
Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

Introduction to OpenMP
March 29, 2017

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

Setup Examples

2

To copy the demos and examples to your local scratch, type:

/general/public/training/openmp/setup.sh (ADA & CURIE)

/sw/local/training/openmp/setup.sh (TERRA)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

3

64GB MEMORY

core core core core core...
10 cores

core core core core core...
10 cores

Each (terra/ada/curie) NODE contains multiple cores (28 on terra, 20 on ada, 16 on

curie) and at at least 64GB (256 on curie) of shared memory (i.e. all cores have

access to this memory)

NOTE: we use ada architecture for illustration below

Basic Computer Architecture

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

4

Basic Computer Architecture

Each (terra/ada/curie) NODE contains multiple cores (28 on terra, 20 on ada, 16 on

curie) and at at least 64GB (256 on curie) of shared memory (i.e. all cores have

access to this memory)

NOTE: we use ada architecture for illustration below

64GB MEMORY

core core core core core...
10 cores

core core core core core...
10 cores

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

5

Basic Computer Architecture

Each (terra/ada/curie) NODE contains multiple cores (28 on terra, 20 on ada, 16 on

curie) and at at least 64GB (256 on curie) of shared memory (i.e. all cores have

access to this memory)

NOTE: we use ada architecture for illustration below

64GB MEMORY

core core core core core...
10 cores

core core core core core...
10 cores

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

6

Defacto standard API for writing shared memory parallel
applications in C, C++, and Fortran

OpenMP API consists of:

 Compiler pragmas/directives
 Runtime subroutines/functions
 Environment variables

What is OpenMP?

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

7

!$OMP DIRECTIVE [clauses]
:

!$OMP END DIRECTIVE

C/C++ pragma format is:

#pragma omp directive [clauses]
{

:
}

All OpenMP directives follow this format.

New line required

fortran directive format:

Not case sensitive

OpenMP Directives/Pragmas

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

8

program HELLO
!$OMP PARALLEL
print *,”Hello World”
!$OMP END PARALLEL
end program HELLO

#include <iostream>
#include <omp.h>

int main() {
#pragma omp parallel

{
std::cout << ”Hello World\n”;

}
return 0;

}

intel: ifort -openmp -o hi.x hello.f90
pgi: pgfortran -mp -o hi.x hello.f90
gnu: gfortran -fopenmp -o hi.x hello.f90
IBM: xlf_r -qsmp=omp -o hi.x hello.f90

intel: icpc -openmp -o hi.x hello.cpp
pgi: pgcpp -mp -o hi.x hello.cpp
gnu: g++ -fopenmp -o hi.x hello.cpp
IBM: xlc++_r -qsmp=omp -o hi.x hello.cpp

export OMP_NUM_THREADS=4
./hi.x

COMPILING:

RUNNING:

SOURCE CODE:

environmental variable

directive

pragma

NOTE: example hello_world

OpenMP HelloWorld

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

9

Print
*,”hello”

Print
*,”hello”

Print
*,”hello”

Print
*,”hello”

end

OMP region, every thread
executes all instructions in
the OpenMP block

Runtime starts 3 additional ”worker”
threads at start of openmp region

thread #3thread #1thread #0 thread #2

 OpenMP programs start with a single thread; the master thread (Thread #0)
 At start of parallel region master starts team of parallel ”worker” threads (FORK)
 Statements in parallel block are executed in parallel by every thread
 At end of parallel region, all threads synchronize, and join master thread (JOIN)

Implicit barrier. Will discuss
synchronization later

OpenMP follows the fork/join model:

start

program HELLO
!$OMP PARALLEL
print *,”Hello World”
!$OMP END PARALLEL
end program HELLO

Fork/Join

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

10

 Thread is independent sequence of execution of program code
 Block of code with one entry and one exit

 For our purposes a more abstract concept
 Unrelated to physical cores/CPUs
 OpenMP threads are mapped onto physical cores
 Possible to map more than 1 thread onto a core
 In practice best to have one-to-one mapping.

What are threads, cores, and how do they relate?

Cores & Threads

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

11

 Environmental variable: OMP_NUM_THREADS

export OMP_NUM_THREADS=4
./a.out

 Runtime function: omp_set_num_threads(n)

omp_set_num_threads(4);
!$omp parallel

:

 OMP PARALLEL clause: num_threads(n)

!$omp parallel num_threads(4)

???

case sensitive

???

Setting the number of Threads

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

12

 Runtime function omp_get_num_threads()
 Returns number of threads in parallel region
 Returns 1 if called outside parallel region

 Runtime function omp_get_thread_num()
 Returns id of thread in team
 Value between [0,n-1] // where n = #threads
 Master thread always has id 0

 Runtime function omp_get_max_threads()
 Returns upper bound #threads in parallel region
 value of OMP_NUM_THREADS or set_num_threads

Useful OpenMP Functions

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

13

We will create an OpenMP program that does the following:

1) print total number of threads

2) start parallel region

3) every thread prints it's id and total number of threads

4) close the parallel region

NOTE: demo hello_threads

DEMO 1

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

14

$OMP PARALLEL
TOT = omp_get_num_threads()
ID = omp_get_thread_id()

:
!$OMP END PARALLEL

64GB MEMORY

core core core core core...
10 cores

core core core core core...
10 cores

tot=20

id=?

Remember: memory is (conceptually) shared by all threads

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

15

$OMP PARALLEL
TOT = omp_get_num_threads()
ID = omp_get_thread_id()

:
!$OMP END PARALLEL

Remember: memory is (conceptually) shared by all threads

64GB MEMORY

core core core core core...
10 cores

core core core core core...
10 cores

tot=20

id=?

All threads try to access the same variable (possibly
at the same time). This can lead to a race condition.
Different runs of same program might give different
results because of these race conditions

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

16

Index variables (Fortran, C/C++) and variables declared inside parallel region
(C/C++) are considered private by default.

 Every thread will have it's own ”private” copy of variables in list
 No other thread has access to this ”private” copy
 Private variables are NOT initialized with value before region started.
 Private variables are NOT accessible after enclosing region finishes

Data scope clauses: private(list)

!$OMP PARALLEL PRIVATE(a,c) #pragma omp parallel private(a,c)

:

!$OMP END PARALLEL

Data Scope Clauses

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

17

By default most variables in work sharing constructs are considered shared
in OpenMP. Exceptions include index variables (Fortran, C/C++) and
variables declared inside parallel region (C/C++).

Data scope clauses: shared(list)

!$OMP PARALLEL SHARED(a,c) #pragma omp parallel shared(a,c)

:

!$OMP END PARALLEL

 All variables in list will be considered shared.
 Every openmp thread has access to all these variables
 Programmer's responsibility to avoid race conditions

Data Scope Clauses

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

 Very similar to private clause
 Private copies are initialized with value of original variable

Data scope clauses: firstprivate(list)
!$OMP PARALLEL FIRSTPRIVATE(a,c) #pragma omp parallel firstprivate(a,c)

!$OMP END PARALLEL

18

Data scope clauses: default(shared | private | firstprivate | lastprivate)

!$OMP PARALLEL DEFAULT(private) #pragma omp parallel default(private)

!$OMP END PARALLEL

 Sets default data scoping rule
 If not set, default depends on directive
 e.g. shared for work sharing directives

Data Scope Clauses

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

19

We will rewrite the OpenMP program (from previous

demo) and make sure all variables are assigned and

printed correctly.

NOTE: exercise hello_threads

DEMO 2

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

20

$OMP PARALLEL PRIVATE(ID)
TOT = omp_get_num_threads()
ID = omp_get_thread_id()

:
!$OMP END PARALLEL

64GB MEMORY

core core core core core...
10 cores

core core core core core...
10 cores

tot=20

Id=?

Remember: memory is (conceptually) shared by all threads

id =0 id =1 id =2 id =8 id =9 id =10 id =11 id =12 id =18 id =19

Private memories

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

21

 OpenMP creates separate data stack for every worker thread to
store copies of private variables (master thread uses regular stack)

 Size of these stacks is not defined by OpenMP standards
 Behavior of program undefined when stack space exceeded
 Although most compilers/RT will throw seg fault

 To increase stack size use environment var OMP_STACKSIZE, e.g.
 export OMP_STACKSIZE=512M
 export OMP_STACKSIZE=1G

 To make sure master thread has large enough stack space use
ulimit -s command (unix/linux).

TIP 1: Stack size

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

22

:
!$OMP PARALLEL
!$OMP DO
DO n=1,N

A(n) = A(n) + B
ENDDO
!$OMP END DO
!$OMP END PARALLEL

:

:
!$OMP PARALLEL DO
DO n=1,N

A(n) = A(n) + B
ENDDO
!$OMP END PARALLEL DO

:

 DO command must immediately follow “!$OMP DO” directive

 Loop iteration variable is “private” by default

 If “end do” directive omitted it is assumed at end of loop

 Not case sensitive

OR

Work sharing directive (Fortran): !$OMP DO [clauses]

Work Sharing Directives (FORTRAN)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

23

 for command must immediately follow “#pragma omp for”

 Newline required after “#pragma omp for”

 Iteration variable can be

 Signed/unsigned integer variable

 Pointer type

 Random access iterator

OR

:
#pragma omp parallel
#pragma omp for

for (int i=1;i<N;++i)
A(n) = A(n) + B;

:

:
#pragma omp parallel for

for (int i=1;i<N;++i)
A(n) = A(n) + B;

:

Work sharing pragma (C/C++): #pragma omp for [clauses]

Work Sharing Directives (C/C++)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

24

Random access iterators:

vector<int> vec(10);

vector<int>::iterator it= vec.begin();
#pragma omp parallel for

for (; it != vec.end() ; ++it) {

// do something with *it

}

Pointer type:

int N = 1000000;

int arr[N];
#pragma omp parallel for

for (int* t=arr;t<arr+N;++t) {

// do something with *t

}

C++
new in OpenMP 3.0.

Work Sharing Directives (C/C++)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

25

We will create a program that computes a simple
matrix vector multiplication b=Ax, either in fortran or
C/C++. We will use OpenMP directives (pragmas) to
make it run in parallel.

NOTE: demo matrix_mult

DEMO 3

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

26

Not all loops can be parallelized. Before adding OpenMP directives
we need to check for data dependencies

For example:

Is the result guranteed to be correct if you run this
loop in parallel?

for (i=1 ; i<N ; ++i)
A[i] = A[i-1] + 1

end

Data Dependencies

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

27

Not all loops can be parallelized. Before adding OpenMP directives
we need to check for data dependencies

For example:

for (i=1 ; i<N ; ++i)
A[i] = A[i-1] + 1

end

Easier to see when you unroll loop (partly):

iteration i=1: A[1] = A[0] + 1
iteration i=2: A[2] = A[1] + 1
iteration i=3: A[3] = A[2] + 1

A[1] used here, defined in previous iteration

A[2] used here, defined in previous iteration

Data Dependencies

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

28

In a reduction the values of the local copies will be summarized (reduced)

into a global shared variable (using the specified reduction operator).

Example:

#pragma omp parallel for reduction(+:sum)

for (int i=0;i<10;++i) for (int i=0;i<10;++i)

sum=sum+a[i]; sum=sum+a[i];

Data scope clause: REDUCTION(op:list)

 Only certain kind of operators allowed

 +, - , * , max, min

 & , | , ^ , && , || (C++)

 .and. , .or. , .eqv. , .neqv. , iand , ior , ieor (Fortran)

 OpenMP 4.0 allows for user defined reductions

 Variables in list have to be shared

Also allowed in c/c++ since OpenMP 3.1

REDUCTION

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

29

We will create a subroutine that computes the

dot product of two vectors. We will use OpenMP

pragmas (directives) to make it run in parallel.

NOTE: demo dot_product

DEMO 4

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

30

An OpenMP directive (pragma) that appears independently from another
enclosing directive is called an orphaned directive (pragma). It exists
outside of another directive's (pragma) static (lexical) extent. For example:

Note: OpenMP directives (pragmas) should be in the dynamic extent of a
parallel section directive (pragma).

int main() {

#pragma omp parallel

foo()

return 0;

}

void foo() {

#pragma omp for

for (int i=0;i<N;i++) {….}

}

TIP 2: ORPHANED DIRECTIVES

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

31

THREAD 0 THREAD 1 THREAD 2 THREAD 3

1 250 500 750 1000

Although the OpenMP standard does not specify how a loop should be partitioned
most compilers split the loop in N/p (N #iterations, p #threads) chunks by default.

SCHEDULE (STATIC,250) //loop with 1000 iterations, 4 threads

!$OMP PARALLEL DO SCHEDULE (STATIC,250) #pragma omp parallel for schedule(static,250)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO

!$OMP END PARALLEL DO

Scheduling Clauses

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

32

0 1 2 3 0 1 2 3 0 1 2 3…..

1 10 20 30 40 50 60 70 80 960 970 980 990 1000

!$OMP PARALLEL DO SCHEDULE (STATIC,10) #pragma omp parallel for schedule(static,10)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO }

!$OMP END PARALLEL DO

Scheduling Clauses

SCHEDULE (STATIC,10) //loop with 1000 iterations, 4 threads

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

33

With static scheduling the number of iterations is evenly distributed among all
openmp threads (i.e. Every thread will be assigned similar number of
iterations). This is not always the best way to partition. Why is This?

T
im

e
 p

e
r ite

ra
tio

n

0 7654321

Iterations

Thread 0

Thread 1 Thread 2 Thread 3

How can this happen?

Scheduling Clauses

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

34

With static scheduling the number of iterations is evenly distributed among all
openmp threads (i.e. Every thread will be assigned similar number of
iterations). This is not always the best way to partition. Why is This?

Iterations

T
im

e
 p

e
r ite

ra
tio

n

This is called load
imbalance. In this case
threads 2,3, and 4 will be
waiting very long for
thread 1 to finish

How can this happen?

Scheduling Clauses

0 7654321

Iterations

Thread 0

Thread 1 Thread 2 Thread 3

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

35

Loop iterations are divided into pieces of size chunk. When a thread finishes
one chunk, it is dynamically assigned another.

NOTE: there is a significant overhead involved
compared to static scheduling. WHY?

!$OMP PARALLEL DO SCHEDULE (DYNAMIC,10) #pragma omp parallel for schedule(dynamic,10)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO }

!$OMP END PARALLEL DO

Scheduling Clauses

SCHEDULE (DYNAMIC,10) //loop with 1000 iterations, 4 threads

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

36

Similar to DYNAMIC schedule except that chunk size is relative to
number of iterations left.

!$OMP PARALLEL DO SCHEDULE (GUIDED,10) #pragma omp parallel for schedule(guided,10)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO }

!$OMP END PARALLEL DO

Scheduling Clauses

SCHEDULE (GUIDED,10) //loop with 1000 iterations, 4 threads

NOTE: there is a significant overhead involved
compared to static scheduling. WHY?

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

37

Although technically it doesn't share work, another work sharing pragma
that OpenMP provides is #pragma omp single (!$OMP SINGLE) When
encountering a single directive only one member of the team will execute
the code in the block

 One thread (not neccesarily master) executes the block
 Other threads will wait
 Useful for thread-unsafe code
 Useful for I/O operations

#pragma omp single (!$OMP SINGLE)

Work Sharing Directives (2)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

38

Executes set of structured blocks in parallel

!$OMP PARALLEL
!$OMP SECTIONS

!$OMP SECTION
// WORK 1

!$OMP SECTION
// WORK 2

!$OMP END SECTIONS
!$OMP END PARALLEL

This will execute ”WORK 1” and ”WORK 2” in parallel

#pragma omp sections (!$OMP SECTIONS)

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

// WORK 1
#pragma omp section

// WORK 2
}

Work Sharing Directives (3)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

39

Worksharing constructs have an implicit barrier at the end of their worksharing
region. However, OpenMP provides a clause to ommit this barrier.

!$OMP DO
:

!$OMP END DO NOWAIT

#pragma omp for nowait
:

 At end of work sharing constructs threads will not wait

 There is always barrier at end of parallel region

NOWAIT Clause

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

40

 #pragma omp for (!$OMP DO)
 #pragma omp sections (!$OMP SECTIONS)
 #pragma omp single (!$OMP SINGLE)

Clauses that can be used with these constructs (

incomplete list and not all clauses can be used with every directive)

OMP work sharing constructions discussed

 SHARED (list)
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE(list)
 SCHEDULE (STATIC | DYNAMIC | GUIDED, chunk)
 REDUCTION(op:list)
 NOWAIT

Work Sharing Summary

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

41

OpenMP programs use shared variables to
communicate. We need to make sure these variables
are not accessed at the same time by different threads
(will cause race conditions). OpenMP provides a
number of directives for synchronization.

Communication/Synchronization

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

42

This Directive ensures that only the master threads excecutes
instructions in the block. There is no implicit barrier so other threads
will not wait for master to finish

What is difference with !$OMP SINGLE DIRECTIVE?

#pragma omp master (!$OMP MASTER)

Synchronization Directives (1)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

43

This Directive makes sure that only one thread can execute the code in
the block. If another threads reaches the critical section it will wait untill
the current thread finishes this critical section. Every thread will execute
the critical block and they will synchronize at end of critical section

 Introduces overhead
 Serializes critical block
 If time in critical block relatively large → speedup negliable

#pragma omp critical (!$OMP CRITICAL)

Synchronization Directives (2)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

44

In the REDUCTION exercise we created an OpenMP

program that computes the dotproduct of two vectors

using the reduction clause. Now we will create a

version that uses critical blocks instead.

NOTE: dempo dotproduct_critical

DEMO 5

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

45

This Directive is very similar to the !$OMP CRITICAL directive on the
previous slide. Difference is that !$OMP ATOMIC is only used for the
update of a memory location. Sometimes !$OMP ATOMIC is also
refered to as a mini critical section.

 Block consists of only one statement
 Atomic statement must follow specific syntax

#pragma omp atomic (!$OMP ATOMIC)

Synchronization Directives (3)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

46

A barrier will force every thread to wait at the barrier until all threads
have reached the barrier. The following omp directives we discussed
before include an implicit barrier:

 !$ OMP END PARALLEL
 !$ OMP END DO
 !$ OMP END SECTIONS
 !$ OMP END SINGLE
 !$ OMP END CRITICAL

#pragma omp barrier (!$OMP BARRIER)

Synchronization Directives (4)

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

47

OpenMP provides another useful clause to decide at run time if a parallel
region should actually be run in parallel (multiple threads) or just by the
master thread:

IF (logical expr)

For example:

$!OMP PARALLEL IF(n > 100000) (fortran)
#pragma omp parallel if (n>100000) (C/C++)

This will only run the parallel region when n> 100000

TIP 3: IF Clause

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

48

Nested Parallelism

#pragma omp parallel for

for (int i=0; i<N;++i) {

:

#pragma omp parallel for

for (j=0;j<M;++j)

}

OpenMP allows parallel regions inside other parallel regions ,e.g.

 To enable nested parallelism:

 env var: OMP_NESTED=1

 lib function: omp_set_nested(1)

 To specify number of threads:

 omp_set_ num_threads()

 OMP_NUM_THREADS=4,2

NOTE: using nested parallelism does introduce extra overhead and there

is a possibility of over-subscription of threads

Nested Parallelism

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

49

The Intel Math Kernel Library (MKL) has very specialized and optimized versions
of many math functions (e.g. blas, lapack). Many of these have been parallelized
using OpenMP.

To run mkl functions in parallel use:

 MKL_NUM_THREADS
 OMP_NUM_THREADS

For more information about MKL:

http://hprc.tamu.edu/wiki/index.php/Ada:MKL

MKL

