RADSEQ/GENOTYPING BY SEQUENCING WORKSHOP

Shichen Wang, PhD Bioinformatics Scientist

Genomics and Bioinformatics Service Texas A&M University AgriLife Research

www.txgen.tamu.edu

AgriLIFE borg /Teaching /Research /Extension /Service

Q Search

Topics 💷

Units ~ Locations

Resources V

Communications V

Corporate Relations v

Genomics and Bioinformatics Service

Providing Genomics and Bioinformatics Services to the

Texas A&M System, Texas, and the World

About ~

Careers v

"How do I start a new sequencing project?"

Questions related to your samples, or the submission process

Search	Q
Welcome	
Who We Are	
News	
Research Highlig	ghts
Bioinformatics	
Personnel	
Publications	
🖴 FAQ	
Contacts	

OUTLINE

- ► What is RADseq/Genotyping By Sequencing (GBS)
- Examples of RADseq/GBS applications
 - ► 1. For genome-wide variation discovery;
 - ► 2. Genetic Maps, QTL mapping
 - Senome wide association study (GWAS), Genomic Selection (GS)
 - ► 3. Population genetics study
- ► Data analysis
 - general approach for NGS data analysis
 - ► Several GBS pipelines
- ► Hands on exercises

APPROACHES FOR HIGH-THROUGHPUT GENOTYPING:

- Whole-genome re-sequencing
- Exome Capture + Sequencing
- Genotyping SNP assay: infinium 90K, Axiom 400K
- Reduced representation: RADseq, Genotyping By Sequencing

WHY REDUCED REPRESENTATION?

Restriction Associated DNA Sequencing, RADSeq

Genotyping By Sequencing, GBS

REDUCED REPRESENTATION GENOME SEQUENCING: RADSEQ/GBS

Individual C Individual B Individual A

- More even coverage than random shearing
- Requires less data
- Muliplexing, economically feasible

RADSEQ/GENOTPING BY SEQUENCING

- ► History
 - ► 2007, RAD markers
 - Miller et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers: RAD tags with microarray

- Van et al. Complexity Reduction of Polymorphic Sequences: RAD tags sequencing with 454 sequencer. Genotyping using Keygene SNPWave (patent application)
- ► 2008, RADseq
 - Baird et al. Rapid SNP Discovery and Genetic Mapping Using Sequenced RAD Markers (1118 citations): RAD tags sequencing with Illumina platform.
- ► GBS, ddRAD, 2-b RAD, bsRADseq
 - ► Elshire et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.
 - Poland et al. Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach.
 - Peterson et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species
 - ► Wang et al. 2b-RAD: a simple and flexible method for genome-wide genotyping
 - ▶

RADSEQ/GBS PROTOCOLS:

Nature Reviews Genetics **17**, 81–92 (2016) doi:10.1038/nrg.2015.28

PROTOCOLS:

Nature Reviews Genetics **17**, 81–92 (2016) doi:10.1038/nrg.2015.28

RADSEQ/GBS EXPERIMENT DESIGN

- ► Choose the protocol
 - ► Pick the most suitable restriction enzyme(s) for the targeting genome
 - Methylation-sensitive restriction enzymes
 - ► Double digestion

In Silico digestion genome coverage for fragment between 100-600 bp

	Plant						Animal											
Enzyme pair	Arabidopsis	Cottonwood	Medicago	Winegrape	Soybean	Rice	Sorghum	Maize	C. elegans	Fruit fly	Honey bee	Stickleback	Pike	Zebra fish	Turkey	Zebra finch	Dog	Housecat
genome size (Mbp)	120	379	297	426	950	382	659	2060	83	158	220	401	377	1340	1040	1021	2328	2419
CviAll+Hinfl	35.1	32.5	27.9	31.4	32.5	31.1	30.8	33.8	31.9	30.1	24.6	35.0	31.0	31.0	30.8	34.5	35.9	35.5
CviAll+Ddel	34.4	30.8	26.6	30.6	30.9	30.3	31.8	32.9	27.0	29.7	16.1	35.1	32.9	33.3	31.9	35.9	35.3	34.9
Bfal+Hinfl	32.5	32.5	26.0	30.9	31.4	32.0	31.8	34.6	27.9	24.5	17.5	24.9	30.2	27.9	29.3	31.8	36.3	35.2
Bfal+Ddel	32.5	31.4	25.0	30.4	30.4	31.2	32.3	34.2	23.8	24.0	11.8	25.1	30.8	29.1	28.7	30.9	33.6	32.9
CviAll+Tfil	33.4	27.9	24.3	27.2	27.7	25.8	26.2	27.6	29.3	25.8	24.5	26.6	23.2	23.7	24.7	26.6	28.4	29.7
Bfal+Tfil	31.8	29.1	23.6	27.9	28.2	27.0	27.3	29.1	25.9	21.4	17.8	20.5	24.0	22.4	24.4	25.8	30.0	31.8
MluCl+Hinfl	25.3	18.0	14.1	19.8	19.2	24.9	28.1	29.1	13.5	20.7	14.1	33.0	28.4	24.2	25.1	26.6	29.6	29.4
MluCl+Ddel	24.4	17.3	13.6	19.4	18.6	24.0	27.5	29.0	10.2	19.6	7.4	33.3	30.1	26.0	26.5	28.4	28.6	29.4
CviAll+ApeKl	19.3	17.2	12.9	13.4	14.2	25.3	22.6	23.8	18.5	27.7	11.0	33.7	25.6	26.6	28.1	31.8	24.9	23.9
Hinfl+Msel	28.1	22.0	18.7	24.7	24.3	28.0	28.8	30.6	27.0	7.9	4.3	10.4	9.8	21.6	8.4	28.3	28.8	28.7
Hinfl+HpyCH4IV	29.4	22.7	21.6	18.0	23.1	27.9	27.2	27.9	30.5	14.3	11.6	16.1	14.8	24.8	11.7	16.0	19.4	22.7
Ddel+Msel	27.1	20.8	17.9	24.1	23.2	26.9	29.3	30.3	21.5	8.3	3.7	10.2	9.3	22.6	6.0	29.5	29.0	29.1
MluCl+Tfil	23.7	15.0	11.8	16.6	15.9	19.9	23.3	24.6	11.8	16.9	13.1	24.8	21.0	18.4	19.6	19.8	22.7	25.3
Ddel+HpyCH4IV	29.2	22.2	20.8	17.5	22.6	27.2	27.2	27.5	26.3	14.9	9.3	15.9	13.8	26.0	8.6	14.6	18.0	20.7
ApeKI+Bfa1	19.5	18.3	13.1	14.9	15.1	26.3	23.3	24.3	16.8	12.6	5.9	13.8	14.7	25.2	13.5	29.8	26.6	23.9
Tfil+HpyCH4IV	29.0	20.7	19.7	16.8	21.5	24.2	24.2	23.7	28.3	13.9	12.3	15.2	13.2	20.2	10.9	13.3	16.8	20.7
NlallI+MluCl	25.7	19.4	16.0	20.2	19.6	25.4	27.0	29.0	13.4	5.2	2.4	10.8	7.7	27.1	6.3	28.7	29.3	30.2
Tfil+Msel	26.5	19.0	16.3	21.5	20.9	23.6	24.3	26.3	24.5	7.8	5.0	9.7	8.5	16.0	7.7	21.4	22.2	23.9
CviAll+Avall	15.6	14.0	12.3	14.5	14.6	18.7	20.8	24.7	12.4	15.9	7.0	22.9	19.6	13.4	14.5	17.7	20.4	20.9
ApeKI+MseI	17.2	14.1	9.9	13.2	12.8	25.1	22.9	23.2	15.8	7.2	3.8	10.0	9.5	19.5	7.0	26.7	21.8	20.4
Avall+Rfal	16.1	15 3	123	15.8	15 5	20.6	21 8	26.2	11 3	9.0	3.0	116	123	13.0	9.0	173	22 5	21 /

- ► Variation discovery
 - Single-nucleotide polymorphism discovery by highthroughput sequencing in sorghum. BMC Genomics. 2011
 - Sequencing from libraries constructed to limit sequencing to start at defined restriction sites led to genotyping 10-fold more SNPs..

Haplotype sharing patterns

► Genetic Mapping

- Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through highdensity linkage mapping, BMC Genomics. 2016
 - ► 10842 SNPs in total; 4849 markers were mapped.

- ► QTL Mapping
 - An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley, BMC Genomics, 2014
 - ► In total, 461M categorized reads from the GPMx mapping population were mapped.... Using these highly conservative criteria, we identified an initial set of 1,949 co-dominant SNPs with robust allele calls across the population.

- ► Genomic Selection (GS)
 - ► GS uses genomewide molecular markers to predict complex, quantitative traits in animal and plant breeding.
 - ► Is GBS suitable for this task?

Phylogenetic inference

► Is RAD-seq suitable for phylogenetic inference? An in silico assessment and optimization, Ecology and Evolution, 2013

RAD-seq-based phylogeny of the 12 Drosophila species, based on 100-bplong RAD-seq reads, inferred by maximum likelihood using PhyML 3.0.

SUMMARY

- ► Many protocols to be chosen from
- ► *In silico* digestion helps to pick the restriction enzymes
- ► Feasible for large-scale genomics studies

► What kind of data being generated?

► What kind of data being generated?

► fastq format

► each read represented by 4 lines

line 1 @HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1

line 2 TTAATTGGTAAATAAATCTCCTAATAGCTTAGATNTTACCTTNNNNNNNNNTAGTTTCTTGAGATTTGTTGGGGGGGGG

line 3 +HWI-EAS209_0006_FC706VJ:5:58:5894:21141#ATCACG/1

line 4 efcfffffcfeefffcfffffddf`feed]`]_Ba_^__[YBBBBBBBBBBBBBBBBTT\]][]dddd`ddddddddadd^BB

► What kind of data being generated?

► fastq format

[wangsc@login3 ~/fastq_]\$ zcat VijayWSC4-Ind7_CAGATC_L004_R1_001.fastq.gz | head @HISEQ:224:C8PEWACXX:4:1101:1269:1962 1:N:0:CAGATC AAAAAGAACAAGATTGAGACTAGATCGTGAAGCGAATGTAAGCATACTCACCTTATACCATTCACCATCAAGTCCTGTTTTCCACACGGCTGTGATGACAT

► What kind of data being generated?

► fastq format

► What kind of data being generated?

A quality score Q is an integer mapping of p (the probability that the base casting is wrong.

$$Q_{ ext{sanger}} = -10 \, \log_{10} p$$

► What kind of data being generated?

- ► fastq format
 - ► A typical GBS read

- Mainly two types of pipeline
 - ► Alignment-based
 - ► Treat GBS/RADseq data as usual NGS data
 - Clustering-based
 - Cluster the reads that are from the same loci, then discover variations within clusters (i.e. multiple sequence alignment)

ALIGNMENT APPROACH

Mainly two types of pipeline

- ► Alignment-based
 - ► Results are easy to interpret; Imputation made easier
 - ► Require Ref; Computation intense; Miss novel variations
- ► Clustering-based
 - Reduce the computation cost by clustering
 - Might lead to high false positive rate, or removing too many true variations with stringent filtering criteria

- ► Features of the two types of pipelines
 - Alignment-based
 - ► require reference
 - ► compute intensive
 - ► More accurate
 - ► Imputation might be easier
 - Clustering-based
 - ► reference not required
 - Reduce the computation cost by clustering
 - Might lead to large false positive, or removing too many variation with stringent filtering criteria

General NGS analysis workflow for variation discovery

RADSEQ/GBS DATA ANALYSIS PIPELINE

Pipeline/Progar m	Alignment	Clustering	Comment
Stacks	Y	Y	
TASSEL-GBS	Y	Y	Trim reads
UNEAK	N	Y	Trim reads
PyRAD	N	Y	
dDocent	Y	N	
AftrRAD	N	Y	

.

Stacks

- ► Designed to work with short read (max 1024bp)
- Uniform length of reads
 - ► Ideal for Illumina
 - For Ion Torrent platform, reads would need to be truncated to a particular length
- ► Deal with most of the RADseq/GSB protocols
- ► *Stacks* is designed to process data that *stacks* together:
 - In the case of double-digest RAD, both the single-end and paired-end read are anchored by a restriction enzyme and can be assembled as independent loci;
 - ► In cases such as with the RAD protocol, where the molecules are sheared and the paired-end therefore does not stack-up, cannot be directly used.

WHY CLUSTERING OR STACKING REDUCE THE COST OF COMPUTATION

TASSEL-GBS:

Instead of trying to map eight reads separately, we may just take one as representative.

Stacks workflow

MAJOR PARAMETERS

Parameter Description	denovo_map.pl Parameter	Pipeline component	Component Parameter	Default Value
Minimum stack depth / minimum depth of coverage	—m	ustacks	-m	3
Distance allowed between stacks	-M	ustacks	-M	2
Distance allowed between catalog loci	-n	cstacks	-n	0

1. MINIMUM STACK DEPTH -*m* 3

1. MINIMUM STACK DEPTH -*m* 3

1 If set to a value of 3 then three or more identical reads must be found to consider those reads a stack. If a stack is formed with only two reads, then those reads are set aside (**secondary reads**) and a stack is not constructed.

2 If this parameter is set too low, then reads with convergent sequencing errors are likely to be erroneously labled as stacks.

3 If this parameter too high, then true alleles will not be recorded and will drop out of the analysis.

4 If you have low sequencing depth for your samples, you will have to set this parameter to a relatively low value. Conversely, if you have very high sequencing coverage, you will want to increase this parameter.

5 If you have a high error rate in your sequencing lane, then you are likely to see convergent sequencing or PCR errors (errors that occur independently at the same nucleotide position in the same read) and should increase the minimum stack depth.

2. DISTANCE ALLOWED BETWEEN STACKS -M 2

1 If you set this parameter too low, then some loci will fail to be reconstructed. This means the SNPs contained in that locus will not be identified and this locus will appear as two loci to the remainder of the pipeline.

2 Setting this parameter too high will allow repetitive sequence to chain together in to large, nonsensical loci. For example, if stack A is one nucleotide apart from stack B, which is one nucleotide apart from stack C, which is one nucleotide apart from stack D, then A, B, C, and D will be merged into a locus despite A and D being four nucleotides apart. These loci are not useful to the pipeline and at several points the pipeline will try to detect these and set them aside.

3 You will want to experiment with several different values of this parameter to see how many polymorphic loci you can construct.

3. DISTANCE BETWEEN CATALOG LOCI -n O

1 If you set this parameter too low, then some loci will fail to be reconstructed. This means the SNPs contained in that locus will not be identified and this locus will appear as two loci to the remainder of the pipeline.

2 Setting this parameter too high will allow repetitive sequence to chain together in to large, nonsensical loci. For example, if stack A is one nucleotide apart from stack B, which is one nucleotide apart from stack C, which is one nucleotide apart from stack D, then A, B, C, and D will be merged into a locus despite A and D being four nucleotides apart. These loci are not useful to the pipeline and at several points the pipeline will try to detect these and set them aside.

3 You will want to experiment with several different values of this parameter to see how many polymorphic loci you can construct.

- ► How to optimize the parameters for my project?
 - ► Simulation
 - With reference genome available, simulate RADseq/GBS reads from the reference genome with predefined SNPs;
 - Call SNPs with different set of parameters, pick the one with the lowest FP and/ high TP.
 - Generate SNPs for multiple sets of parameters, then check the SNP accuracy

Docent relies almost entirely on third party software to complete every step of the analysis pipeline..

FreeBayes	https://github.com/ekg/freebayes
STACKS	http://creskolab.uoregon.edu/stacks/
PEAR	http://sco.h-its.org/exelixis/web/software/pear/
Trimmomatic	http://www.usadellab.org/cms/?page=trimmomatic
Mawk	http://invisible-island.net/mawk/
BWA	http://bio-bwa.sourceforge.net
SAMtools	http://samtools.sourceforge.net
VCFtools v.1.11**	http://vcftools.sourceforge.net/index.html
rainbow	http://sourceforge.net/projects/bio-rainbow/files/
seqtk	https://github.com/lh3/seqtk
CD-HIT	http://weizhong-lab.ucsd.edu/cd-hit/

DDOCENT PIPELINE

Read

Mapping

SNP

Any questions?

Let's give it a try!

GBS DATA ANALYSIS USING STACKS ON HPRCGALAXY

For testing only: <u>https://hprcgalaxy.tamu.edu/fishcamp</u> For real projects: <u>https://hprcgalaxy.tamu.edu/maroon</u>

Quick Links

New User Information Accounts Apply for Accounts Manage Accounts User Consulting Training Documentation Software FAQ

Ileor Guidoe https://pubs.acs.org/doi/10.1021/jacs.8b02846

Molecular Jump-Rope: Multiringed Metal-Complexes That Really Know How To Jump

"These platinum complexes can undergo a 'triple-jump rope' mechanism rendering the three methylene chains of their ligands equivalent, a motion that is unheard of and

DEMO OF GBS DATA ANALYSIS USING STACKS ON HPRC

Login to ada: ssh your-tamu-netid@ada.tamu.edu

Create a folder: mkdir stacks_tutorial && cd stacks_tutorial

Get the tutorial data: git clone https://github.com/swang8/workshop

<u>Create working directory:</u> cd workshop/material/tutorial_data/ mkdir RAD && cd RAD tar xvf ../rad_test.tar ls -l

Run jobs on working nodes interactively: https://portal.hprc.tamu.edu/