Introduction to
Linux / Using the Ada Cluster

T. Mark Huang

m TEXAS A&M

UNIVERSITY For HPRC Bioinformatics Workshop
HIGH PERFORMANCE RESEARCH COMPUTING Summer 2016 @ CVM

June 7, 2016 1

Outline

» Usage Policies
 (Brief) Introduction to Linux

 Introduction to Using the Ada Cluster

- Hardware Overview of Ada

- Accessing Ada

- Filesystems and User Directories
- Computing Environment

- Batch Processing

- Common Problems

 Need Help?

June 7, 2016

Usage Policies
(Be a good compute citizen)

* |t Is lllegal to share computer passwords and
accounts by state law and university regulation

* |t Is prohibited to use Ada In any manner that
violates the United States export control laws
and regulations, EAR & ITAR

* Abide by the expressed or implied restrictions
In using commercial software

https://hprc.tamu.edu/wiki/index.php/Ada:Policies

June 7, 2016

https://hprc.tamu.edu/wiki/index.php/Ada:Policies

(Brief) Introduction to Linux

June 7, 2016

Linux System Architecture

User Applications

GNU C Library (glibc)

GNU/ System Call Interface

Linux
> Kemel

Space

Architecture-Dependent Kernel Code

June 7, 2016

Where Are You after you login?

* pwd command (Print Current/Working Directory)

S pwd
/home/user NetID

June 7, 2016

Listing Files and Directories: the 1s cmd

S 1ls [options] [directory or file name]

* Commonly used options
-1 display contents in “long” format
—a show all file (including hidden files - those beginning with .)
-t sort listing by modification time
-r reverse sort order
-F append type indicators with eachentry (*/=@ |)
-h print sizes in user-friendly format (e.g. 1K, 234M, 2G)

PR S touch hello.txt
Exercise: $ 1s S 1s
v 1s -a $ 1s *.txt

June 7, 2016

Copying Files: the e¢p cmd

s cp [options] [source] [target]

* |f source Is a file, and...
— target is a new name: duplicate source and call it target

— target is a directory: duplicate source, with same name, and

place it in directory

* |f source is a directory and the -r option is used...

— Target is a new name: copy directory and its contents
recursively into directory with new name

— Target is a directory: duplicate source, with same name, and
place it in directory

Exercise:

June 7, 2016

S cp hello.txt world.txt
S ls

S mkdir dirl
S cp hello.txt dirl/fl.txt
S ls dirl

Moving/Renaming Files: the mv cmd

S mv [source] [target]

* If the source is a directory name, and...
— target is an existing dir: source dir is moved inside target dir
— target is new name: source dir is re-named to new nhame

* If the source is a file name, and...
— target is an existing dir: source file is moved inside target dir
— target is a new name: source file is re-named to new name

Exercise: $ mv hello.txt save.txt S mv save.txt dirl
S ls S ls
S 1s dirl

June 7, 2016

Deleting Files: the rm cmd

S rm [options] [file name]

 Commonly used options
-1 prompt user before any deletion
-r remove the contents of directories recursively
-f Ignore nonexistent files, never prompt

* Toremove a file whose name starts with a
O ‘ : S rm —— -foo
~', for example ‘=foo’, use one of these $ rm ./-foo

commands:
. $ rm world.txt $ rm dirl
Exercise: $ 1s $ rm —rf dirl
S ls
June 7, 2016

10

Common Directory Commands

* To make a new directory:

S mkdir [directory name]

* To change to another directory:

S cd [directory name]

* To remove a directory (which must be empty):

S rmdir [directory name]

ExerC|Se S mkdir dir2 S pwd
S touch dir2/f2.txt S ed dir2
S 1s S pwd
S 1ls dir2 S cd ..
S pwd
June 7, 2016

w0

rmdir dir2

ls dir2

rm dir2/f2. txt
rmdir dir2

ls

11

Changing Directories: the ed cmd

S cd [directory name]

* To switch to the most recent previously used directory:

S cd

S pwd

S cd dir3
S pwd

S cd ~

S cd -
* To switch to the parent directory of the current directory:
S cd
* Return to home directory
$ cd or $ cd ~
Exercise: $ mkdir dir3 $cd ..
S mkdir dir3/dir4 S pwd
S cd dir3 S cd dir4
$ pwd $ pwd
S cd dir4 S cd -
$ pwd $ pwd

June 7, 2016

S pwd

12

Displaying File Contents

S cat [file name]

* Short for “concatenate”, cat dumps the contents of a file
(or list of files) to the screen.

* The more command, and its improved version less,
display an text file one page at a time.

S more [file name]

S less [file name]

* Other related commands: Exercise:

— head : output the first part of files
S cat /etc/hosts

S more /etc/hosts
S less /etc/hosts
S we -1 /etc/hosts

— tail :output the last part of files

- wc (word count) or we -1 (line count)

June 7, 2016

13

Documentation: the man cmd

S man cmd name
S man -k cmd name

S man —-M <non std dir> cmd name

* Searches in system dirs and displays associated
page(s)
* The layout of a man page follows certain conventions

- Each man page is assigned a section # (of a virtual UNIX
manual database) to which it belongs;

- Each page itself is divided into sections. The man command
can search the NAME sections for keywords (-k option)

* The -M option can force man to read pages installed in
non-default locations

June 7, 2016

14

man page layout: by sections

SSH(1) BSD General Commands Manual SSH (1)

NAME
ssh - OpenSSH SSH client (remote login program)

SYNOPSIS
ssh [-1 login _name] hostname | user@hostname [command]

DESCRIPTION
ssh (SSH client) is a program for logging into a remote machine and for
executing commands on a remote machine.

CONFIGURATION FILES

ssh may additionally obtain configuration data from a per—user configuration

ENVIRONMENT

ssh will normally set the following environment variables:

FILES
SHOME/ . ssh/known_hosts

SEE ALSO
rsh(l), scp(l), sftp(l), ssh-add(1l), ssh—-agent (1), ssh-keygen (1),

June 7, 2016

15

Absolute vs Relative Pathname

N

etc/ bin/ scrat ch/ home/ sbin/
userl/ user2/ user3/

fJ.leA abaqus__ dJ.r/ verifyOLD dJ.A

fileA fileB

* For file fileB under /home/user2/verifyOLD dir:
- The absolute (full) pathname is: /home/user2/verifyOLD dir/fileB

- The relative pathname is: verifyoLD dir/fileB, Iif the current
working directory is /home/user2/

S pwd
/home/user2/abaqus dir
S ls ../verifyOLD dir/fileB

June 7, 2016

17

File and directory names

 Filename/directory name is a string (i.e., a sequence of
characters) that is used to identify a file/directory;

« Commonly used characters: A-Z, a-z, 0-9, . (period), - (hyphen), _
(underline);

« DO NOT USE Linux/UNIX reserved characters: /, >, <, | (pipe), :
(colon), & (ampersand):;

» Acceptable characters but should be avoided when possible:
blank spaces, () parentheses, ' “ quotes (single/double), ?
guestion mark, * asterisk, \ backslash, $ dollar sign;

e Don’t start or end your filename with a space, period, hyphen,
or underline.

* Filename Is case sensitive; if possible, avoid blank space In
the file name ("my data file" vs "my_data_file.txt").

June 7, 2016 18

Editing an ASCII file

* There are many editors available under Linux.

» Text mode
- nano (simple)
- vi/vim (more advanced)
- emacs (more advanced)
« Graphic mode (require X11)
- gedit
- mousepad
- Xemacs / gvim

 Be aware of text file edited under Windows (CR/LF vs LF). Use
dos2unix to convert a DOS/Windows edited text file to UNIX

format.

S dos2unix myDOSfile.txt

June 7, 2016

File Attributes: A look with '1s

-1

[user NetID@ada
total 37216

~]$ 1s -1

user NetID
user NetID
user NetID
user NetID
user NetID
user NetID
root

user NetID

drwx—————-— 7
—-rw——————-— 1
—-rw——————-— 1
—-rw——————-— 1
drwxr—xr—x 3
—-rw——————-— 1
lrwxrwxrwx 1
/usr/local/etc/README
—Irwx—————-— 1
—-IrwXx——X——X 1

drwxr—-xr—-x 2

user NetID
user NetID

user NetID
user NetID
user NetID
user NetID
user NetID
user NetID
root

user NetID
user NetID
user NetID

121

162 Sep 7 12:
82 Aug 24 10:
5 11:

Sep 9 10:
2252 Aug 24 10:
13393007 Aug 24 10:
533 Aug 24 11:

17 May 7 16:
24627200 Sep 9 10:
21 May 28 16:

41
47
40
23
56
49
11

20
51
32

abaqus_files
fluent-unique. txt
fluent-usel. txt
fluent.users

man
myHomeDir. tar
README ->

spiros—exl.bash
split.pl
verifyOLD

June 7, 2016

user name
__ hard link count

 file permissions

Lgroup name

L file name

file modification time

L file modification date

L file size in bytes

20

File Ownership and Permissions

A

—IWX——X——X

1l user NetID

staff 82 Aug 24 10:51 split.pl

__ permissions

_ user and group ownership

Octal

Binary

Permissions

000

001

-—x

010

—W—

011

WX

100

r——

101

r—-x

110

Irw-—

111

Irwx

June 7, 2016

* There are 3 sets of permissions for
each file

— 1st set - user (the owner)

— 2nd set - group (to which file owner
belongs)

— 3rd set - other (all other users)
* The r indicates read permission
* The w indicated write permission
* The x indicated execute permission

21

Directory Permissions

drwx—————— 7 user._NetID staff 121 Sep 9 10:41 abaqus files

__ permissions _ user and group ownership

* The meanings of the permission bits for a directory are slightly
different than for regular files:

— r permission means the user can list the directory’s contents

— w permission means the user can add or delete files from the
directory

— x permission means the user can cd into the directory; it also
means the user can execute programs stored in it

* Notice that if the file is a directory, the leading bit before the
permissions is set to d, indicating directory.

June 7, 2016 22

Changing Attributes: the chmod cmd

S chmod [options] [permission mode] [target file]

chmod 777 myFile.txt (the permissions will be setto rwxrwxrwx)
chmod o-x myFile.txt (the permissions will change t0 rwxrwxrw-)

chmod gu-x myFile.txt (the permissions will change to rw—rw—rw-)

v v W W

chmod u+x myFile.txt (the permitions will change t0 rwxrw—rw-)

—R Is a commonly used option. It recursively applies the specified
permissions to all files and directories within target, if target is a directory.

June 7, 2016

23

References

Extended version of Introduction to Linux can be found at

http://hprc.tamu.edu/shortcourses/SC-unix/

Here are some slides from TACC and LSU on the similar subject.

* Linux/Unix Basics for HPC: October 9, 2014 (with video) [TACC]
https://portal.tacc.utexas.edu/-/linux-unix-basics-for-npc

e EXpress Linux Tutorial: Learn Basic Commands in an Hour [TACC]

https://portal.tacc.utexas.edu/c/document_library/get file?uuid=ed6cl16e9-bc
bc-4b70-9311-5273b09508b8&groupld=13601

 [ntroduction to Linux for HPC [LSU]

http://www.hpc.Isu.edu/training/weekly-materials/2015-Fall/intro-linux-2015-09-02
Jpdf

June 7, 2016 25

June 7, 2016

Introduction to
Using the Ada Cluster

26

June 7, 2016

Parallelism

Parallelism means doing
multiple things at the same

time: you can get more work
done in the same time.

Less fish ...

More fish!

http://oscer.ou.edu/Workshops/Overview/sipe_overview 20090201.ppt

27

http://hprc.tamu.edu/shortcourses/SC-unix/
https://portal.tacc.utexas.edu/-/linux-unix-basics-for-hpc
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=ed6c16e9-bcbc-4b70-9311-5273b09508b8&groupId=13601
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=ed6c16e9-bcbc-4b70-9311-5273b09508b8&groupId=13601
http://www.hpc.lsu.edu/training/weekly-materials/2015-Fall/intro-linux-2015-09-02.pdf
http://www.hpc.lsu.edu/training/weekly-materials/2015-Fall/intro-linux-2015-09-02.pdf

Ada — an x86 Cluster

! /W Z _
A 17,500-core, 860-node cluster with:
* 837 20-core compute nodes with two Intel 10-core 2.5GHz IvyBridge processors.
Among these nodes, 30 nodes have 2 GPUs each and 9 nodes have 2 Phi coprocessors.

* 15 compute nodes are 1TB and 2TB memory, 4-processor SMPs with the Intel 10-core 2.26GHz
Westmere processor.

e 8 20-core login nodes with two Intel 10-core 2.5GHz IvyBridge processors and 1 GPU, 2 GPUs, or 2 Phi
Coprocessors

* Nodes are interconnected with FDR-10 InfiniBand fabric in a two-level (core switch shown above in
middle rack and leaf switches in each compute rack) fat-tree topology.

June 7, 2016 https://hprc.tamu.edu/wiki/index.php/Ada:Intro 28

Ada Schematic: 17,500-core 860-node Cluster

—

20 — Core
 IvyBridge Node
64 GB DRAM

8 Login Nodes

TAMU
Campus
Network

June 7, 2016

[
|
\

~ IvyBridge Node

15 Extra-Large Memory 40-Core Nodes
111TB+4 2TB

E // 40 — Core\ /40 Core\

20 — Core

64 GB DRAM - Westmere Node | ' Westmere Node |

\\l B DRAM/ \2 B DRAM/

T Ctrrana T

IBM GSS26
4PB (Raw)
Sep 2014

20 — Core
lvyBridge Node
2 GPUs
56/64 GB DRA

20 — Core
- IvyBridge Node
| 2 PHIs

\&GB DRAM

45 Special Purpose 20-Core Nodes:
30 w/2 GPUs, 9 w/2 Phis, 6 w/no accel (256 GB)

20 — Core
 IvyBridge Node
@ GB DRAM

29

Node / Socket / Core

KWVM and
Ethernet

Mezz card CPU 2 and PCle 3.0 Drive bay(s)
connector four DIMMs riser slot 2
(future use)

Part of Ada cluster.
Each blue light is a node.

PCle 3.0 SATA port USB hypenvisor CPU1 and Midplane
riser slot 1 and cable socket four DIMMs connector

Each node has 2 sockets.

Each socket/CPU has 10 processor cores.
So, each node has 20 processor cores.

June 7, 2016

https://hprc.tamu.edu/wiki/index.php/Ada:Intro

Accessing Ada

 SSH iIs required for accessing Ada:

- On campus: ssh NetID@ada.tamu.edu

- Off campus:

e Set up VPN: nhttp://hdc.tamu.edu/Connecting/VPN/
« Then: ssh NetID@ada.tamu.edu

 SSH programs for Windows:

- MobaXTerm (preferred, includes SSH and X11)
- PuTTY SSH

* Login sessions that are idle for 60 minutes will be
closed automatically

https://hprc.tamu.edu/wiki/index.php/HPRC:Access

June 7, 2016 31

File Transfers with Ada

 Simple File Transfers:

- scp: command line (Linux, MacOS)
- WInSCP: GUI (Windows)
- FileZilla: GUI (Windows, MacOS, Linux)

 Bulk data transfers:

- Use fast transfer nodes (FTN) with:
« GridFTP

 Globus Connect
e bbcp

https://hprc.tamu.edu/wiki/index.php/Ada:Filesystems_and_Files#Transfering_Files

June 7, 2016

32

File Systems and User Directories

Directory Environment Space File Intended
Variable Limit Limit Use
/home/$USER $HOME 10 GB 10,000 Small to modest amounts of
processing.

/scratch/user/SUSER $SCRATCH 1TB 50,000 Temporary storage of large files for on-
going computations. Not intended to
be a long-term storage area.

ftiered/user/$USER $ARCHIVE 10 TB 50,000 Intended to hold valuable data files that
are not frequently used

* View usage and quota limits: the showquota command
« Also, only home directories are backed up daily.

* Quota increases will only be considered for scratch and tiered directories

https://hprc.tamu.edu/wiki/index.php/Ada:Filesystems_and_Files

June 7, 2016 33

http://hdc.tamu.edu/Connecting/VPN/
https://hprc.tamu.edu/wiki/index.php/HPRC:Access

Computing Environment

» Paths:
- $PATH: for commands (eg.

Try "echo S$SPATH"

/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/nome/netid/bin)

- $LD LIBRARY_PATH: for libraries

 Many applications, many versions, and many paths

How do you manage all this software?!

» Each version of an application, library, etc. is available

as a module.

e Module names have the format of
package name/version.

* Avoid loading modules in .bashrc

https://hprc.tamu.edu/wiki/index.php/Ada:Computing_Environment#Modules

June 7, 2016

34

https://hprc.tamu.edu/wiki/index.php/Ada:Filesystems_and_Files#Transfering_Files

Application Modules

* Installed applications are available as modules which are
available to all users

e module commands

June 7,

- module avail

- module spider tool name
- module key genomics

- module load tool name

- module list

- module purge

- module load Stacks

#show all available modules
#search all modules

#search with keyword

#load a specific module
#list loaded modules
#unload all loaded modules

#load the default version of a tool

- module load Stacks/1.37-intel-2015B #load a specific version

2016

35

https://hprc.tamu.edu/wiki/index.php/Ada:Filesystems_and_Files

Toolchains

» Use the same toolchains in your job scripts

- The intel-2015B is the recommended toolchain

module load Bowtie2/2.2.6-intel-2015B
module load TopHat/2.1.0-intel-2015B
module load Cufflinks/2.2.1-intel-2015B

* Avoid mixing tool chains if loading multiple
modules In the same job script:

module load Bowtie2/2.2.2-ictce-6.3.5
module load TopHat/2.0.14-goolf-1.7.20
module load Cufflinks/2.2.1-intel-2015B

June 7, 2016

36

https://hprc.tamu.edu/wiki/index.php/Ada:Computing_Environment#Modules

Batch Computing on Ada

On-campus:

<

Off-campus:

June 7, 2016

~
SSH

~ Campus
t Network
K»\f,f

VPN
K<L ‘YA\A
C |
. Internet D
U

Create
job

Submit
job

LSF (batch manager)

> Queue

37

Batch Queues

» Job submissions are assigned to batch queues
based on the resources requested (number of
cores/nodes and wall-clock limit)

 Some jobs can be directly submitted to a queue:

- If the 1TB or 2TB nodes are needed, use the xlarge queue

- Jobs that have special resource requirements are
scheduled in the special queue (must request access to
use this queue)

e Batch queue policies are used to manage the
workload and may be adjusted periodically.

https://hprc.tamu.edu/wiki/index.php/Ada:Batch_Queues

June 7, 2016 38

Current Queues

$ bqueues

QUEUE NAME PRIO STATUS MAX JL/U JL/P JL/H NJOBS PEND RUN SUSP
staff 450 Open:Active - - - - 0 0 0 0
special 400 Open:Active - - - - 3044 0 3044 0
xlarge 100 Open:Active - - - - 40 0 40 0
vnc 90 Open:Active - - - - 11 10 1 0
sn_short 80 Open:Active - - - - 0 0 0 0
mn_short 80 Open:Active 2000 - - - 80 80 0 0
mn_large 80 Open:Active 5000 - - - 7960 3000 4960 0
general 50 C(Closed:Inact 0 - - - 0 0 0 0
sn_regular 50 Open:Active - - - - 8588 6220 2368 0
sn_long 50 Open:Active - - - - 2610 240 2370 0
sn_xlong 50 Open:Active - - - - 111 0 111 0
mn_small 50 Open:Active 6000 - - - 2232 440 1792 0
mn_medium 50 Open:Active 6000 - - - 800 200 600 0
curie devel 40 Open:Active 32 32 - - 18 0 18 0
curie medium 35 Open:Active 512 192 - - 1904 1456 448 0
curie long 30 Open:Active 192 64 - - 12064 1088 176 0
curie general 25 Closed:Inact 0 - - - 0 0 0 0
preempt medium 10 Open:Active - - - - 0 0 0 0
low priority 1 Open:Active 2500 500 - - 0 0 0 0
preempt low 1 Open:Active 40 - - - 0 0 0 0

June 7, 2016 https://hprc.tamu.edu/wiki/index.php/Ada:Batch_Queues

Consumable Computing Resources

» Resources specified in a job file:

- Processor cores
- Memory

- Wall time

- GPU

 Other resources:
- Software license/token
 Billing Account

June 7, 2016

40

https://hprc.tamu.edu/wiki/index.php/Ada:Batch_Queues

Sample Job Script

#BSUB -L /bin/bash

#BSUB -J blastx

#BSUB -n 2

#BSUB -R "span[ptile=2]"
#BSUB -R "rusage[mem=1000]"
#BSUB -M 1000

#BSUB -W 2:00

#BSUB -o stdout.%J

#BSUB -e stderr.%Jd

module load BLAST+/2.2.31-intel-2015B-Python-3.4.3
<<README

BLAST manual: http://www.ncbi.nlm.nih.gov/books/NBK279690/
README

#blastx: search protein databases using a translated nucleotide query

blastx -query mrna segs nt.fasta -db /scratch/datasets/blast/nr \
-outfmt 10 -out mrna segs nt blastout.csv

June 7/, 2016

41

https://hprc.tamu.edu/wiki/index.php/Ada:Batch_Queues

Sample Job Script

#BSUB -L /bin/bash
#BSUB -J blastx

#BSUB -n 2
#BSUB -R "span[ptile=2]"
#BSUB -R "rusage[mem=1000]" - These parameters are read by the job scheduler

#BSUB -M 1000
#BSUB -W 2:00

#BSUB -0 stdout.%J Load the required module(s) first
#BSUB -e stderr.3%J /

module load BLAST+/2.2.31-intel-2015B-Python-3.4.3

<<README o —— This is a section of comments

BLAST manual: http://www.ncbi.nlm.nih.gov/books/NBK279690/
README

This is a single line comment and not run as part of the script
#tblastx: search protein databases using a translated nucleotide query

//blastx —-query mrna_seqgs_nt.fasta -db /scratch/datasets/blast/nr \
—outfmt 10 -out mrna_seqs_nt_blastout .CSV This means the command IS/
continued on the next line;

The space before the \ is required

This is the command to run the application Do not put a space after the \

June 7/, 2016

42

Important Job Parameters

#BSUB -n NNN

NNN: total number of cores or job slots to allocate for the job
#BSUB -R "span[ptile=XX]"

XX: number of cores or job slots per node to use
#BSUB -R "select[node-type]™

node-type: nxt, mem256gb, gpu, phi, memltb, mem2tb ...
#BSUB -R "rusage[mem=nnn]"

reserves nnn MBs per core or job slot for the job
#BSUB -M nnn

enforces (XX cores * nnn MB) as memory limit

per node for the job
#BSUB -W hh:mm or mm

sets job's runtime wall-clock limit in hours:minutes or just
minutes

June 7, 2016 43

Processor Cores Mapping

20 cores on

#BSUB -n 20
#BSUB -R “span[ptile=20]

20 cores on
2 nodes

#BSUB -n 20

#BSUB -R “span[ptile=10]

June 7, 2016

20 cores on
4 nodes

#BSUB -n 20
#BSUB -R “span[ptile=5]

44

Job Memory Requests

Must specify both parameters for requesting memory:
#BSUB -R "rusage[mem=process_alloc_size]"
#BSUB -M process_size_limit

Default value of 2.5 GB per job slot if -R/-M not specified, but it might
cause memory contention when sharing a node with other jobs.

On 64GB nodes, usable memory is at most 54 GB. The per-process
memory limit should not exceed 2700 MB for a 20-core job.

If more memory is needed, request the large memory nodes:

- If under 256 GB and up to 20 cores per node: use -R “selectfmem256gb]”

- If need up to 1 or 2 TB of memory or up to 40 cores:

» use -R “selectfmemltb]” (40 cores) or -R “selectfmem?2tb]” with the -q xlarge option
 The memltb and mem2tb nodes are accessible only via the xlarge queue.

June 7, 2016 45

Job Submission and Tracking

Command Description
bsub < jobfilel Submit jobfilel to batch system

bjobs [-u all or user_name] [[-]] job_id] List jobs

bpeek [-f] job _id View job's output and error files

bkill job_id Kill a job

bhist [-I] job_id Show historical information about a job

Inu [-I] - job_id Show resource usage for a job

blimits -w Show how policies are applied to users and
queues

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Job_tracking_and control commands

June 7, 2016

46

Job Environment Variables

. $LSB JOBID = job id

« $LS SUBCWD = directory where job was
submitted from

e $SCRATCH = /scratch/user/NetID

« $STMPDIR = /work/$LSB_JOBID.tmpdir

- $TMPDIR is local to each assigned compute node
for the job

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Environment_Variables

June 7, 2016

47

Submit the Job and Check Status

» Submit your job to the job scheduler
bsub < sample0l.job

Verifying job submission parameters...
Verifying project account...
Account to charge: 082792010838

Balance (SUs): 4871.5983
SUs to charge: 0.0333
Job <2470599> is submitted to default queue <sn short>.

 Summary of the status of your running/pending jobs
bjobs

JOBID STAT USER QUEUE JOB_NAME NEXEC HOST SLOTS RUN TIME TIME LEFT

2470599 RUN tmarkhuang sn short sample0l 1 1 0 second(s) 0:5 L

A more detailed summary of a running job
bjobs -1 2470599

Try yourself: cp -r /scratch/training/Bioinformatics_Workshop $SCRATCH/
June 7, 2016 48

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Job_tracking_and_control_commands

Debug job failures

* Debug job failures using the stdout and stderr files

— cat output.ex03.python mem.2447336

This job id was created by the parameter in your job script file
#BSUB -o output.ex03.python mem.%J

TERM MEMLIMIT: job killed after reaching LSF memory usage limit.
Exited with signal termination: Killed.

Resource usage summary:

CPU time : 1.42 sec.
Max Memory : 10 MB
Average Memory : 6.50 MB
Total Requested Memory : 10.00 MB
Delta Memory : 0.00 MB
Max Processes : 5

Max Threads : 6

Make the necessary adjustments to BSUB parameters in your job script and resubmit the job

June 7, 2016 49

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Environment_Variables

Check your Service Unit (SU) Balance

 Show the SU Balance of your Account(s)

myproject -1

« Use "#BSUB -P project id"to charge SU to a
specific project

 Back up your job scripts often

- Submitting a job using > instead of < will erase the
job script content

June 7, 2016

50

Common Job Problems

« Control characters (“M) in job files or data files edited with DOS/Windows editor

- remove the "M characters with: dos2unix my job file

 Did not load the required module(s)
« |Insufficient walltime specified in #BSUB -W parameter

 |Insufficient memory specified in #BSUB -M and -R "rusage[mem=xxx]"
parameters

* No matching resource (-R rusage[mem] too large)
* Running OpenMP jobs across nodes
« Insufficient SU: See your SU balance: | myproject -1

« Insufficient disk or file quotas: check quota with | Showquota

« Using GUI-based software without setting up X11 forwarding

- Enable X11 forwarding at login ssh -X user@ada.tamu.edu
« Software license availability

June 7, 2016 51

Need Help?

e Check the Ada User Guide (https://hprc.tamu.edu/wiki/index.php/Ada)
for possible solutions first.

« Email your questions to help@hprc.tamu.edu. (Now managed by a
ticketing system)

* Help us, help you -- we need more info

— Which Cluster

— UserlID/NetID (UIN is not needed!)

- Job id(s) if any

- Location of your jobfile, input/output files

- Application used if any

- Module(s) loaded if any

- Error messages

- Steps you have taken, so we can reproduce the problem

e Orvisitus @ TAES 103

- Making an appointment is recommended.
June 7, 2016 52

June 7, 2016

Backup Slides

53

mailto:user@ada.tamu.edu

June 7, 2016

Linux System Architecture

System User
Softwares Utility

Source: http://googler700.blogspot.com/2015/03/operating-system-linux.html

54

https://hprc.tamu.edu/wiki/index.php/Ada
mailto:help@hprc.tamu.edu

Types of File: the file cmd

S file [name]

* Displays a brief description of the contents or
other type information for a file or related
object.

S file hello.c
hello.c: ASCII C program text

June 7, 2016

55

June 7, 2016

The UNIX Filesystem

56

http://googler700.blogspot.com/2015/03/operating-system-linux.html

June 7, 2016

What is a Computer Filesystem?

A software platform/system which provides the tools
for the way storage space is organized on mass
storage media in terms of different file objects of all
sorts. It provides for, among other, the creation,
access, and modification of these file objects;

The term also refers to organized space-on some
medium-as carried out by a computer file system;

UNIX-based file systems organize storage space in
specific ways;

Many computer file systems are available: EXT3/4,
XFS, JFS, ZFS, etc.

57

The tree cmd

S tree [dir name]

* Shows the contents of a directory structure in a hierarchical
arrangement.

S tree bin
bin

—— perlsh
—— xtail.pl

O directories, 2 files

June 7, 2016

58

The ‘find Command

find [target dir] [expression]

v “»v W W W

find . —-name “*.txt” -print

find . —-newer results4.dat —-name "“*.dat” -print
find /scratch/user NetID -mtime +2 -print

find /scratch/user NetID -mtime -7 -print

find /tmp -user user. NetID -print

June 7, 2016

59

Comparing files - 'diff and 'cmp

S diff [options] FILES
basic example
S diff filel file2
side by side comparison (long line truncated):
S diff -y filel fileZ2
side by side comparison with screen width of 180 characters

S diff -y -W 180 filel file2

S cmp filel file2

June 7, 2016

60

'‘grep' — Search pattern(s) in files

S grep [options] PATTERN [FILES ...]
basic example

S grep GoodData mydata. txt
search multiple matches

S grep —e GoodData —-e Important mydata.txt

excluding a pattern; show non-matched lines

S grep -v NG mydata.txt

S cat mydata.txt | grep GoodData
S grep -v junk mydata.txt | grep -v NG
S grep —e "“AOUTPUT" mydata.txt

June 7, 2016

61

The ‘tar’ Command

S tar [options] [tar file] [file or dir name]

* Used to “package” multiple files (along with directories if
any) into one file suffixed with a . tar suffix by convention.

 Commonly used options
extract files from a tar
Create a new tar

list the contents of a tar
verbosely list files processed
use the specified tar file

the tar file is compressed

N Hh § & Q X

June 7, 2016

62

The ‘tar’ Command - examples

S tar cvf myHomeDir.tar .
(package the current dir into a file called myHomeDir.tar)
S tar tvzf Interesting.tar.gz
(show the content for the compressed tar file)
S tar xvfz RunLogs.tgz ./abaqus files
(extract the dir abaqus_files from the compressed tar file)

* Be careful when extracting files (overwriting old files).
* Where files are extracted depends on how they were packaged.

* Always a good idea to check Table of Contents (- option) before
extraction.

June 7, 2016

63

Transfer data between Windows hosts
with MobaXterm

 On a Windows system, you can use MobaXterm to transfer
files to/from a server

[IS

Tune 7%‘3?(6 https://sc.tamu.edu/wiki/index.php/TAMUSC:MobaXterm#File _Transfers

64

June 7, 2016

UNIX Processes

65

Process Attributes

* PID: each process is uniquely identified
by an integer (process ID), assigned by PID PPID ulb | GIb
the kernel
* PPID: parent process ID signals
* UID: integer ID of the user to whom the . _
* GID: integer ID of the user group to which umask
the process belongs
* Signals: how this process is configured to
respond to various signals (more later...) file descriptors
* Current dir: the current working directory :
. 0 stdin
of the process environment S —
* Environment variables: variables that variables >1dou
customize the behavior of the process \ 2 stderr

(e.g. TERM)

* File descriptors: a table of small
unsigned integers, starting from 0, that
reference open “files” used by the process

(for receiving input or producing output).

PCB

June 7, 2016

https://sc.tamu.edu/wiki/index.php/TAMUSC:MobaXterm#File_Transfers

parent | 2310

The Process Hierarchy

2000

signals

current dir

umask

uib GID

time

file descriptors

A

environment 0 stdin
variables 1 stdout
2 stderr
child child
2312 2310 uiD GID 2315 2310 uID GID
signals signals
current dir time current dir time
umask umask

environment
variables

file descriptors

0 stdin
1 stdout
2 stderr

June 7, 2016

environment
variables

file descriptors

0 stdin

1 stdout

2 stderr

67

Shell Variables

There are two types of variables: local and environment
— Local. known only to the shell in which they are created

— Environment: available to any child processes spawned from the
shell from which they were created

— Some variables are user-created, other are special shell variables
(e.g. PWD)

* Variable name must begin with an alphabetic or

June 7, 2016

underscore () character. The remaining characters can
be alphabetic, numeric, or the underscore (any other
characters mark the end of the variable name).

— Names are case-sensitive

— When assigning values, no whitespace surrounding the = sign

— To assign null value, follow = sign with a newline

68

$9
$—
S?
S!

-4 =4 4 -

Some Special Variables

ne PID of the current shell process
ne sh options currently set
ne exit value of the last executed command

ne PID of the last job put in the background

$ echo S
6125

$ echo $-
himBH

$ echo §?
0

$ echo §!

$

June 7, 2016

69

Environment Variables

The export command makes variables available to child processes.

$ export NAME="user NetID Jackson”
$ MYNAME=user NetID
$ export MYNAME

June 7, 2016

The scope of these environment variables is not limited to the current shell.

Some environment variables, such as HOME, LOGNAME, PATH, and SHELL
are set by the system as the user logs in.

Various environment variables are often defined in the .bash_profile startup file
in the user’s home directory.

The export —p command lists all environment (or global) variables currently
defined.

70

Bash Environment Variables

HOME pathname of current user’s home directory

PATH the search path for commands. Itis a colon
separated list of directories in which the shell
looks for commands.

PPID PID of the parent process of the current shell

PS1 primary prompt string (‘$’ by default)

PWD present working directory (set by cd)

SHELL the pathname of the current shell

USER the username of the current user

S echo SHOME
/home/user2

June 7, 2016

71

The Search Path

* The shell uses the PATH environment variable to locate commands
typed at the command line

* The value of PATH is a colon separated list of full directory names.

* The PATH is searched from left to right. If the command is not found
In any of the listed directories, the shell returns an error message

* If multiple commands with the same name exist in more than one

location, the first instance found according to the PATH variable will be
executed.

PATH=/opt/TurboVNC/bin:/software/tamusc/local/bin:/software/1sf/9.1/1linux2. 6-glibc2.3—-
x86_64/etc:/software/l1sf/9.1/1linux2.6-glibc2. 3-

x86_64/bin: /usr/local/bin:/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbin:/usr/lpp/mmfs/bin
:/opt/ibutils/bin:/home/user. NetID/bin

June 7, 2016

72

Unsetting Variables

 Both local and environment variables can
be unset by the unset command.

S unset name
S unset TERM

* Only those variables defined as read-only
cannot be unset.

June 7, 2016

73

Other useful shell tips

* TAB-completion: Use TAB key to automatic
completion when typing file, directory or
command name

* Reverse history search: Use "*"R" (Ctrl-R) to
perform "reverse-i-search” in command
nistory

* Use 'history' to show command history;
" 11" for previous command; more on this
later

June 7, 2016

74

June 7, 2016

Process Signals

75

What Is a Process?

* Process
— A program that is loaded into memory and executed

* Program
— Machine readable code (binary) that is stored on disk

* The kernel (OS) controls and manages processes
— It allows multiple processes to share the CPU (multi-tasking)
— Manages resources (e.g. memory, 1/O)
— Assigns priorities to competing processes
— Facilitates communication between processes
— Can terminate (kill) processes

June 7, 2016

76

The ‘ps’ Command

S ps [options]

* Commonly used options (ps can take different styles of options)
a select all processes on a terminal (including those of other users)
u associate processes w/ users in the output
£ ASCll-art process hierarchy (forest)
-1 display in long format

See man page for 'ps' for more options. (Run “man ps”)

June 7, 2016

77

Output of the ‘ps’ Command

[user NetID@ada ~]$ ps

PID TTY TIME CMD
27689 pts/8 00:00:00 bash
28023 pts/8 00:00:00 ps

[user NetID@ada ~]$ ps -1

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD
0 s 1795 27689 27688 0 80 0 - 27117 wait pts/8 00:00:00 bash
O R 1795 28011 27689 0 80 0 - 27035 - pts/8 00:00:00 ps

[user NetID@ada ~]$ ps uf

USER PID 3CPU $MEM vsz RSS TTY STAT START TIME COMMAND
kjackson 27689 0.0 0.0 108468 1988 pts/8 Ss 11:14 0:00 -bash
kjackson 28043 1.0 0.0 110208 1052 pts/8 R+ 11:22 0:00 _ ps uf

June 7, 2016

The ‘kill Command

S kill -1
S kill [signal name] pid

* The kill -1 command lists all the signal names
available.

* The kill command can generate a signal of any type
to be sent to the process specified by a PID.

* The kill -9 sends the (un-interruptable) kill signal.

* ‘kill’ is the not the best name for this command,
because it can actually generate any type of signal.

June 7, 2016

79

Job Control

* Job control is a feature of the bash sell that allows users to manage
multiple simultaneous processes launched from the same shell.

* With job control, one can send a job running in the foreground to
the background, and vice versa.

* Job control commands:

jobs
Az (ctrl-2)
bg

fg
kill
cmd &
wait

lists all the jobs running

stops (suspends) the job running in the foreground
starts running the stopped job in the background
brings a background job to the foreground

sends a kill signal to a specified job

execute cmd in the background ($!)

wait for background processes to complete

* Type help command name for more info on the above commands.

Exercise:

June 7, 2016

$ ping localhost

*z (press Ctrl-z)
S jobs

S kill %1

S ping localhost
“c (press Ctrl-c)
S jobs

80

Process Communication Using Signals

* Asignal is a notification to a process that some event has
occurred.

* Signals occur asynchronously, meaning that a process does not
know in advance when a signal will arrive.

* Different types of signals are intended to notify processes of
different types of events.

* Each type of signal is represented by an integer, and
alternatively referred to by a name as well.
* Various conditions can generate signals. Some of them include:

— The ‘kill command

— Certain terminal characters (e.g. *C is pressed)

— Certain hardware conditions (e.g. the modem hangs)
— Certain software conditions (e.g. division by zero)

June 7, 2016 81

Sources of Signals

terminal
driver other user
processes
shell command
SIGINT SIGHUP SIGUSRI1
SIGKILL ernel
SIGPIPE
a process
/ —
SIGWINCH SIGALRM

window
manager

June 7, 2016

* Name

June 7, 2016

SIGINT

SIGQUIT
SIGKILL
SIGSEGV
SIGPIPE
SIGALRM
SIGUSR1
SIGUSR?Z

Common Signal Types

Description Default Action

Interrupt character typed (~C) terminate process
Quit character typed create core image
kill -9 terminate process
Invalid memory reference create core image
Write on pipe but no reader terminate process
alarm () clock ‘rings’ terminate process
user-defined signal type terminate process
user-defined signal type terminate process

See man 7 signal

83

June 7, 2016

The Bash Shell

84

What I1s a Shell?

* The shell is command language interpreter
that executes commands read from
standard input or from a file.

* There are several variants of shell. Ada
uses bash as its default shell and our focus.

June 7, 2016

85

Example of What a Shell Does

$ cat *.txt | wec > txt files size.SUSER
$ echo "Date? ‘date " >> txt files size.$USER

1) command line is broken into "words" (or
"tokens")

2) quotes are processed

3) redirection and pipes are set up

4) variable substitution takes place

5) command substitution takes place

6) filename substitution (globbing) is performed
/) command/program execution

June 7, 2016

86

June 7, 2016

Shell Initialization Files

The bash shell has a number of startup files that are sourced. Sourcing a
file causes all settings in the file to become a part of the current shell (no
new subshell process is created).

The specific initialization files sourced depend on whether the shell is a
login shell, an interactive shell, or a non-interactive shell (a shell script).

- When a user logs on, before the shell prompt appears, the system-wide
initialization file /etec/profile is sourced

— Next, if it exists, the .bash profile file in the user’'s home directory is
sourced (sets the user’s aliases, functions, and environment vars if any)

- If .bash profile doesn'’t exist, but a .bash login file does exist, it is
sourced

- Ifeventhe .bash login doesn’t exist, buta . profile does exist, it is
sourced

87

Types of UNIX Commands

* Acommand entered at the shell prompt can be one of
several types

June 7, 2016

Alias: an abbreviation or a ‘nickname’ for an existing command; user
definable

Built-in: part of the code of the shell program; fast in execution. For
more info on any particular built-in, type heip built-in_command name

Function: groups of commands organized as separate routines, user
definable, reside in memory, relatively fast in execution
External program

* Interpreted script: like a DOS batch file, searched and loaded from disk,
executed in a separate process

* Compiled object code: searched and loaded from disk, executed in a
separate process

88

The Exit Status of a Process

After a command or program terminates, it returns an “exit status” to
the parent process.

The exit status is a number between 0 and 255.

— By convention, exit status 0 means successful execution

— Non-zero status means the command failed in some way

— If command not found by shell, status is 127

- If command dies due to a fatal signal, status is 128 + sig #

After command execution, type echo $? at command line to see its
exit status number.

S grep user._NetID /etc/passwd

user NetID:x:1234:100:user NetID Jackson:/home/user NetID:/bin/bash
$ echo $7?

0

S grep billclinton /etc/passwd

$ echo S§?

1

June 7, 2016

89

Multiple Commands and Grouping

A single command line can consist of multiple commands. Each
command must be separated from the previous by a semicolon. The
exit status returned is that of the last command in the chain.

$ ls; pwd,; date

Commands can also be grouped so that all of the output is either piped to another
command or redirected to a file.

S (1ls; pwd;, date) > outputfile

June 7, 2016

90

Conditional Execution and Backgrounding

* Two command strings can be separated by the special characters && or [/ .
The command on the right of either of these metacharacters will or will not be
executed based on the exit status of the command on the left.

S cc programl.c -o programl.exe && programl.exe
S cc program2.c -o program2.exe >& err || mail bob@tamu.edu < err

* By placing an & at the end of a command line, the user can force the command to run
in the “background”. User will not have to wait for command to finish before receiving
the next prompt from the shell.

$ programl.exe > pl output &
[1] 1557

S echo S!

1557

June 7, 2016

91

June 7, 2016

Command Line Shortcuts

Command and filename completion

— Afeature of the shell that allows the user to type partial file or
command names and completes the rest itself

Command history

— Afeature that allows the user to “scroll” through previously typed
commands using various key strokes

Allases

— Afeature that allows the user to assign a simple name even to a
complex combination of commands

Filename substitution

— Allows user to use “wildcard” characters (and other special
characters) within file names to concisely refer to multiple files with
simple expressions

92

Command and Filename Completion

* To save typing, bash provides a mechanism that allows the
user to type part of a command name or file name, press
the tab key, and the rest of the word will be completed for
the user.

S 1s

filel file2 foo foobarckle fumble
$ 1ls fu[tab]

$ ls fx[tab]

S 1ls fi[tab]

S 1ls fi[tab] [tab]
filel file2

expands fu to fumble)
terminal beeps, nothing happens)

expands fi to file)

(
(
(
(

lists all possibilities)

S da[tab] (expands to the date command)

June 7, 2016

93

The ‘history’ Command

$ history | tail

994
995
996
997
998
999

pstree -p 27688

ps

ps uf

ps -uf

ps -1

icc -o funprog -L/scratch/user/user. NetID/WhizBang/lib -lwhiz -lbang funprog.c

foo.o bar.o

1000
1001
1002

S licc
icec -o
bar.o

$ 11001
icec -o
bar.o

echo S$PATH
gedit funprog.c
history

funprog -L/scratch/user/user. NetID/WhizBang/lib -lwhiz -lbang funprog.o foo.o

funprog -L/scratch/user/user NetID/WhizBang/lib -lwhiz -lbang funprog.o foo.o

June 7, 2016

94

The ‘" Command

* The ! (bang) can also be used for re-execution of previous
commands.

* How it Is used:
11! re-execute the previous command (the most recent command)
IN re-execute the Nth command from the history list
Istring re-execute last command starting with string

IN:s/old/new/ in previous Nth command, substitute all
occurrences of old string with new string

June 7, 2016 95

Allases

* An alias I1s a bash user-defined abbreviation
for a command.

* Aliases are useful if a command has a
number of options or arguments or If the
syntax Is difficult to remember.

* Aliases set at the command line are not
inherited by subshells. They are normally
set in the .bashrc startup file.

June 7, 2016

96

Allases

* The alias built-in command lists all aliases that are currently set.

S alias

alias co='‘compress’
alias cp='‘cp -i’
alias mroe='more’
alias 1s='ls -F’

* The alias command is also used to set an alias.

alias co=compress
alias cp='‘cp -i’
alias m=more
alias mroe='more’
alias 1s='‘ls —-alF’

i nh®n

The unalias command deletes an alias. The \ character can be used
to temporarily turn off an alias.

$ unalias mroe

$ \l1s

June 7, 2016

97

June 7, 2016

Filename Substitution

Metacharacters are special characters used to represent something other
than themselves.

When evaluating the command line the shell uses metacharacters to
abbreviate filenames or pathnames that match a certain set of
characters.

The process of expanding metacharacters into filenames is called

filename substitution, or globbing. (This feature can be turned off with set noglob
or set -f)

Metacharacters used for filename substitution:

* matches 0 or more characters

? matches exactly 1 character

[abc] matches 1 character in the set: a, b, or ¢

[!abc] matches 1 character not in the set: anything other than a, b, or c
[la-z] matches 1 character not in the range from ato z

{a,ile,ax} matches for a character or a set of characters

98

Filename Substitution

S 1s *

abc absl abcl22 abcl23 abc2 filel filel.bak file2 file2.bak none
nonsense nobody nothing nowhere one
$ 1s *.bak

filel.bak file2.bak

$ echo a*

abc abcl abcl22 abcl23 abc2

$ 1s a?c?

abcl abc2

$ 1s ??

ls: ??: No such file or directory
$ echo abc???

abcl22 abcl23

$ echo ??

??

S 1s abc[123]

abcl abc2

S 1s abc[1-3]

abcl abc2

$ 1ls [a-z] [a-z] [a-Zz]

abc one

June 7, 2016

99

Filename Substitution

S 1s *

a.c b.c abc ab3 ab4 ab5 filel file2 file3 file4 file5 foo faa fumble
$ 1ls f{oo,aa,umble}

foo faa fumble

$ 1s a{.c,c,b[3-5]}

a.c ab3 ab4 abs

$ mkdir /home/user NetID/mycode/{old, new,dist, bugs}

S echo fofo, um}*

fo{o, um}*

To use a metacharacter as a literal character, use the backslash to
prevent the metacharacter from being interpreted.

S 1s

abc filel youx

S echo How are you?

How are youx

S echo How are you\?

How are you?

S echo When does this line \
>ever end\?

When does this line ever end?

June 7, 2016

100

Filename Substitution

* The tilde character (~) by itself evaluates to the full pathname of the user’s
home directory.

* When prepended to a username, the tilde expands to the full pathname of that
user’s home directory.

* When the plus sign follows the tilde, the value of the present working directory
IS produced.

* When the minus sign follows, the value of the previous working directory is
produced.

$ echo ~

/home/user NetID

$ echo ~fdang
/home/fdang

$ echo ~+

/home/user. NetID

$ echo ~-
/home/user.NetID/mycode

June 7, 2016 101

June 7, 2016

Command Substitution

Used when:
— assigning the output of a command to a variable
— substituting the output of a command within a string

Two ways to perform command substitution

— placing the command within a set of backquotes

— placing the command within a set of parenthesis preceded by a $
Sign

Bash performs the substitution by executing the command

and returning the standard output of the command, with

any trailing newlines deleted.

102

Command Substitution

$ echo "The hour is ‘date +%H'"
The hour is 12

S set ‘date’

S echo $§*

Mon Sep 13 12:25:46 CDT 2004
S echo $2 $6

Sep 2004

$ d=§ (date)

S echo $§d

Mon Sep 13 12:27:40 CDT 2004
$ lines=$(cat filel)

S echo The time is $(date +%H)
The time is 12

$ machine=S$ (uname -n)

$ echo Smachine

loginl. tamu. edu

S pwd

/home/user. NetID

S dirname="$ (basename $ (pwd))"
$ echo S$dirname

user NetID

June 7, 2016 103

June 7, 2016

File Descriptors & I/O Streams

Every process needs to communicate with a number of
outside entities in order to do useful work

— It may require input to process. This input may come from the
keyboard, from a file stored on disk, from a joystick, etc.

— It may produce output resulting from its work. This data will need to
be sent to the screen, written to a file, sent to the printer, etc.

In unix, anything that can be read from or written to can be

treated like a file (terminal display, file, keyboard, printer,

memory, network connection, etc.)

Each process references such “files” using small unsigned
Integers (starting from 0) stored in its file descriptor table.

These integers, called file descriptors, are essentially
pointers to sources of input or destinations for output.

104

June 7, 2016

/O Redirection

When an interactive shell (which of course runs as a
process) starts up, it inherits 3 1/O streams by default from
the login program:

— stdin normally comes from the keyboard (fd 0O)

— stdout normally goes to the screen (fd 1)

— stderr normally goes to the screen (fd 2)

However, there are times when the user wants to read
iInput from a file (or other source) or send output to a file
(or other destination). This can be accomplished using I/O
redirection and involves manipulation of file descriptors.

105

Redirection Operators

< redirects input

> redirects output

>> appends output

<< input from here document

2> redirects error

&> redirects output and error

>& redirects output and error

2>&1 redirects error to where output Is going
1>&2 redirects output to where error Is going

June 7, 2016 106

Redirection Operators

S tr '[A-Z]' '[a-z]' < myfile

S 1s > 1lsfile
$ cat lsfile
dirl

dir2

filel

file2

file3

$ date >> lsfile

S cat lsfile

dirl

dir2

filel

file2

file3

Mon Sep 13 13:29:40 CDT 2004

S cc prog.c 2> errfile (save any compilation errors in file errfile)

$ find . -name *.c -print > foundit 2> /dev/null (redirect output to foundit and throw away errors)

June 7, 2016 107

Pipes

* A pipe takes the output of the command to the
left of the pipe symbol (|) and sends it to the
input of the command listed to its right.

* A'pipeline’ can consist of more than one pipe.

S who > tmp
S we -1 tmp
38 tmp

S rm tmp

(using a pipe saves disk space and time)

S who | wec -1

38

S du . | sort -n | sed —-n 'Sp'
84480

June 7, 2016 108

June 7, 2016

Pipes

S du | sort -n | sed -n 'Sp'

84480

du sort sed
))

stdin Fl) _—"1 0 stdin ||3 _—" 0 stdin

stdout] P stdout —1 p stdout

stder E stderr E stderr
N——" N——"

109

Transfer data between Unix hosts with scp

Sscp [[user@]hostl:]filenamel [[user@]host2:]filena2

scp myfilel user(@ada.tamu.edu:
scp myfilel \ user@ada.tamu.edu:dirl/remote myfilel
scp user(@ada.tamu.edu:myfileZ2

scp user@ada.tamu.edu:myfile2 \ local_myfile2

“n v v n W

scp -r user@ada.tamu.edu:dir3 local dir/ (copy recursively)

June 7, 2016 110

Recap: Bash Shell Initialization

June 7, 2016 111

The Startup of the Bash Shell

S

June 7, 2016

When system boots, 1st process to
run is called init (PID 1).

It spawns getty, which opens up
terminal ports and puts a login prompt
on the screen.

/bin/login is then executed. It prompts
for a password, encrypts and verifies
the password, sets up the initial

environment, and starts the login shell.

bash, the login shell in this case, then
looks for and executes certain startup
files that further configure the user’s
environment.

112

June 7, 2016

Shell Initialization Files

The bash shell has a number of startup files that are sourced.
Sourcing a file causes all settings in the file to become a part
of the current shell (no new subshell process is created).

The specific initialization files sourced depend on whether the
shell is a login shell, an interactive shell, or a non-interactive
shell (a shell script).

— When a user logs on, before the shell prompt appears, the system-wide
initialization file /ete/profile is sourced

— Next, if it exists, the .bash profile file in the user’s home directory is
sourced (sets the user’s aliases, functions, and environment vars if any)

- If .bash profile doesn't exist, but a .bash login file does exist, it
IS sourced

- If eventhe .bash login doesn’t exist, but a .profile does exist, it
IS sourced

113

Shell Initialization Files

[etc/profile
~/.bash_profile ~/.bash_login

The .bashrc file, if it exists, is sourced every
time an interactive bash shell or script is started.

June 7, 2016 114

Queue

sn_short
sn_regular

sn_long

sn_xlong

mn_short

mn_small

mn_medium

mn_large

xlarge

vnc

special

June 7, 2016

Min/Default/Ma

X Cpus

1/1/20

2/21/200

2/2/120

121/121/600

600/ 601 /

2000

1/1/280

1/1/20

None

Queue Limits

Default/Max
Walltime

10 min/ 1 hr
1 hr/ 1 day

24 hr / 4 day

4 days / 7 days

10 min / 1hr

1 hr/7 days

1 hr/7 days

1 hr/5 days

1 hr/ 10 days

1hr/6hr

1 hr/7 days

Compute Node

Types

64 GB nodes
(811)

256 GB nodes
(26)

1 TB nodes (11)

2 TB nodes (4)

GPU nodes (30)

64 GB nodes
(811)

256 GB nodes
(26)

Pre-Queue Limits

Maximum of 2000
cores for all running
jobs in this queue.

Maximum of 6000
cores for all running
jobs in this queue.

Maximum of 6000
cores for all running
jobs in this queue.

Maximum of 5000
cores for all running
jobs in this queue.

Aggregate
Limits Across
Queues

Maximum of
6000 cores for
all running jobs

in the single-

node (sn_*)
queues.

Maximum of
12000 cores for
all running jobs

in the multi-

node (mn_%*)
gueues.

Per-User Limits
Across Queues

Maximum of
1000 cores and
50 jobs per user

for all running
jobs in the single
node (sn_*)
queues.

Maximum of
3000 cores and
150 jobs per
user for all
running jobs in
the multi-node
(mn_*) queues.

https://hprc.tamu.edu/wiki/index.php/Ada:Batch _Queues

Notes

For jobs needing
more than one
compute node.

For jobs needing
more than one
compute node.

For jobs needing
more than
256GB of

memory per
compute node.

For remote
visualization jobs.

Requires
permission to
access this
queue.

115

Job Files (Serial Example)

#BSUB -J myjobl # sets the job name to myjobl.

#BSUB -L Ibin/bash # uses the bash shell to initialize the job's execution environment
#BSUB -W 12:30 # sets to 12.5 hours the job's runtime wall-clock limit.

#BSUB -n 1 # assigns 1 core for execution.

#BSUB -0 stdoutl1.%J # directs the job's standard output to stdoutl.jobid

#BSUB -M 500 # specifies a memory limit of 500 MB per core/process

#BSUB -R “rusage[mem=500]" # requests 500MB of memory per core/process from LSF

#

<--- at this point the current working directory is the one you submitted the job from.

#

module load intel/2015B # loads the Intel software tool chain to provide, among other things,

needed runtime libraries for the execution of prog.exe below.

(assumes prog.exe was compiled using Intel compilers.)

#

prog.exe < inputl >& data_outl # both inputl and data_outl reside in the job submission dir
Hit

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Job _files

June 7, 2016 116

Job Resource Examples

#BSUB -n 10 -R “span|ptile=2]"
#BSUB -R “rusage[mem=500]" -M 500 ...

Requests 10 job slots (2 per node). The job will span 5
nodes. The job can use up to 1000 MB per node.

#BSUB -n 80 -R “span(ptile=20]"
#BSUB -R “rusage[mem=2500]" -M 2500

Request 4 whole nodes (80/20), not including the

xlarge memory nodes. The job can use up to 50GB per
node.

June 7, 2016 117

https://hprc.tamu.edu/wiki/index.php/Ada:Batch_Queues

Job Parameters Example

#BSUB -L /bin/bash

#BSUB -J stacks_S2

#BSUB -n 20

#BSUB -R "span[ptile=20]"
_pitBSUB -R "select[mem256gb]"
#BSUB -R "rusage[mem=12400]"
#BSUB -M 12400

#BSUB -W 1:00

#BSUB -o stdout.%J

#BSUB -e stderr.%J

use the bash login shell

job name

assigns 20 cores for execution
assigns 20 cores per node

nxt, mem256gb, memltb, mem2tb, ...
reserves 12400MB memory per core
sets to 12400MB process limit

sets to 1 hour the job's limit

job standard output to stdout.jobid
job standard error to stderr.jobid

H FH= FH= H H H H H H H

Optional; only needed if you want to use higher memory nodes,
otherwise defaults to the 64GB nodes

June 7, 2016 118

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Job_files

Job Parameters Example
For Job Scripts on xlarge queue

#BSUB
#BSUB
#BSUB
#BSUB

BSUB
:I:BSUB
#BSUB
#BSUB
#BSUB

#BSUB
#BSUB

/bin/bash
stacks S2

40
"span[ptile=40]"
xlarge
"select[memltb]"
"rusage[mem=25000]"
25000

48:00

stdout.%Jd
stderr.%Jd

H= FH FH FH H FH H H H H H

use the bash login shell

job name

assigns 40 cores for execution
assigns 40 cores per node

required if using memltb or mem2tb
nxt, mem256gb, memltb, mem2tb, ...
reserves 25GB memory per core

sets to 25GB process limit

sets to 48 hours the job's limit
job standard output to stdout.jobid
job standard error to stderr.jobid

____ These two parameters must be specified together
If you are using the 1TB or 2TB computational nodes

June 7, 2016

119

Job Files (Concurrent Serial Runs)

#BSUB -J myjob2 # sets the job name to myjob2.

#BSUB -L /bin/bash # uses the bash login shell to initialize the job's execution environment.
#BSUB -W 12:30 # sets to 12.5 hours the job's runtime wall-clock limit.

#BSUB -n 3 # assigns 3 cores for execution.

#BSUB -R "span[ptile=3]" # assigns 3 cores per node.

#BSUB -R "rusage[mem=5000]" # reserves 5000MB per process/CPU for the job (i.e., 15,000 MB for
job/node)

#BSUB -M 5000 # sets to 5,000MB (~5GB) the per process enforceable memory limit.
#BSUB -0 stdout2.%J # directs the job's standard output to stdout2.jobid

#BSUB -P projectl # charges the consumed service units (SUs) to projectl.

#BSUB -u e-mail_address # sends email to the specified address

#BSUB -B -N # send emails on job start (-B) and end (-N)

cd $SCRATCH/myjob2 # makes $SCRATCH/myjob2 the job's current working directory
module load intel/2015B # loads the Intel software tool chain to provide, among other things,

The next 3 lines concurrently execute 3 instances of the same program, prog.exe, with standard input and
output data streams assigned to different files in each case.

(prog.exe < inputl >& data_outl) &
(prog.exe < input2 >& data_out2) &
(prog.exe < input3 >& data_out3)
wait

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Job_files
June 7, 2016 120

Pop Quiz

#BSUB -L /bin/bash

#BSUB -J stacks S2

#BSUB -n 10

#BSUB -R "span[ptile=10]"
#BSUB -R "rusage[mem=2000]"
#BSUB -M 2000

#BSUB -W 36:00

#BSUB -0 stdout.%J

#BSUB -e stderr.%J

How much total memory is requested for this job?

What is the maximum time this job is allowed to run?

June 7, 2016 121

Pop Quiz

#BSUB -L /bin/bash

#BSUB -J stacks S2

#BSUB -n 80

#BSUB -R "span[ptile=80]"
#BSUB -R "select[memltb]"
#BSUB -R "rusage[mem=25000]"
#BSUB -M 25000

#BSUB -W 48:00

#BSUB -0 stdout.%J

#BSUB -e stderr.%J

Find two parameters that are either missing or not configured correctly

June 7, 2016 122

https://hprc.tamu.edu/wiki/index.php/Ada:Batch#Job_files

Exercises

* Copy sample job scripts under
/scratch/training/Digital_Biology

exam
exam
exXam
exam
exam

D
D
D
D
D

eOl.env _variables.job
e02.echo_numbers.job (time limit)
e03.python_memory.job (memory limit)
e04.r_example.job

e05.bad _core_ ptile.job (no resource match)

* Modify job scripts to trigger/fix errors.

June 7, 2016

123

Remote Visualization Jobs

» Use to run programs with graphical interfaces on
Ada and display them on your computer:

 Can leverage GPU nodes for better graphics
performance

» Better than X11 forwarding (especially when using
VPN)

Command Description

vncjob.submit [-h] [-g MxN] [-t type] ~ Submit a VNC job.
Type 'vncjob.submit -h' for help

vncjob.kill JOBID Kill a VNC job whose id is JOBID

vncjob.list List all your VNC jobs currently in the
batch system

https://hprc.tamu.edu/wiki/index.php/Ada:Remote_Visualization

June 7, 2016

124

Remote Visualization Job Example

(1) Log into Ada

Your current disk quotas are:

Disk Disk Usage Limit File Usage Limit
/home 33M 186G 676 18668
/scratch 4,.53306 1T 13749 50000

/tiered) 18T _ 1 50000
Type 'showquota' to view these quotas again.
[netid@adaz ~15 |}

(2) Submit VNC Job using vncjob.submit (optional parameters available)
Type 'showguota' to view these quotas again.
[netid@ada2 ~1% vncjob.submit
Your vnc job has been submitted.
Output file for VNC job 1551326 will be shome/

View the output with the follwoing command when your job starts running

cat shomes netid /vncjob.1551326

For more information about remote visualization on ada, please visit

https://sc.tamu.edu/wiki/index.php/Ada:Remote-Viz
[netid@ada2 ~1s |

June 7, 2016 125

Remote Visualization Job Example

(3) Use cat to see the output file -- Note job properties

[netid@adaz ~1s cat shome/netid svncjob.1551326

Using settings in ~/.vnc/xstartup.turbovnc to start fopt/TurboVNC/bin/vncserver
VNC batch job 1d 1s 1551326

VNC server arguments will be '-geometry 1024x763'

VNC server started with display gpu64-3881:11

VirtualGL Client 64-bit v2.4 (Build 20150126)

Listening for unencrypted connections on port 4242

4242

WARNING: You have started an interactive/VNC job. Your job will continue
to run until the VNC server 1s stopped (up to & hours).

To access from Mac/Linux, run from your desktop:
vncviewer -via netid@ada.tamu.edu gpu64-3081:11
To access from Windows:
1) Setup a tunnel from your machine to gpu64-3081:5911
1.1} If you use MobaXterm, run the following command in the MobaXterm terminal:
ssh -f -N -L 16000:gpu64-30081:5911 netid@ada.tamu.edu

1.2) If you use Putty to set up the tunnel, click SSH' and then click 'Tunnels'.
F1ll 1n 'Source port' with '10806°' and 'Destination' with 'gpu64-3@01:5911°'

2) Start vncviewer on your machine

Otherwise to access from Windows, either see the documentation that came
with your VNC viewer, or open an X11 enabled login to ada.tamu.edu and
then run:

vncviewer gpu64-3001:11

When running graphical program in this VNC job, remember to start them using vglrun:

vglrun application
To stop the WNC job:

vncjob.kill 1551326

June 7, 2016 [netideada2 ~1s i

https://hprc.tamu.edu/wiki/index.php/Ada:Remote_Visualization

Remote Visualization Job Example

{4} Start new tab/terminal pninted to local machine

2. Mhome/mobaxterm

[2615-07-88 14:32.58] -
[Laptop] = I

(5) Use command from (3) to create tunnel -- Local port 10000 must be free

[2015-087-08 14:37.55] -

[Laptop] » ss f -N -L 10000:gpu64-3001:5911 netid@ada.tamu.edu
NOTICE: This computer system and data herein are available only for
authorized purposes by authorized users. Use for any other purpose

may result in qdmlnlatrqtlvE;dlac1p11nqru actions or criminal prnaecutlnn
against the user. Usage may be subject to security testing and monitoring.
applicable privacy laws establish the expectations of privacy.

netid@ada.tamu.edu's password:

[2015-87-08
[

June 7, 2016 127

Remote Visualization Job Example

(6) Open VNC Viewer and enter connection information

VMNC® Viewer

VMC Server: | localhost: 10000

Encryption: | Prefer off

| About... | | Options... |

(7) Enter your VNC password

VNC Viewer
Ve VMNC Viewer - Authentication

WMC Server: localhost: 10000

Password:

QK || Cancel |

June 7, 2016 128

Remote Visualization Job Example

June 7, 2016

(8) VNC window opens -- load modules -- use vglrun to launch GUI

\& TurboVNC: gpu64-3001:11 () - VNC Viewer =0 1=

% Applications Places System (@ & Wed Jul 8, 14:50

—] Abaqus/CAE 6.13-5 [Viewport: 1] L
File He 7
=] Fil Help K?

Model Viewport Miew Part Shape Feature Tools Plug-ing

netid @gpu64-3001:~

File Edit View Search Terminal Help
netid@gpubd- $ le load ABAQUS
netid@gpuad-3 5 n abaqus cae
Abagqus License M ger checked out the following license(s):
"cae" release 6. from sclserverZ.tamu.edu
<28 oput of 30 licenses remain available>.
USA,
f Dassault
3 gl‘hlo!ice: in
2
25 simuLIa
|' @gpuba-3001:~ || 2= Abaqus/CAE 6.13-5[... |

129

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Listing Directory Contents
	Slide 6
	Slide 7
	Copying Files
	Moving or Re-naming Files
	Deleting Files
	Other Directory Commands
	Changing Directories
	Slide 13
	Slide 14
	Slide 15
	Pathnames
	Slide 18
	Slide 19
	A Closer Look at the ‘ls’ Command
	File Ownership and Permissions
	Directory Permissions
	The ‘chmod’ Command
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	The UNIX Filesystem
	What is a Filesystem?
	Slide 58
	The ‘find’ Command
	Slide 60
	Slide 61
	The ‘tar’ Command
	Slide 63
	Slide 64
	UNIX Processes
	Slide 66
	The Process Hierarchy
	Variables
	Some Special Variables
	Environment Variables
	Bash Environment Variables
	The Search Path
	Unsetting Variables
	Slide 74
	Process Signals
	What is a Process?
	Slide 77
	Slide 78
	The ‘kill’ Command
	Job Control
	Process Communication Using Signals
	Sources of Signals
	Some Signal Types
	The Bash Shell
	What is a Shell?
	Example of What a Shell Does
	Slide 87
	Types of UNIX Commands
	The Exit Status of a Process
	Multiple Commands and Grouping
	Conditional Execution and Backgrounding
	Command Line Shortcuts
	Command and Filename Completion
	The ‘history’ Command
	The ‘!’ Command
	Aliases
	Slide 97
	Filename Substitution
	Slide 99
	Slide 100
	Slide 101
	Command Substitution
	Slide 103
	File Descriptors & I/O Streams
	I/O Redirection
	Redirection Operators
	Slide 107
	Pipes
	Slide 109
	Slide 110
	Slide 111
	The Startup of the Bash Shell
	Shell Initialization Files
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129

