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WELCOME!

Content applicable to H100s as well as GPUs in general

Many flavors distributed deep learning. Data Parallelism is the focus today.

Bulk of today will be hands on exercise!
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ENVIRONMENT SETUP

Navigate to: https://portal-aces.hprc.tamu.edu/

Sign in using ACES account credentials

Open Terminal window, ssh into appropriate node

Configure environment for hands on exercise: 

 ml purge
 ml WebProxy
 singularity pull pytorch.sif docker://nvcr.io/nvidia/pytorch:23.06-py3
 singularity shell --nv pytorch.sif
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DATA PARALLELISM THEORY



TRAINING A NEURAL NETWORK

Single GPU
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1. Read the data

2. Transport the data

3. Pre-process the data

4. Queue the data

5. Transport the data

6. Calculate activations for layer one

7. Calculate activations for layer two

8. Calculate the output

9. Calculate the loss

10. Backpropagate through layer three

11. Backpropagate through layer two

12. Backpropagate through layer one

13. Execute optimization step

14. Update the weights

15. Return control



TRAINING A NEURAL NETWORK
Multiple GPUs

CPU/GPU
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MEET DDP

Library for distributed DL

Prepackaged into and optimized for 

PyTorch, an increasingly popular platform 

among ML engineers and researchers
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USING DDP



INITIALIZE THE PROCESS

def setup(global_rank, world_size): 

 dist.init_process_group(backend="nccl", rank=global_rank, 

world_size=world_size) 
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PIN GPU TO BE USED
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device = torch.device("cuda:" + str(local_rank))

model = Net().to(device)



ENCAPSULATE MODEL WITH DDP

model = nn.parallel.DistributedDataParallel(model, 

device_ids=[local_rank])
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SYNCHRONIZE INITIAL STATE
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Handled internally by DDP across processes and nodes!



DATA PARTITIONING

Shuffle the dataset

Partition records among 

workers

Train by sequentially reading 

the partition

After epoch is done, reshuffle 

and partition again
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DATA PARTITIONING

train_sampler = 

torch.utils.data.distributed.DistributedSampler(train_set, 

num_replicas=world_size, rank=global_rank) 

train_loader = 

torch.utils.data.DataLoader(train_set, 

batch_size=args.batch_size, sampler=train_sampler)
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I/O ON ONLY ON ONE WORKER

download = True if local_rank == 0 else False

if local_rank == 0:

 train_set = torchvision.datasets.FashionMNIST("./data", 

download=download)

--------------------

if global_rank == 0:    

 print("Epoch = {:2d}: Validation Loss = {:5.3f}, 

Validation Accuracy = {:5.3f}".format(epoch+1, v_loss, 

val_accuracy[-1]))
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