
Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Python for Users

Jian Tao
jtao@tamu.edu

Spring 2018 HPRC Short Course
02/16/2018

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu2

https://hprc.tamu.edu/training/intro_matlab.html
https://coehpc.engr.tamu.edu/byoc/
https://hprc.tamu.edu/training/intro_scientific_python.html
https://hprc.tamu.edu/training/intro_python.html

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

MATLAB is a commercial software tool (language + IDE) for:
▪ Performing mathematical computations and signal processing
▪ Analyzing and visualizing data (excellent graphics tools)
▪ Modeling physical systems and phenomena
▪ Testing engineering designs
▪ Functionalities enhanced via apps & packages
▪ https://www.mathworks.com/help/matlab/index.html

https://www.mathworks.com/help/matlab/index.html

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Python is an open source programming language that is empowered by a
large selection of open source libraries:
▪ With NumPy, one can operate large, multi-dimensional arrays and

matrices.
▪ With Matplotlib, one can visualize various types of data.
▪ With TensorFlow, one can build applications with machine intelligence.
▪ With Django, one can build sophisticated web sites.
▪ and many more...
▪ https://www.python.org/about/gettingstarted/

https://www.python.org/about/gettingstarted/

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

http://www.pyzo.org

http://www.pyzo.org

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

http://www.pyzo.org

Python
Free & open source for both core &

extra
libraries.

Relatively small community in science &
engineering, but rapidly growing.

Installation of different packages to set
up a functional development
environment which is not on par with
that of MATLAB so far.

MATLAB
Expensive core & extra packages &
proprietary algorithms.

Large scientific community & legacy code
base.

Single installation with a user friendly
Integrated Development Environment &
wonderful plotting tools.

http://www.pyzo.org

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

+ Addition
- Subtraction
/ division
% mod
* multiplication
// integer division
** to the power of

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

▪ Addition (+), Subtraction (-), Multiplication (*), Division (/), Power (**)
▪ Order of Operations (same rules you should already know from math

class and using a calculator)
1. Complete all calculations inside parentheses or

 brackets using the precedent rules below
2. Powers (left to right)
3. Multiplication and Division (left to right)
4. Addition and Subtraction (left to right)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

>>>10/5*2
>>>5*2**3+4*2 #^ -> **
>>>-1**4
>>>8**1/3
>>>pi #pi is not defined

Some examples:

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

== True, if it is equal
!= True, if not equal to
< less than
> greater than
<= less than or equal to
>= greater than or equal to

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

and Logical and
or Logical or
not Not
^ Exclusive OR
∣ Bitwise OR
~ Negate
& Bitwise And
>> Right shift
<< Left shift

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

The basic types of Python include float, int, str, complex,
and bool. A variable can be deleted with del

>>>b = True
>>>whos # works on iPython!
>>>type(b) # type of the variable
>>>x = "Hi"
>>>y = 10
>>>z = complex(1, 2)
>>>print(b, x, y, z)
>>>del b; print(b)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

● Variable names must begin with a letter
>>>4c = 12

● Names can include any combinations of letters,
numbers, and underscores

>>>c_4 = 12

● Maximum length for a variable name is not limited
● Python is case sensitive. The variable name A is

different than the variable name a.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Create two variables: a = 4 and b = 17.2

Now use Python to perform the following set of calculations:

 (b+5.4)1/3 b2-4b+5a
 a>b and a>1.0 a!=b

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

1. No spaces or tab are allowed at the start of a statement.
2. Comments start with '#'
3. Statements finish at the end of the line ('\' can e used to

indicate an unfinished line)
>>>1+2
>>> name = 'Adam' # Indentation Error!
>>>months = "Aug\
…"

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

We can display a variable (i.e., show its value) by simply
typing the name of the variable at the command prompt
(leaving off the semicolon).

We can also use print to display variables.
Type the following commands at the command prompt:

>>>print('The value of x is:'); print(x)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Name Range
bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Perform each of the following calculations in your head.
a = 4/3
b = a – 1
c = 3*b
e = 1 – c

What does Python get?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

What does Python get?
>>>a = 4/3 #1.3333333333333333
>>>b = a – 1 #0.33333333333333326
>>>c = 3*b #0.9999999999999998
>>>e = 1 – c #2.220446049250313e-16

 It is not possible to perfectly represent all real numbers using
 a finite string of 1s and 0s.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Single quotes & double quotes are the same in Python. '\' can be
used if there is a quote in a string.

>>>month = 'Aug'
>>>my_str1 = 'Tom\'s toy'
>>>my_str2 = "Tom's toy"

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Function Python Function Python
cosine cos square root sqrt

sine sin exponential exp
tangent tan logarithm (base 10) log10

arc cosine acos natural log (base e) log
arc sine asin round to nearest integer round

arc tangent atan round down to integer floor
Euclidean norm hypot round up to integer ceil

Note: All the functions are in the math package, which must be imported
before these functions can be used. Trigonometric functions assume input in
radians. Euclidean norm returns sqrt(x*x + y*y).

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

▪ The help command provide information about a function.
Type help("math.cos") at the command prompt.
This only works if you know the name of the function you
want help with.
▪ Type help()to get the interactive help utility
 help>math.cos

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Image Credit: https://medium.com/@meghamohan

https://medium.com/@meghamohan

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

● Lists are the most commonly
used data structure.

● A sequence of data that is
enclosed in square brackets.

● Each element can be accessed
by calling its index starting with
0.

● Lists are declared with list()
or [].

● Tuples are similar to lists.
● The elements in a list can be

changed (mutable), but in tuple
they can not be changed
(immutable).

● Each element can be accessed
by calling its index starting with 0.

● Tuples are declared with
tuple() or ().

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Tuple examples:
>>>months=('Oct','Nov','Dec')
>>>names=tuple()
>>>type(months)
>>>months[0]
>>>months[-1] #try others
>>>months[0] = 'Sep'
>>>months
>>>m=list(months)

List examples:
>>>months=['Oct','Nov','Dec']
>>>names=list()
>>>type(months)
>>>months[0]
>>>months[-1] #try others
>>>months[0] = 'Sep'
>>>months
>>>m=tuple(months)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Examples:
>>>months={'Oct','Nov','Dec','Dec'}
>>>names=set()
>>>type(months)
>>>months[0] #error!
>>>months.add('Sep')
>>>m=list(months)

● Sets are mainly used to eliminate
repeated numbers in a sequence/list.

● It is also used to perform some
standard set operations.

● Sets are declared with set() or {}
● Also set([sequence])can be

executed to declare a set with
elements

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Examples:
>>>months={'Oct':'October','Nov':'Nov
ember','Dec':'December'}
>>>names=dict()
>>>type(months)
>>>months['Oct']
>>>months.update({'Sep':'September'})
>>>months['Oct']='Current Month'
>>>m=list(months)

● Dictionaries are mappings
between keys and items stored
in the dictionaries.

● Alternatively one can think of
dictionaries as sets in which
something stored against every
element of the set.

● Dictionaries are mutable.
● To define a dictionary, equate a

variable to {} or dict()

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

%matlab
x = zeros(1,10);
for n = 1 : 10
 x(n) = n;
end

for statements help repeatedly execute a block of code for a
certain number of iterations

#python
import numpy as np
x = np.zeros(10)
for n in range(10):
 x[n] = n

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

%matlab
n = 1;
sum = 0;
while n <= 100
 sum = sum + n;
 n = n + 1;
end

while statements repeatedly execute a block of code as long
as a condition is satisfied.

#python
n = 1
sum = 0
while n <= 100:
 sum = sum + n
 n = n + 1

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Execute statements if condition is true
%matlab
if a>10
 disp('a > 10');
elseif a<10
 disp('a < 10')
else
 disp('a = 10')
end

#python
if a>10:
 print('a > 10')
elif a<10:
 print('a < 10')
else:
 print('a = 10')

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

%matlab
for r = 1:4

 for c = 1:4

 fprintf('(%i,%i)\n',r,c);

 end

end

#python

for r in range(1,5):

 for c in range(1,5):

 print('(%i,%i)'%(r, c))

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

What if we add a break statement in the outer loop?
%matlab
for r = 1:4
 if r == 2
 break;
 end

 for c = 1:4

 fprintf('(%i,%i)\n',r,c);

 end

end

#python

for r in range(1,5):

 if r == 2:

 break

 for c in range(1,5):

 print('(%i,%i)'%(r, c))

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

What if we add a break statement in the inner loop?
%matlab
for r = 1:4
 end

 for c = 1:4
 if r == 2
 break;

 fprintf('(%i,%i)\n',r,c);

 end

end

#python

for r in range(1,5):

 for c in range(1,5):

 if r == 2:

 break

 print('(%i,%i)'%(r, c))

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Write a script that will display each of the following
shapes using asterisks *

Solid Square

* *
* *
* *

Open Square

 *

Triangle

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

#Python
def myabs(number):
 if number > 0:
 return number
 else:
 return -number

%Matlab
function[out]=myabs(number)
 if number > 0
 out = number
 else
 out = -number
 end
end

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

NumPy is the fundamental package for scientific computing
with Python. It contains among other things:
● a powerful N-dimensional array object
● sophisticated (broadcasting) functions
● tools for integrating C/C++ and Fortran code
● useful linear algebra, Fourier transform, and random

number capabilities

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

There are multiple ways to create an array with numpy.

>>>#python
>>>import numpy as np
>>>a = np.array([1,2,3,4,5,6,7,8,9])
>>>b = np.array([[1,2,3],[4,9,6],[7,8,9]])
>>>c = np.zeros((3,3))
>>>d = np.ones((3,3))
>>>#no function to create magic matrix
>>>f = np.arange(0,100,10)
>>>g = np.random.uniform(0,1,(3,5))
>>>h = np.eye(5)

>> %matlab
>> a = [1 2 3 4 5 6 7 8 9]
>> b = [1 2 3;4 9 6;7 8 9]
>> c = zeros(3,3)
>> d = ones(3,3)
>> e = magic(8)
>> f = 0:10:100
>> g = rand(3,5)
>> h = eye(5)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

>>>#python
>>>b + 10 #each element + 10
>>>np.sin(b) #sin function
>>>b.transpose() #transpose
>>>c=np.linalg.inv(b) #inverse
>>>np.dot(b,c) #matrix multiplication
>>>b*c #element-wise multiplication
>>>b**2 #element-wise square

>> %matlab
>> b + 10
>> sin(b)
>> b'
>> inv(b)
>> b*inv(b)
>> b.*b
>> b.^2

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

>> %matla
>> B_H = [b, b] %horizontal
>> B_V = [b; b] %vertical

Numpy arrays can be concatenated

Python index goes starting from 0 while MATLAB index
starting from 1.

>> %matlab
>> g(3, 5)
>> g(1:3, 5)
>> g(3, :)

>>>#python
>> B_H = np.concatenate((b, b), axis=1)
>> B_V = np.concatenate((b, b), axis=0)

>> %pyhton
>> g[2, 4]
>> g[0:2, 4]
>> g[2, :]

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Matplotlib is a widely used Python plotting
library.
>>%matlab
>>x = 0:pi/100:2*pi;
>>y = sin(x);
>>plot(x,y)

>>>#python - matplotlib
>>>import numpy as np
>>>import matplotlib.pyplot as plt
>>>x = np.arange(0,np.pi*2, np.pi/100)
>>>y = np.sin(x)
>>>plt.plot(x, y)
>>>plt.show()

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Surface plot typically display a surface defined by a function in two
variables, z=f(x,y).
>>%matlab

>>[x,y] = meshgrid(-2:.2:2);
>>z = x .* exp(-x.^2 - y.^2);

>>figure %new figure window
>>surf(x,y,z)

>>>#python

>>>from mpl_toolkits.mplot3d import Axes3D

>>>import matplotlib.pyplot as plt

>>>from matplotlib import cm

>>>import numpy as np

>>>fig = plt.figure()

>>>ax = fig.gca(projection='3d')

>>>x, y = np.meshgrid(np.arange(-2, 2, 0.2), \

 np.arange(-2, 2, 0.2))

>>>z = x*np.exp(-(x**2 + y**2))

>>>surf = ax.plot_surface(x, y, z, cmap=cm.viridis)

>>>plt.show()

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Official Python Tutorial
https://docs.python.org/3.6/tutorial/

NumPy for MATLAB users
http://mathesaurus.sourceforge.net/matlab-numpy.html

Matplotlib Gallery
https://matplotlib.org/gallery.html

Gallery of Jupyter Notebooks
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

Introduction to Python 3 Notebooks
https://gitlab.erc.monash.edu.au/andrease/Python4Maths/tree/master

https://docs.python.org/3.6/tutorial/
http://mathesaurus.sourceforge.net/matlab-numpy.html
https://matplotlib.org/gallery.html
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks
https://gitlab.erc.monash.edu.au/andrease/Python4Maths/tree/master

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

●

●

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

When you press a key on your computer keyboard, the
key that you press is translated to a binary code.

A = 1000001 (Decimal = 65)
a = 1100001 (Decimal = 97)
0 = 0110000 (Decimal = 48)

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).
A byte is simply a string of 8 bits.
A kilobyte (KB) is 1,024 (2^10) bytes.
A megabyte (MB) is 1,024 KB or 1,024^2 bytes.
A gigabyte (GB) is 1,024 MB or 1,024^3 bytes.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Computers store all data (numbers, letters, instructions, …)
as strings of 1s and 0s (bits).

A bit is short for binary digit. It has only two possible
values: On (1) or Off (0).

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

▪ A double uses 64 bits to store a real number.
▪ A single uses 32 bits to store a real number. Python

does not support single by default though Numpy
supports it.
▪ Doubles and singles can be used to represent both

integers and non-integers.

