Genomics and Bioinformatics Service
Providing Genomics and Bioinformatics Services to the Texas A&M System, Texas, and the World

“How do I start a new sequencing project?”

Questions related to your samples, or the submission process
OUTLINE

➤ What is RADseq/Genotyping By Sequencing (GBS)
➤ Examples of RADseq/GBS applications
 ➤ 1. For genome-wide variation discovery;
 ➤ 2. Genetic Maps, QTL mapping
 ➤ 3. Genome wide association study (GWAS), Genomic Selection (GS)
 ➤ 3. Population genetics study
➤ Data analysis
 ➤ general approach for NGS data analysis
 ➤ Several GBS pipelines
➤ Hands on exercises
APPROACHES FOR HIGH-THROUGHPUT GENOTYPING:

- Whole-genome re-sequencing
- Exome Capture + Sequencing
- Genotyping SNP assay: **infinium** 90K, Axiom 400K
- Reduced representation: RADseq, Genotyping By Sequencing
WHY REDUCED REPRESENTATION?
Restriction Associated DNA Sequencing, RADSeq
Genotyping By Sequencing, GBS

REduced Representation Genome Sequencing: RADSEQ/GBS

- More even coverage than random shearing
- Requires less data
- Multiplexing, economically feasible
RADSEQ/GENOTPING BY SEQUENCING

➤ History

➤ 2007, RAD markers
 ➤ Miller et al. Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers: RAD tags with microarray
 ➤ Van et al. Complexity Reduction of Polymorphic Sequences: RAD tags sequencing with 454 sequencer. Genotyping using Keygene SNPWave (patent application)

➤ 2008, RADseq

➤ GBS, ddRAD, 2-b RAD, bsRADseq
 ➤ Elshire et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.
 ➤ Peterson et al. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species
 ➤ Wang et al. 2b-RAD: a simple and flexible method for genome-wide genotyping
 ➤
RADSEQ/GBS PROTOCOLS:

Original RAD

1. Digest (one enzyme)
2. Ligate adaptors
3. Multiplex
4. Shear
5. Size select
6. End repair
7. A-tailing
8. Ligate Y-adaptors
9. PCR

2bRAD

1. Digest (one IIb enzyme)
2. Ligate adaptors
3. PCR
4. Multiplex

Nature Reviews Genetics 17, 81–92 (2016) doi:10.1038/nrg.2015.28
PROTOCOLS:

Sequence flanked by two restriction enzyme cut sites

GBS
1. Digest (one enzyme)
2. Ligate adaptors
3. Multiplex
4. PCR

ezRAD
1. Digest (one or more enzymes)
2. End repair
3. A-tailing
4. Ligate Y-adaptors
5. Size select
6. PCR (skip for PCR-free kit)
7. Multiplex

ddRAD
1. Digest (two enzymes)
2. Ligate adaptors
3. Multiplex
4. Size select
5. PCR
Genomic DNA

100bp

100bp

Adapter

Sample 1

Sample 2

Sample 3

Sample

Barcode

Sequencer
RADSEQ/GBS EXPERIMENT DESIGN

➤ Choose the protocol
 ➤ Pick the most suitable restriction enzyme(s) for the targeting genome
 ➤ Methylation-sensitive restriction enzymes
 ➤ Double digestion
In Silico digestion genome coverage for fragment between 100-600 bp

<table>
<thead>
<tr>
<th>Enzyme pair</th>
<th>Plant</th>
<th>Animal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Arabidopsis</td>
<td>C. elegans</td>
</tr>
<tr>
<td></td>
<td>Cottonwood</td>
<td>Fruitfly</td>
</tr>
<tr>
<td></td>
<td>Medicago</td>
<td>Honey bee</td>
</tr>
<tr>
<td></td>
<td>Winegrape</td>
<td>Stickleback</td>
</tr>
<tr>
<td></td>
<td>Soybean</td>
<td>Pike</td>
</tr>
<tr>
<td></td>
<td>Rice</td>
<td>Zebra fish</td>
</tr>
<tr>
<td></td>
<td>Sorghum</td>
<td>Turkey</td>
</tr>
<tr>
<td></td>
<td>Maize</td>
<td>Zebra finch</td>
</tr>
</tbody>
</table>

| | | |
| genome size (Mb) | 120 379 297 | 242 950 382 | 659 2060 |

	83 158 220	401 377 1340	1040 1021		
CviAll+HinfI	35.1 32.5 27.9	31.4 32.5 31.1	30.8 33.8		
	31.9 30.1 24.6	35.0 31.0 31.0	30.8 34.5		
CviAll+DdeI	34.4 30.8 26.6	30.6 30.9 30.3	31.8 32.9		
	27.0 29.7 16.1	35.1 32.9 33.3	31.9 35.9		
BfaI+HinfI	32.5 32.5 26.0	30.9 31.4 32.0	31.8 34.6		
	27.9 24.5 17.5	24.9 30.2 27.9	29.3 31.8		
BfaI+DdeI	32.5 31.4 25.0	30.4 30.4 31.2	32.3 34.2		
	23.8 24.0 11.8	25.1 30.8 29.1	28.7 30.9		
CviAll+TfiI	33.4 27.9 24.3	27.2 27.7 25.8	26.2 27.6		
	29.3 25.8 24.5	26.6 23.2 23.7	24.7 26.6		
BfaI+TfiI	31.8 29.1 23.6	27.9 28.2 27.0	27.3 29.1		
	25.9 21.4 17.8	20.5 24.0 22.4	24.4 25.8		
MluCl+HinfI	25.3 18.0 14.1	19.8 19.2 24.9	28.1 29.1		
	13.5 20.7 14.1	33.0 28.4 24.2	25.1 26.6		
MluCl+DdeI	24.4 17.3 13.6	19.4 18.6 24.0	27.5 29.0		
	10.2 19.6 7.4	33.3 30.1 26.0	26.5 28.4		
CviAll+ApeKi	19.3 17.2 12.9	13.4 14.2 25.3	22.6 23.8		
	18.5 27.7 11.0	33.7 25.6 26.6	28.1 31.8		
Hinfi+MseI	28.1 22.0 18.7	24.7 24.3 28.0	28.8 30.6		
	27.0 7.9 4.3	10.4 9.8 21.6	8.4 28.3		
Hinfi+HpyCH4IV	29.4 22.7 21.6	18.0 23.1 27.9	27.2 27.9		
	30.5 14.3 11.6	16.1 14.8 24.8	11.7 16.0		
DdeI+MseI	27.1 20.8 17.9	24.1 23.2 26.9	29.3 30.3		
	21.5 8.3 3.7	10.2 9.3 22.6	6.0 29.5		
MluCl+TfiI	23.7 15.0 11.8	16.6 15.9 19.9	23.3 24.6		
	11.8 16.9 13.1	24.8 21.0 18.4	19.6 19.8		
DdeI+HpyCH4IV	29.2 22.2 20.8	17.5 22.6 27.2	27.2 27.5		
	26.3 14.9 9.3	15.9 13.8 26.0	8.6 14.6		
ApeKI+BfaI	19.5 18.3 13.1	14.9 15.1 26.3	23.3 24.3		
	16.8 12.6 5.9	13.8 14.7 25.2	13.5 29.8		
TfiI+HpyCH4IV	29.0 20.7 19.7	16.8 21.5 24.2	24.2 23.7		
	28.3 13.9 12.3	15.2 13.2 20.2	10.9 13.3		
NlaIII+MluCl	25.7 19.4 16.0	20.2 19.6 25.4	27.0 29.0		
	13.4 5.2 2.4	10.8 7.7 27.1	6.3 28.7		
TfiI+MseI	26.5 19.0 16.3	21.5 20.9 23.6	24.3 26.3		
	24.5 7.8 5.0	9.7 8.5 16.0	7.7 21.4		
CviAll+AvaiI	15.6 14.0 12.3	14.5 14.6 18.7	20.8 24.7		
	12.4 15.9 7.0	22.9 19.6 13.4	14.5 17.7		
ApeKI+MseI	17.2 14.1 9.9	13.2 12.8 25.1	22.9 23.2		
	15.8 7.2 3.8	10.0 9.5 19.5	7.0 26.7		
AvaiI+BfaI	16.1 15.3 12.3	15.8 20.6 21.8	25.2 11.3	2.0 11.6 12.3	13.0 9.0 17.3 23.5 21.4
RADSEQ/GBS APPLICATION EXAMPLES

➤ Variation discovery

➤ Single-nucleotide polymorphism discovery by high-throughput sequencing in sorghum. BMC Genomics. 2011

➤ Sequencing from libraries constructed to limit sequencing to start at defined restriction sites led to genotyping 10-fold more SNPs.

Haplotype sharing patterns
RADSEQ/GBS APPLICATION EXAMPLES

➤ Genetic Mapping

➤ Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping, BMC Genomics. 2016

➤ 10842 SNPs in total; 4849 markers were mapped.
RADSEQ/GBS APPLICATION EXAMPLES

➤ QTL Mapping

➤ An evaluation of genotyping by sequencing (GBS) to map the Breviaristatum-e (ari-e) locus in cultivated barley, BMC Genomics, 2014

➤ In total, 461M categorized reads from the GPMx mapping population were mapped.... Using these highly conservative criteria, we identified an initial set of 1,949 co-dominant SNPs with robust allele calls across the population.
RASeq/GBS APPLICATION EXAMPLES

- Genomic Selection (GS)
 - GS uses genomewide molecular markers to predict complex, quantitative traits in animal and plant breeding.
- Is GBS suitable for this task?

Jesse Poland, et al, 2012
RADSEQ/GBS APPLICATION EXAMPLES

➤ Phylogenetic inference

RAD-seq-based phylogeny of the 12 Drosophila species, based on 100-bp-long RAD-seq reads, inferred by maximum likelihood using PhyML 3.0.
SUMMARY

➤ Many protocols to be chosen from
➤ *In silico* digestion helps to pick the restriction enzymes
➤ Feasible for large-scale genomics studies
➤ What kind of data being generated?
What kind of data being generated?

- fastq format
- each read represented by 4 lines
RADSEQ/GBS DATA ANALYSIS

➤ What kind of data being generated?
 ➤ fastq format
RADSEQ/GBS DATA ANALYSIS

➤ What kind of data being generated?
 ➤ fastq format
A quality score Q is an integer mapping of p (the probability that the base casting is wrong).

$$Q_{\text{sanger}} = -10 \log_{10} p$$
RADSEQ/GBS DATA ANALYSIS

➤ What kind of data being generated?
 ➤ fastq format
 ➤ A typical GBS read

barcode RS overhang Insert sequences
RADSEQ/GBS DATA ANALYSIS

- Mainly two types of pipeline
 - Alignment-based
 - Treat GBS/RADseq data as usual NGS data
 - Clustering-based
 - Cluster the reads that are from the same loci, then discover variations within clusters (i.e. multiple sequence alignment)
ALIGNMENT APPROACH

Reference

SNP

Individual 1

C

SNP

C

Individual 2

T

C

Individual 3

T

C

Individual 4

C

A

Individual 5

. . .

A

C
CLUSTERING BASED APPROACH

Clustering based on similarity

Tag1
ATTATA

Tag2

Tag3

......
Mainly two types of pipeline

- **Alignment-based**
 - Results are easy to interpret; Imputation made easier
 - Require Ref; Computation intense; Miss novel variations
- **Clustering-based**
 - Reduce the computation cost by clustering
 - Might lead to high false positive rate, or removing too many true variations with stringent filtering criteria
RADSEQ/GBS DATA ANALYSIS

- Features of the two types of pipelines
 - Alignment-based
 - require reference
 - compute intensive
 - More accurate
 - Imputation might be easier
 - Clustering-based
 - reference not required
 - Reduce the computation cost by clustering
 - Might lead to large false positive, or removing too many variation with stringent filtering criteria
Reference genome available?

Yes

- Polyploidy?
 - Yes
 - Alignment-based Pipeline
 - No
 - Distant related individuals?
 - Yes
 - Clustering-based Pipeline
 - No
 - Either would work well

No

- Polyploidy?
 - Yes
 - Build a reference from the reads
 - No
 - Clustering-based Pipeline
General NGS analysis workflow for variation discovery

- Raw reads
 - QC
 - Alignment
 - Calling variations
 - Filtering
 - De novo assembly

Processing/Filtering
RADSEQ/GBS Data Analysis Pipeline

<table>
<thead>
<tr>
<th>Pipeline/Program</th>
<th>Alignment</th>
<th>Clustering</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacks</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>TASSEL-GBS</td>
<td>Y</td>
<td>Y</td>
<td>Trim reads</td>
</tr>
<tr>
<td>UNEAK</td>
<td>N</td>
<td>Y</td>
<td>Trim reads</td>
</tr>
<tr>
<td>PyRAD</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>dDocent</td>
<td>Y</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>AftrRAD</td>
<td>N</td>
<td>Y</td>
<td></td>
</tr>
</tbody>
</table>
Stacks

- Designed to work with short read (max 1024bp)
- Uniform length of reads
 - Ideal for Illumina
 - For Ion Torrent platform, reads would need to be truncated to a particular length
- Deal with most of the RADseq/GSB protocols
- *Stacks* is designed to process data that *stacks* together:
 - In the case of double-digest RAD, both the single-end and paired-end read are anchored by a restriction enzyme and can be assembled as independent loci;
 - In cases such as with the RAD protocol, where the molecules are sheared and the paired-end therefore does not stack-up, cannot be directly used.
Instead of trying to map eight reads separately, we may just take one as representative.
Stacks workflow

1. RAW reads
2. process_radtags
3. QC reads
4. ustacks/pstacks
5. stacks of each sample
6. cstacks
7. Categories
 - sstacks
 - population
 - genotypes
8. Genotyping output
Major Parameters

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th><code>denovo_map.pl</code> Parameter</th>
<th>Pipeline Component</th>
<th>Component Parameter</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum stack depth / minimum depth of coverage</td>
<td><code>-m</code></td>
<td><code>ustacks</code></td>
<td><code>-m</code></td>
<td>3</td>
</tr>
<tr>
<td>Distance allowed between stacks</td>
<td><code>-M</code></td>
<td><code>ustacks</code></td>
<td><code>-M</code></td>
<td>2</td>
</tr>
<tr>
<td>Distance allowed between catalog loci</td>
<td><code>-n</code></td>
<td><code>cstacks</code></td>
<td><code>-n</code></td>
<td>0</td>
</tr>
</tbody>
</table>
1. MINIMUM STACK DEPTH

- If set to a value of 3 then three or more identical reads must be found to consider those reads a stack. If a stack is formed with only two reads, then those reads are set aside and a stack is not constructed.

- If this parameter is set too low, then reads with convergent sequencing errors are likely to be erroneously labeled as stacks.

- If this parameter is set too high, then true alleles will not be recorded and will drop out of the analysis.

- If you have low sequencing depth for your samples, you will have to set this parameter to a relatively low value. Conversely, if you have very high sequencing coverage, you will want to increase this parameter.

- If you have a high error rate in your sequencing lane, then you are likely to see convergent sequencing or PCR errors (errors that occur independently at the same nucleotide position in the same read) and should increase the minimum stack depth.

- \(-m 3\)
1. MINIMUM STACK DEPTH

1. If set to a value of 3 then three or more identical reads must be found to consider those reads a stack. If a stack is formed with only two reads, then those reads are set aside (secondary reads) and a stack is not constructed.

2. If this parameter is set too low, then reads with convergent sequencing errors are likely to be erroneously labeled as stacks.

3. If this parameter too high, then true alleles will not be recorded and will drop out of the analysis.

4. If you have low sequencing depth for your samples, you will have to set this parameter to a relatively low value. Conversely, if you have very high sequencing coverage, you will want to increase this parameter.

5. If you have a high error rate in your sequencing lane, then you are likely to see convergent sequencing or PCR errors (errors that occur independently at the same nucleotide position in the same read) and should increase the minimum stack depth.
2. DISTANCE ALLOWED BETWEEN STACKS

-M 2
2. DISTANCE ALLOWED BETWEEN STACKS

1. If you set this parameter too low, then some loci will fail to be reconstructed. This means the SNPs contained in that locus will not be identified and this locus will appear as two loci to the remainder of the pipeline.

2. Setting this parameter too high will allow repetitive sequence to chain together into large, nonsensical loci. For example, if stack A is one nucleotide apart from stack B, which is one nucleotide apart from stack C, which is one nucleotide apart from stack D, then A, B, C, and D will be merged into a locus despite A and D being four nucleotides apart. These loci are not useful to the pipeline and at several points the pipeline will try to detect these and set them aside.

3. You will want to experiment with several different values of this parameter to see how many polymorphic loci you can construct.
3. DISTANCE BETWEEN CATALOG LOCI

- Sample 1
 - Locus 1: C
 - Locus 2: A
 - Locus X: Consensus

- Sample 2
 - Locus 1: A
 - Locus 2: C
 - Locus 3: AC
 - Locus X: AA

- Sample X
 - Locus 1: G
 - Locus 2: T
 - Locus 3: CT
 - Locus X: GG
3. DISTANCE BETWEEN CATALOG LOCI

1. If you set this parameter too low, then some loci will fail to be reconstructed. This means the SNPs contained in that locus will not be identified and this locus will appear as two loci to the remainder of the pipeline.

2. Setting this parameter too high will allow repetitive sequence to chain together into large, nonsensical loci. For example, if stack A is one nucleotide apart from stack B, which is one nucleotide apart from stack C, which is one nucleotide apart from stack D, then A, B, C, and D will be merged into a locus despite A and D being four nucleotides apart. These loci are not useful to the pipeline and at several points the pipeline will try to detect these and set them aside.

3. You will want to experiment with several different values of this parameter to see how many polymorphic loci you can construct.
OPTIMIZE THE PARAMETERS

➤ How to optimize the parameters for my project?

➤ Simulation

➤ With reference genome available, simulate RADseq/GBS reads from the reference genome with predefined SNPs;

➤ Call SNPs with different set of parameters, pick the one with the lowest FP and/ high TP.

➤ Generate SNPs for multiple sets of parameters, then check the SNP accuracy
DDocent relies almost entirely on third party software to complete every step of the analysis pipeline.

<table>
<thead>
<tr>
<th>Software</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeBayes</td>
<td>https://github.com/ekg/freebayes</td>
</tr>
<tr>
<td>STACKS</td>
<td>http://creskolab.uoregon.edu/stacks/</td>
</tr>
<tr>
<td>PEAR</td>
<td>http://sco.h-its.org/exelixis/web/software/pear/</td>
</tr>
<tr>
<td>Trimmomatic</td>
<td>http://www.usadellab.org/cms/?page=trimmomatic</td>
</tr>
<tr>
<td>Mawk</td>
<td>http://invisible-island.net/mawk/</td>
</tr>
<tr>
<td>BWA</td>
<td>http://bio-bwa.sourceforge.net</td>
</tr>
<tr>
<td>SAMtools</td>
<td>http://samtools.sourceforge.net</td>
</tr>
<tr>
<td>VCFtools v.1.1**</td>
<td>http://vcftools.sourceforge.net/index.html</td>
</tr>
<tr>
<td>rainbow</td>
<td>http://sourceforge.net/projects/bio-rainbow/files/</td>
</tr>
<tr>
<td>seqtk</td>
<td>https://github.com/lh3/seqtk</td>
</tr>
<tr>
<td>CD-HIT</td>
<td>http://weizhong-lab.ucsd.edu/cd-hit/</td>
</tr>
</tbody>
</table>
DDOCENT PIPELINE

Raw reads → QC reads → filtered reads → de novo assembly

- TrimGalore
- remove low coverage reads
- rainbow cdhit

Reference

BWA-mem

BAMs

- FreeBayes
- GATK

Raw variations

- VCFtools

Filtered variations
Any questions?
Let’s give it a try!
GBS DATA ANALYSIS USING STACKS ON HPRC GALAXY

For testing only: https://hprcgalaxy.tamu.edu/fishcamp

For real projects: https://hprcgalaxy.tamu.edu/maroon
DEMO OF GBS DATA ANALYSIS USING STACKS ON HPRC

Login to ada: ssh your-tamu-netid@ada.tamu.edu

Create a folder: mkdir stacks_tutorial && cd stacks_tutorial

Get the tutorial data: git clone https://github.com/swang8/workshop

Create working directory:
cd workshop/material/tutorial_data/
mkdir RAD && cd RAD
tar xvf ../rad_test.tar
ls -l

Run jobs on working nodes interactively:
https://portal.hprc.tamu.edu/