
Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Introduction to OpenMP
Marinus Pennings

October 17,2017

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Outline

 Basic Computer Architecture

 Starting parallel region

 Data Scopes

 Work sharing

 Dependencies and Reductions

 Bonus: Synchronization

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

https://hprc.tamu.edu/training/intro_openmp.html

Short course home page:

Setting up OpenMP sample codes:

 On ada/curie type: /scratch/training/OpenMP/setup.sh

 On terra type: /scratch/training/OpenMP/setup.sh

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

4

Each terra NODE has 28

cores (two 14 core cpus) per

node and at least 64GB of

SHARED memory (NOTE: ada

has 20 cores per node and curie has 16)

Basic Computer Architecture

64GB MEMORY

core core core core...
14 cores

core core core core...
14 cores

terra node

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

5

Each terra NODE has 28

cores (two 14 core cpus) per

node and at least 64GB of

SHARED memory (NOTE: ada

has 20 cores per node and curie has 16)

Basic Computer Architecture

64GB MEMORY

core core core core...
14 cores

core core core core...
14 cores

terra node

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

6

Each terra NODE has 28

cores (two 14 core cpus) per

node and at least 64GB of

SHARED memory (NOTE: ada

has 20 cores per node and curie has 16)

Basic Computer Architecture

64GB MEMORY

core core core core...
14 cores

core core core core...
14 cores

terra node

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

7

Defacto standard API for writing shared memory parallel applications in C, C++,
and Fortran

OpenMP API consists of:

 Compiler pragmas/directives
 Runtime subroutines/functions
 Environment variables

What is OpenMP?

!$OMP DIRECTIVE [clauses]
:

!$OMP END DIRECTIVE

#pragma omp directive [clauses]
{

:
}

Not case sensitive

New line required

fortran directive format:

C/C++ pragma format:

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

8

!$OMP PARALLEL
c code block, will be
c executed in parallel
!$OMP END PARALLEL

#pragma omp parallel
{

// code block, will be
// executed in parallel

}

Starting Parallel Region

This will start an OpenMP region. A team of threads will be be created,
the code inside the parallel block will be executed concurrently by all
threads.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

9

Fork/Join

#include <iostream>
#include <omp.h>

using std;
int main() {
#pragma omp parallel

{
cout << ”Hello world\n”;

}
return 0;

}

Runtime starts additional ”worker”
threads at start of openmp region

thread #1

thread #0

thread #2

start

cout << ”Hello World” cout << ”Hello World” cout << ”Hello World” cout << ”Hello World”

thread #3#pragma omp parallel

}

{{ { {

} } }

return 0;
end

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

10

program HELLO
!$OMP PARALLEL
print *,”Hello World”
!$OMP END PARALLEL
end program HELLO

#include <iostream>
#include <omp.h>

int main() {
#pragma omp parallel

{
std::cout << ”Hello World\n”;

}
return 0;

}

intel: ifort -qopenmp -o hi.x hello.f90
gnu: gfortran -fopenmp -o hi.x hello.f90

intel: icpc -qopenmp -o hi.x hello.cpp
gnu: g++ -fopenmp -o hi.x hello.cpp

export OMP_NUM_THREADS=4
./hi.x environmental variable

directive

pragma

HelloWorld

COMPILING

RUNNING

SOURCE

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

11

 OpenMP threads are mapped onto physical cores
 Possible to map more than 1 thread onto a core
 In practice best to have one-to-one mapping.

(OpenMP) THREAD: Independent sequence of code, with a
single entry and a single exit

Threads & Cores

CORE: Physical processing unit that receives instructions and
performs calculations, or actions, based on those instructions.

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

12

 Environmental variable: OMP_NUM_THREADS

export OMP_NUM_THREADS=4
./a.out

 Runtime function: omp_set_num_threads(n)

omp_set_num_threads(4);
#pragma omp parallel

:

 OMP PARALLEL clause: num_threads(n)

#pragma omp parallel num_threads(4)

???

case sensitive

???

Setting the number of Threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

13

 Runtime function: omp_get_thread_num()

id = omp_get_thread_num(); // 0
#pragma omp parallel
{

id = omp_get_thread_num(); // <thread id in region>
}

 Runtime function: omp_get_num_threads()

tot = omp_get_num_threads(); // 1
#pragma omp parallel
{

tot = omp_get_num_threads(); // < total #threads in region>
}

Getting Thread info

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

14

Create an OpenMP program that does the following:

1) start parallel region

2) every thread prints it's id and total number of threads

3) close the parallel region

Exercise

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

15

Remember: memory is
(conceptually) shared by all threads

64GB MEMORY

core core core core...
14 cores

core core core core...
14 cores

terra node

tot=28;

Id=1;

tot=28;

Id=13;
tot=28;

Id=0;
tot=28;

Id=12;
tot=28;

Id=15;

tot=28;

Id=27;
tot=28;

Id=14;
tot=28;

Id=26;

tot=20

id=?

#pragma omp parallel
{

tot = omp_get_num_threads();
id = omp_get_thread_num();

}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

16

Remember: memory is
(conceptually) shared by all threads

64GB MEMORY

core core core core...
14 cores

core core core core...
14 cores

terra node

tot=28;

Id=1;

tot=28;

Id=13;
tot=28;

Id=0;
tot=28;

Id=12;
tot=28;

Id=15;

tot=28;

Id=27;
tot=28;

Id=14;
tot=28;

Id=26;

tot=20

id=?

All threads try to access
the same variable
(possibly at the same
time). This can lead to a
race condition. Different
runs of same program
might give different
results because of these
race conditions

#pragma omp parallel
{

tot = omp_get_num_threads();
id = omp_get_thread_num();

}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

17

Index variables (Fortran, C/C++) and variables declared inside parallel region (C/C++) are considered private by default.

 Every thread will have it's own ”private” copy of variables in list
 No other thread has access to this ”private” copy
 Private variables are NOT initialized with value before region started

(use firstprivate instead)
 Private variables are NOT accessible after enclosing region finishes

Data scope clauses: private(list)

!$OMP PARALLEL PRIVATE(a,c)

:

!$OMP END PARALLEL

Data Scope Clauses

#pragma omp parallel private(a,c)

{

}

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

18

 All variables in list will be considered shared
 Every OpenMP thread has access to all these variables
 Programmer's responsibility to avoid race conditions

Data scope clauses: shared(list)

!$OMP PARALLEL SHARED(a,c)

:

!$OMP END PARALLEL

Data Scope Clauses

#pragma omp parallel shared(a,c)

{

}

By default most variables in work sharing constructs are considered shared in OpenMP. Exceptions include index
variables (Fortran, C/C++) and variables declared inside parallel region (C/C++).

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

19

Rewrite the OpenMP program (from previous demo)

and make sure all variables are assigned and printed

correctly.

Exercise

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

20

#pragma omp parallel
{

tot = omp_get_num_threads();
id = omp_get_thread_num();

}

Remember: memory is
(conceptually) shared by all threads

64GB MEMORY

core core core core...
14 cores

core core core core...
14 cores

terra node

tot=28;

Id=1;

tot=28;

Id=13;
tot=28;

Id=0;
tot=28;

Id=12;
tot=28;

Id=15;

tot=28;

Id=27;
tot=28;

Id=14;
tot=28;

Id=26;

tot=20

id =0 id =1 id =12 id =13 id =14 id =15 id =26 id =27

Private memories

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

21

 OpenMP creates separate data stack for every worker thread to
store private variables (master thread uses regular stack)

 Size of these stacks is not defined by OpenMP standards
 Behavior of program undefined when stack space exceeded
 Although most compilers/RT will throw seg fault

 To set stack size use environment var OMP_STACKSIZE:
 export OMP_STACKSIZE=512M
 export OMP_STACKSIZE=1G

 To make sure master thread has large enough stack space use
ulimit -s command (unix/linux).

TIP: Stack size

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

22

 for command must immediately follow “#pragma omp for”

 Newline required after “#pragma omp for”

 Originally iteration variable could only be signed/unsigned integer variable.

OR

:

#pragma omp parallel
#pragma omp for

for (int i=1;i<N;++i)
A(n) = A(n) + B;

:

:
#pragma omp parallel for

for (int i=1;i<N;++i)
A(n) = A(n) + B;

:

Work sharing pragma (C/C++): #pragma omp for [clauses]

Work Sharing Directives

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

23

Random access iterators:

vector<int> vec(10);

vector<int>::iterator it=

vec.begin();

#pragma omp parallel for

for (; it != vec.end() ; ++it) {

// do something with *it

}

Pointer type:

int N = 1000000;

int arr[N];

#pragma omp parallel for

for (int* t=arr;t<arr+N;++t) {

// do something with *t

}

Work Sharing Directives

New in

OpenMP

3.0

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

24

!$OMP PARALLEL
!$OMP DO
DO n=1,N

A(n) = A(n) + B
ENDDO
!$OMP END DO
!$OMP END PARALLEL

!$OMP PARALLEL DO
DO n=1,N

A(n) = A(n) + B
ENDDO
!$OMP END PARALLEL DO

 DO command must immediately follow “!$OMP DO” directive

 Loop iteration variable is “private” by default

 If “end do” directive omitted it is assumed at end of loop

 Not case sensitive

OR

Work sharing directive (Fortran): !$OMP DO [clauses]

Work Sharing Directives

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

25

Create a program that computes a simple matrix vector
multiplication b=Ax, either in fortran or C/C++. Use
OpenMP directives (pragmas) to make it run in
parallel.

Exercise

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

26

An OpenMP pragma that appears independently from another enclosing pragma
is called an orphaned pragma. It exists outside of another pragma static extent.

Note: OpenMP directives (pragmas) should be in the dynamic extent of a parallel section directive (pragma).

int main() {

#pragma omp parallel

foo()

return 0;

}

void foo() {

#pragma omp for

for (int i=0;i<N;i++) {….}

}

TIP: ORPHANED PRAGMAS

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

27

Can all loops can be parallelized?

for (i=1 ; i<N ; ++i)
A[i] = A[i-1] + 1

end

Data Dependencies

#pragma omp parallel for
for (i=1 ; i<N ; ++i)

A[i] = A[i-1] + 1
end

Is the result guranteed to be correct if you run this loop in parallel?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

28

Can all loops can be parallelized?

for (i=1 ; i<N ; ++i)
A[i] = A[i-1] + 1

end

Data Dependencies

#pragma omp parallel for
for (i=1 ; i<N ; ++i)

A[i] = A[i-1] + 1
end

Unroll the loop (partly):

iteration i=1: A[1] = A[0] + 1
iteration i=2: A[2] = A[1] + 1
iteration i=3: A[3] = A[2] + 1

A[1] used here, defined in previous iteration

A[2] used here, defined in previous iteration

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

29

In a reduction, local copies of variable will be reduced into a global shared variable!

for (int i=0;i<10;++i)

sum=sum+a[i];

Data scope clause: REDUCTION(op:list)

 Only certain kind of operators allowed

 +, - , * , max, min

 & , | , ^ , && , || (C++)

 .and. , .or. , .eqv. , .neqv. , iand , ior , ieor (Fortran)

 OpenMP 4.0 allows for user defined reductions

 Variables in list have to be shared

REDUCTION

#pragma omp parallel for reduction(+:sum)

for (int i=0;i<10;++i)

sum=sum+a[i];

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

30

Create a subroutine that computes the dot

product of two vectors. Use OpenMP pragmas

(directives) to make it run in parallel.

Exercise

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Bonus Topic
(time permitted)

OpenMP programs use shared variables to communicate. Need
to make sure these variables are not accessed at the same time
by different threads to avoid race conditions.

OpenMP Synchronization constructs

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

32

Synchronization Directive
#pragma omp critical (!$OMP CRITICAL)

 ALL threads will excute the code inside the block
 Execution of the block is serialized, only one thread at a time can execute the block
 Threads will wait at end of critical block until all threads have executed the block

int tot=0; int id=0;

#pragma omp parallel

{

#pragma omp critical

{

id = omp_get_thread_num(); tot=tot+id;

std::cout << “id “ << id << “, tot: “ << tot << “\n”;

}

// do some other stuff

}
After executing block, thread will wait

until all other treads have finished.

Only one thread can execute

block, other threads will wait

NOTE: If block consists of only a single assignment can use #pragma omp atomic instead

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

33

In the REDUCTION exercise we created an OpenMP

program that computes the dotproduct of two vectors

using the reduction clause. Now we will create a

version that uses critical blocks instead.

Exercise

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

34

#pragma omp master (!$OMP MASTER)

Synchronization pragma

#pragma omp barrier (!$OMP BARRIER)

 ALL threads will wait at the barrier.
 Only when all threads have reached the barrier, each thread can continue
 Already seen implicit barriers, e.g. at the end of ”#pragma omp parallel”, ”#pragma

omp for”, ”#pragma omp critical”

 ONLY master threads will excute the code inside the block
 Other threads will skip executing the block
 Other threads will not wait at end of the block

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

35

The Intel Math Kernel Library (MKL) has very specialized and optimized versions
of many math functions (e.g. blas, lapack). Many of these have been parallelized

using OpenMP.

 MKL_NUM_THREADS
 OMP_NUM_THREADS

http://hprc.tamu.edu/wiki/index.php/Ada:MKL

MKL

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

Questions?

You can always reach us at help@hprc.tamu.edu

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

37

OpenMP provides another useful clause to decide at run time if a parallel
region should actually be run in parallel (multiple threads) or just by the master
thread:

IF (logical expr)

For example:

$!OMP PARALLEL IF(n > 100000) (fortran)
#pragma omp parallel if (n>100000) (C/C++)

This will only run the parallel region when n> 100000

TIP: IF Clause

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

38

THREAD 0 THREAD 1 THREAD 2 THREAD 3

1 250 500 750 1000

Although the OpenMP standard does not specify how a loop should be
partitioned most compilers split the loop in N/p (N #iterations, p #threads) chunks
by default.

SCHEDULE (STATIC,250) //loop with 1000 iterations, 4 threads

!$OMP PARALLEL DO SCHEDULE (STATIC,250) #pragma omp parallel for schedule(static,250)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO

!$OMP END PARALLEL DO

Scheduling Clauses

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

39

0 1 2 3 0 1 2 3 0 1 2 3…..

1 10 20 30 40 50 60 70 80 960 970 980 990 1000

!$OMP PARALLEL DO SCHEDULE (STATIC,10) #pragma omp parallel for schedule(static,10)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO }

!$OMP END PARALLEL DO

Scheduling Clauses

SCHEDULE (STATIC,10) //loop with 1000 iterations, 4 threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

40

With static scheduling the number of iterations is evenly distributed among all openmp
threads. This is not always the best way to partition. Why?

T
im

e
 p

e
r ite

ra
tio

n

0 7654321

Iterations

Thread 0

Thread 1 Thread 2 Thread 3

How can this happen?

Scheduling Clauses

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

41

Iterations

T
im

e
 p

e
r ite

ra
tio

n

This is called load
imbalance. In this case
threads 2,3, and 4 will be
waiting very long for
thread 1 to finish

How can this happen?

Scheduling Clauses

0 7654321

Iterations

Thread 0

Thread 1 Thread 2 Thread 3

With static scheduling the number of iterations is evenly distributed among all openmp
threads. This is not always the best way to partition. Why?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

42

Loop iterations are divided into pieces of size chunk. When a thread finishes
one chunk, it is dynamically assigned another.

NOTE: there is a significant overhead involved
compared to static scheduling. WHY?

!$OMP PARALLEL DO SCHEDULE (DYNAMIC,10) #pragma omp parallel for schedule(dynamic,10)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO }

!$OMP END PARALLEL DO

Scheduling Clauses

SCHEDULE (DYNAMIC,10) //loop with 1000 iterations, 4 threads

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

43

Similar to DYNAMIC schedule except that chunk size is relative to
number of iterations left.

!$OMP PARALLEL DO SCHEDULE (GUIDED,10) #pragma omp parallel for schedule(guided,10)

DO i=1,1000 for (int i=0;i<1000;++i) {

: :

ENDDO }

!$OMP END PARALLEL DO

Scheduling Clauses

SCHEDULE (GUIDED,10) //loop with 1000 iterations, 4 threads

NOTE: there is a significant overhead involved
compared to static scheduling. WHY?

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

44

#pragma omp parallel for

for (int i=0; i<N;++i) {

:

#pragma omp parallel for

for (j=0;j<M;++j)

}

OpenMP allows parallel regions inside other parallel regions

 To enable nested parallelism:

 env var: OMP_NESTED=1

 lib function: omp_set_nested(1)

 To specify number of threads:

 omp_set_ num_threads()

 OMP_NUM_THREADS=4,2

NOTE: using nested parallelism does introduce extra overhead and might over-subscribe of threads

Nested Parallelism

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

45

 One thread (not neccesarily master) executes the block
 Other threads will wait
 Useful for thread-unsafe code
 Useful for I/O operations

#pragma omp single (!$OMP SINGLE)

Work Sharing Directives

#pragma omp sections (!$OMP SECTIONS)

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

// WORK 1
#pragma omp section

// WORK 2
}

 Will execute all ”sections” concurrently

Texas A&M University High Performance Research Computing – https://hprc.tamu.edu

46

Worksharing constructs have an implicit barrier at the end of
their worksharing region. To ommit this barrier:

!$OMP DO
:

!$OMP END DO NOWAIT

#pragma omp for nowait
:

 At end of work sharing constructs threads will not wait

 There is always barrier at end of parallel region

NOWAIT Clause

