(0,1, (3,5))
h = eye(5) >>>h = np.eye(5)

Array & Matrix Operations - Il

>>
>>
>>
>>
>>
>>
>>
>>

Smatlab
b + 10
sin (b)
b’

inv (b)
b*inv (b)
b.*b
b.*2

>>>#python

>>>b + 10 #each element + 10
>>>np.sin(b) #sin function

>>>b. transpose () #transpose
>>>c=np.linalg.inv(b) #inverse

>>>np.dot (b, c) #matrix multiplication
>>>b*c #element-wise multiplication

>>>b**2 #element-wise square

Array & Matrix Operations - lli

Numpy arrays can be concatenated

>> %$matla

>> B H = [b, b] %horizontal
>> B V = [b; b] $vertical

>>>#python
>> B H
>> B V

np.concatenate((b, b), axis=1)

np.concatenate((b, b), axis=0)

Python index goes starting from 0 while MATLAB index

starting from 1.

>> S$matlab
>> g(3, 5)
>> g(1:3, 5)
>> g(3, :)

>> %pyhton
>> g[2, 4]
>> g[0:2, 4]
>> g2, :]

Plots with Matplotlib

Simple Line Plot

Matplotlib is a widely used Python plotting

library.

>>%matlab

>>x = 0:pi/100:2*%pi; >>>f#python - matplotlib :

>>y = sin(x); >>>import numpy as np werraze
>>plot(x,y) >>>import matplotlib.pyplot as plt

,,,,,,, . >>>x = np.arange(0,np.pi*2, np.pi/100)
>>>y = np.sin(x)

>>>plt.plot(x, y)

>>>plt.show ()

El =
00000000

Simple Surface Plot

Surface plot typically display a surface defined by a function in two

variables, z=£ (x,y) .

>>%$matlab

>>[x,y] = meshgrid(-2:.2:2);
>>z = x .* exp(-x.%2 - y."2);

>>figure %new figure window
>>surf(x,y, z)

Figure 1

>>>#python

>>>from mpl toolkits.mplot3d import Axes3D
>>>import matplotlib.pyplot as plt
>>>from matplotlib import cm

>>>import numpy as np

>>>fig = plt.figure()

>>>ax = fig.gca(projection='3d") slebidjal=e

>>>x, y = np.meshgrid(np.arange(-2, 2, 0.2), \
np.arange (-2, 2, 0.2))

>>>z = x*np.exp (- (x**2 + y**2))

>>>surf = ax.plot surface(x, y, z, cmap=cm.viridis)

>>>plt.show ()

Online Resources

Official Python Tutorial

https://docs.pvthon.org/3.6/tutorial

NumPy for MATLAB users

http://mathesaurus.sourceforge.net/matlab-numpy.html

Matplotlib Gallery

https://matplotlib.org/gallerv.html

Gallery of Jupyter Notebooks

https: github.com/jupvter/jupvter/wiki/A-gallery-of—-interesting—Jupvter—-Notebooks

Introduction to Python 3 Notebooks

https://gitlab.erc.monash.edu.au/andrease/Pvthon4Maths/tree/master

https://docs.python.org/3.6/tutorial/
http://mathesaurus.sourceforge.net/matlab-numpy.html
https://matplotlib.org/gallery.html
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://gitlab.erc.monash.edu.au/andrease/Python4Maths/tree/master

Acknowledgements

e The slides are created based on the educational
materials for MATLAB from Kathleen Ossman and
Gregory Bucks under BSD license.

® Supports from Texas A&M Engineering Experiment
Station (TEES) and High Performance Research
Computing (HPRC).

Appendix

ASCII Code

When you press a key on your computer keyboard, the
key that you press is translated to a binary code.

A = 1000001 (Decimal = 65)
a = 1100001 (Decimal = 97)
0O = 0110000 (Decimal = 48)

ASCII Code

ASCII stands for
American Standard
Code for Information
Interchange

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

o 0o Kul 32 Z0 Space 64 40 0 98 &0

1 01 Start of heading 33 JEE ! 65 41 A 97 61 a
Z 02 Start of text <Er T M 66 42 B 95 62 b
3 03 Endof text 35 23 ¥ 67 LS C 99 63 o
4 04 End of transmit 36 24 § 68 44 D 100 64 d
5 05 Enguiry 37 RGN & 69 45 E 101 65 e
6 06 Acknowledge 30 A & 70 45 F 102 66 £
707 Audible kel =l 2 B 71 B 103 67 g
§ 08 Backspace 40 28§ o TZ 4% H 104 63 h
S 092 Horizontal tab 41 EESEEE. | T3 RSN T 105 B9 i
10 0OA Line feed 4z 2A % 74 4r J 106 BA j
11 0B ‘“eticaltab 43 2B + 75 4B K 107 BB Kk
12 0OC Form feed 44 SEFEAE 76 4C L 10 aC 1
13 0D Carriage return A5 ST 77 4D M 102 6D m
14 O0OE Shift out 46 2E . 78 4E N 110 BE n
15 OF Shiftin 47 BT 79 SR) 111 &F o
16 10 Datalink escape 45 30 0 50 S50 P 11z 70 p
17 11 Device control 1 49 31 1 818 n5d O 113 71 g
15 12 Device contral 2 SONEsE 2 gz 52 PR 1143 B
19 13 Device control 3 51 EE R o 83 DR 115 73 =
20 14 Device control 4 DZ SGCTEE 4 54 54 T 116 W T
21 15 MNeqg.acknowledge KR S5 i 85 55 O 117 75 u
22 16 Synchronous idle SO e O &6 56 W 118 76 w
23 17 Endtrans. block S5 ENEC T 7 87 57 W 118 77 w
24 18 Cancel 56 38 8 88 58 X 120 78 =x
25 19 End of medium 57 SEICE O 59 59 ¥ 121 e v
26 1A Substitution 58 3A 90 S5A Z 1zz 7A =z
27 1B Escape SO NESEN ; 91 BESERN [123 7B A
28 1T File separator 60 3C < Oz BNEGEE Y 1z4 7C |
29 1D Group separatar 61 8 =S = 93 SR | 125 IEEEEIR }
30 1E Record separator 62 ISR 94 KE 12 6 BT -~
31 1F Unit separator 63 BNEG. 7 95 5F 127 BT [
Z P Reses ° 0 0 0 Z

Terminology

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).

A byte is simply a string of 8 bits.

A Kilobyte (KB) is 1,024 (2*10) bytes.

A megabyte (MB) is 1,024 KB or 1,024"2 bytes.

A gigabyte (GB) is 1,024 MB or 1,024”3 bytes.

How Computers Store Variables

Computers store all data (numbers, letters, instructions, ...)
as strings of 1s and Os (bits).

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).

Data Types:
double and single

A double uses 64 bits to store a real number.

A single uses 32 bits to store a real number. Python

does not support single by default though Numpy
supports it.

Doubles and singles can be used to represent both
Integers and non-integers.

