
DISTRIBUTED DEEP LEARNING

Sri Koundinyan
skoundinyan@nvidia.com

Mike Matus
mmatus@nvidia.com

mailto:skoundinyan@nvidia.com
mailto:mmatus@nvidia.com

WELCOME!

Content applicable to H100s as well as GPUs in general

Many flavors distributed deep learning. Data Parallelism is the focus today.

Bulk of today will be hands on exercise!

2

ENVIRONMENT SETUP

Navigate to: https://portal-aces.hprc.tamu.edu/

Sign in using ACES account credentials

Open Terminal window, ssh into appropriate node

Configure environment for hands on exercise:

 ml purge
 ml WebProxy
 singularity pull pytorch.sif docker://nvcr.io/nvidia/pytorch:23.06-py3
 singularity shell --nv pytorch.sif

3

https://portal-aces.hprc.tamu.edu/

DATA PARALLELISM THEORY

TRAINING A NEURAL NETWORK

Single GPU

CPU/GP
U

ℒ(ො𝑦, 𝑦)

𝑊[2]

= 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1]

= 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[3]

= 𝑊[3] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[3]

GPU

W[1]

ො𝑦

W[2]

W[3]

1. Read the data

2. Transport the data

3. Pre-process the data

4. Queue the data

5. Transport the data

6. Calculate activations for layer one

7. Calculate activations for layer two

8. Calculate the output

9. Calculate the loss

10. Backpropagate through layer three

11. Backpropagate through layer two

12. Backpropagate through layer one

13. Execute optimization step

14. Update the weights

15. Return control

TRAINING A NEURAL NETWORK
Multiple GPUs

CPU/GPU

ℒ(ො𝑦, 𝑦) GPU ℒ(ො𝑦, 𝑦)

CPU/GPU

CPU/GPU

𝑊[2]

= 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1]

= 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[2]

= 𝑊[2] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[2]

𝑊[1]

= 𝑊[1] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[1]

𝑊[3]

= 𝑊[3] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[3]

𝑊[3]

= 𝑊[3] − 𝛼 ∗
𝜕ℒ

𝜕𝑊[3]

W[1]

ො𝑦

W[2]

W[3]

GPU

W[1]

ො𝑦

W[2]

W[3]

MEET DDP

Library for distributed DL

Prepackaged into and optimized for

PyTorch, an increasingly popular platform

among ML engineers and researchers

10

USING DDP

INITIALIZE THE PROCESS

def setup(global_rank, world_size):

 dist.init_process_group(backend="nccl", rank=global_rank,

world_size=world_size)

12

PIN GPU TO BE USED

13

device = torch.device("cuda:" + str(local_rank))

model = Net().to(device)

ENCAPSULATE MODEL WITH DDP

model = nn.parallel.DistributedDataParallel(model,

device_ids=[local_rank])

14

SYNCHRONIZE INITIAL STATE

15

Handled internally by DDP across processes and nodes!

DATA PARTITIONING

Shuffle the dataset

Partition records among

workers

Train by sequentially reading

the partition

After epoch is done, reshuffle

and partition again

16

DATA PARTITIONING

train_sampler =

torch.utils.data.distributed.DistributedSampler(train_set,

num_replicas=world_size, rank=global_rank)

train_loader =

torch.utils.data.DataLoader(train_set,

batch_size=args.batch_size, sampler=train_sampler)

17

I/O ON ONLY ON ONE WORKER

download = True if local_rank == 0 else False

if local_rank == 0:

 train_set = torchvision.datasets.FashionMNIST("./data",

download=download)

if global_rank == 0:

 print("Epoch = {:2d}: Validation Loss = {:5.3f},

Validation Accuracy = {:5.3f}".format(epoch+1, v_loss,

val_accuracy[-1]))

18

www.nvidia.com/dli

	Slide 1: Distributed deep learning
	Slide 2: Welcome!
	Slide 3: Environment setup
	Slide 4: Data parallelism theory
	Slide 5: Training a Neural Network
	Slide 6: Training a Neural Network
	Slide 7
	Slide 8
	Slide 9
	Slide 10: Meet DDP
	Slide 11: Using DDP
	Slide 12: Initialize the process
	Slide 13: Pin gpu to be used
	Slide 14: Encapsulate model with DDP
	Slide 15: Synchronize initial state
	Slide 16: Data partitioning
	Slide 17: DATA Partitioning
	Slide 18: I/o on only on one worker
	Slide 19

