DISTRIBUTED DEEP LEARNING

Sri Koundinyan
skoundinyan@nvidia.com
<a href="mailto:skoundinyangmni

WELCOME!

Content applicable to H100s as well as GPUs in general

Many flavors distributed deep learning. Data Parallelism is the focus today.

Bulk of today will be hands on exercise!

ENVIRONMENT SETUP

Navigate to: https://portal-aces.hprc.tamu.edu/

Sign in using ACES account credentials

Open Terminal window, ssh into appropriate node

Configure environment for hands on exercise:

ml purge ml WebProxy singularity pull pytorch.sif docker://nvcr.io/nvidia/pytorch:23.06-py3 singularity shell --nv pytorch.sif

DATA PARALLELISM THEORY

TRAINING A NEURAL NETWORK

Single GPU

- Read the data
- Transport the data
- Pre-process the data
- Oueue the data
- Transport the data
- Calculate activations for layer one
- Calculate activations for layer two
- Calculate the output
- Calculate the loss
- Backpropagate through layer three
- Backpropagate through layer two
- Backpropagate through layer one
- Execute optimization step
- Update the weights
- Return control

TRAINING A NEURAL NETWORK

Multiple GPUs

Sequential training

Minibatch size: 6

Data parallel training with 2 compute nodes

Where
$$w$$
 is the parameters of the model, $\frac{\partial \operatorname{Loss}}{\partial w}$ is the true gradient of the big batch of size n ,

 $f(x_i, y_i)$ is the loss for data point i calculated from the forward propagation,

 $\frac{\partial \operatorname{Loss}}{\partial w} = \frac{\partial \left[\frac{1}{n} \sum_{i=1}^{n} f(x_i, y_i)\right]}{\partial w}$

 $=rac{1}{n}\sum_{i=1}^{n}rac{\partial f(x_{i},y_{i})}{\partial w}$

 $=\frac{m_1}{n}\frac{\partial l_1}{\partial w}+\frac{m_2}{n}\frac{\partial l_2}{\partial w}+\cdots+\frac{m_k}{n}\frac{\partial l_k}{\partial w}$

 $=\frac{m_1}{n}\frac{\partial\Big[\frac{1}{m_1}\sum_{i=1}^{m_1}f(x_i,y_i)\Big]}{\partial w}+\frac{m_2}{n}\frac{\partial\Big[\frac{1}{m_2}\sum_{i=m_1+1}^{m_1+m_2}f(x_i,y_i)\Big]}{\partial w}+\cdots$

 $\frac{\partial \operatorname{Loss}}{\partial w} = \frac{1}{k} \left[\frac{\partial l_1}{\partial w} + \frac{\partial l_2}{\partial w} + \dots + \frac{\partial l_k}{\partial w} \right]$

$\frac{\partial l_k}{\partial w}$ is the gradient of the small batch in GPU/node k,

 x_i and y_i are the features and labels of data point i,

n is the total number of data points in the dataset,

 m_k is the number of data points assigned to GPU/node k,

When $m_1 = m_2 = \cdots = m_k = \frac{n}{k}$, we could further have

k is the total number of GPUs/nodes,

 $m_1+m_2+\cdots+m_k=n$.

MEET DDP

Library for distributed DL

Prepackaged into and optimized for PyTorch, an increasingly popular platform among ML engineers and researchers

INITIALIZE THE PROCESS

```
def setup(global_rank, world_size):
    dist.init_process_group(backend="nccl", rank=global_rank,
    world_size=world_size)
```

PIN GPU TO BE USED

```
device = torch.device("cuda:" + str(local_rank))
model = Net().to(device)
```


ENCAPSULATE MODEL WITH DDP

```
model = nn.parallel.DistributedDataParallel(model,
device_ids=[local_rank])
```

SYNCHRONIZE INITIAL STATE

Handled internally by DDP across processes and nodes!

DATA PARTITIONING

Shuffle the dataset

Partition records among workers

Train by sequentially reading the partition

After epoch is done, reshuffle and partition again

DATA PARTITIONING

```
train_sampler =
torch.utils.data.distributed.DistributedSampler(train_set,
num_replicas=world_size, rank=global_rank)

train_loader =
torch.utils.data.DataLoader(train_set,
batch size=args.batch size, sampler=train sampler)
```

I/O ON ONLY ON ONE WORKER

```
download = True if local rank == 0 else False
if local rank == 0:
      train set = torchvision.datasets.FashionMNIST("./data",
download=download)
if global rank == 0:
      print("Epoch = {:2d}: Validation Loss = {:5.3f},
      Validation Accuracy = {:5.3f}".format(epoch+1, v loss,
      val accuracy[-1]))
```

