
Course Material
https://hprc.tamu.edu/wiki/index.php/HPRC:Classes:Hwang

Open Access Lab Workstations
Log in with NetID + Password (same as howdy.tamu.edu)

Head Start
If you know how, open MobaXterm and connect to Ada
ssh [NetID]@ada.tamu.edu

Classroom Introduction to Unix/Linux and 
Running Jobs on the Ada Cluster



I. Introduction to Unix/Linux, and 
II. Running Jobs on the Ada Cluster

Rick McMullen, Ph.D., Associate Director HPRC
mcmullen@tamu.edu

Texas A&M University
High Performance Research Computing



Help us, help you -- we need more info
•Which Cluster
•UserID/NetID
•Job id(s) if any
•Location of your jobfile, input/output files
•Application used if any
•Module(s) loaded if any
•Error messages
•Steps you have taken, so we can reproduce the problem

Website: https://hprc.tamu.edu
Email: help@hprc.tamu.edu
Telephone: (979) 845-0219
Visit us in person: 104B Henderson Hall

Appointments are appreciated, but not required

HPRC Help Desk



4

A wide range of information and training content are available through:
HPC University, http://hpcuniversity.org/

Linux/Unix Basics for HPC:  October 9, 2014 (with video) [TACC]
https://portal.tacc.utexas.edu/-/linux-unix-basics-for-hpc

Express Linux Tutorial: Learn Basic Commands in an Hour [TACC]
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=ed6c16e9

-bcbc-4b70-9311- 5273b09508b8&groupId=13601

Introduction to Linux for HPC [LSU]
http://www.hpc.lsu.edu/training/weekly-materials/2015-Fall/intro-linux-

2015-09-02.pdf

Additional References



Progression: “How do I…?”

Section 0: Logistics

Logistics

Focus: “What’s next?”
Goal: “I can use this comfortably!”

Five Sections
Based on how our users have learned the Unix/Linux environment

Each Section
Information + Examples + Checkpoint



Unix/Linux: Operating system

Section 0: Definitions I

General Definitions

Distribution: Operating system + software collection

Local: The computer in front of you
Remote: A computer you connect to

Interactive: A program that stops to ask you for input
GUI: Graphical User Interface
Terminal: Text-based interface for launching commands



$ man cmd_name

A man page is organized in a standard layout:
NAME, SYNOPSIS, DESCRIPTION, OPTIONS, … 

View man page for gedit: $ man gedit

Many users find it easier to use the Internet.
Most man pages are available for viewing in an internet browser.

Press ‘q’ to exit a man page.

View man page for scp: $ man scp

Section 0: Documentation



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



ssh: Secure Shell – encrypted network protocol

Section I: Definitions

Section I Definitions

X11: Enables GUI over network

Xming: X11 for Windows
XQuartz: X11 for OS X

PuTTY: Tool for SSH and Telnet connection
MobaXterm: Tool for SSH + X11 + other connections

MobaXterm will replace PuTTY + Xming for this class



Log In – Remote Access

Windows: MobaXterm
See also: https://hprc.tamu.edu/wiki/index.php/HPRC:Access:Windows

OS X: Terminal + Xquartz

Unix/Linux: Terminal + X11

Section I: Connect

We use ssh to connect and issue commands.



Using SSH - MobaXterm (on Windows)
https://hprc.tamu.edu/wiki/index.php/HPRC:Access:Windows

Section I: Connect

NetID Password
(Invisible Text)

Remote TerminalSFTP
Client



Using SSH - MobaXterm (on Windows)

Section I: Connect

Message of the Day

Remote Terminal

SFTP
Client

Home 
Directory

Storage Quota 
Status



Using SSH (with a terminal)
https://hprc.tamu.edu/wiki/index.php/Ada:Access

You may see something like the following the first time you connect to the remote machine from your local machine:

% ssh -X user_NetID@ada.tamu.edu
Host key not found from the list of known hosts.
Are you sure you want to continue connecting (yes/no)?

Type yes. You will then see the following:

Host 'ada.tamu.edu' added to the list of known hosts.
user_NetID@ada.tamu.edu's password: 

You will use the ssh command when connecting from OS X, UNIX/Linux, or MobaXterm hosts.

Section I: Connect



Your Login Password
Both state of Texas law and TAMU regulations prohibit the sharing 

and/or illegal use of computer passwords and accounts.

Section I: Connect

Be responsible with your password:
Don’t write down passwords.
Don’t choose easy to guess/crack passwords.
Change passwords frequently.

TAMU HPRC resources use your NetID Credentials (“Howdy! Password”)



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



Where are you after you login?

pwd command (Print Current/Working Directory)

$ pwd
/home/user_NetID

Section I: Navigate

$ pwd



Upon login, you are located in your home directory.

/

bin/etc/ scratch/ sbin/home/

user1/
user2/ user3/

fileA abaqus_dir/ verifyOLD/

fileA fileB

Directory Paths

Section III: Transfer Files

In Windows, the home directory is usually C:\Users\NetID
On Ada, the home directory is located at /home/NetID



Listing Files and Directories: the ls command

Commonly used options
-l display contents in “long” format
-a show all file ( including hidden files - those beginning with . )
-t sort listing by modification time
-r reverse sort order
-F append type indicators with each entry ( * / = @ | )
-h print sizes in user-friendly format (e.g. 1K, 234M, 2G)

$ ls [options] [directory or file name]

$ ls
$ ls -a

Exercise:
$ touch hello.txt
$ ls
$ ls *.txt

Section I: Navigate



The tree command

Shows the contents of a directory structure in a hierarchical arrangement.

$ tree [dir_name]

$ tree bin
bin
├── perlsh
└── xtail.pl

0 directories, 2 files

Section I: Navigate



Changing Directories: the cd command

Return to last directory:

$ cd [directory name]

$ cd -

$ cd ..

$ cd

$ mkdir dir3
$ mkdir dir3/dir4
$ cd dir3
$ pwd
$ cd dir4
$ pwd

Exercise:

$ cd ..
$ pwd
$ cd dir4
$ pwd
$ cd -
$ pwd

$ cd ~or

$ cd
$ pwd
$ cd dir3
$ pwd
$ cd ~
$ pwd

Section I: Navigate

Go to parent directory:

Return to home directory:

*mkdir means “make directory”



TAB-Completion: Use TAB key to complete when typing file, directory or command name

Useful Navigation Tips
Terminal usage involves a lot of memory and typing. 

Save time and effort by using shortcuts.

history Command: Show command history

Arrow Keys: up arrow and down arrow can browse through the command history

TAB+TAB



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



Displaying File Contents

Dump the contents of a file to the screen: $ cat [file name]

$ less [file name]

Other related commands:
– head : output the first part of files
– tail : output the last part of files
– wc (word count) or wc -l (line count)

$ cat /etc/hosts
$ more /etc/hosts
$ less /etc/hosts
$ wc -l /etc/hosts

Exercise:

Display a text file one page at a time:

Display a text file one page at a time: $ more [file name]

Section I: View Files



Open a file with gedit:

Open a file with nano:

$ gedit [file name]

Open a file with vi:

$ nano [file name]

$ vi [file name]

Graphic User Interface (GUI) options require X11 forwarding.

Section I: View Files

Files can viewed with text editors.

How do I choose?
1) What is installed?
2) What am I comfortable with?

New users usually like:
1) Text: cat
2) GUI: gedit

Displaying File Contents



Displays a brief description of the contents or other type information for a file.

$ file [name]

$ file hello.c
hello.c: ASCII C program text

Section I: View Files

Types of File: the file command

file can display when a file has been edited on a Windows/DOS machine. 
The CRLF Line Terminators will cause interpretation errors on Unix machines.

$ file dosText.txt
dosText.txt: […]with CRLF line terminators 
$ dos2unix dosText.txt



Displays an image file in a new graphic window.

$ eog [name]

Section I: View Files

Eye of GNOME is installed on most of our systems.

Displaying Image Files



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



Directory: A container for files
Equivalent to Windows folders

Section II: Definitions

Section II Definitions

Attributes: File properties + permissions
Info like “last edited” & “date created” & “owner”

PuTTY: Tool for SSH and Telnet connection
MobaXterm: Tool for SSH + X11 + other connections

MobaXterm will replace PuTTY + Xming for this class



Common Directory Commands

To make a new directory:

$ cd [directory name]

$ mkdir [directory name]

$ rmdir [directory name]

$ mkdir dir2
$ touch dir2/f2.txt
$ ls
$ ls dir2

Exercise:
$ pwd
$ cd dir2
$ pwd
$ cd ..
$ pwd

$ rmdir dir2
$ ls dir2
$ rm dir2/f2.txt
$ rmdir dir2
$ ls

To change to another directory:  

To remove an empty directory:  

Section II: Directories



File and Directory Names

Don’t start or end your filename with a space, period, hyphen, or underscore.

Careful selection of characters prevents naming conflicts and errors.

Commonly Used

• A-Z
• a-z
• 0-9
• . (period)
• - (hyphen)
• _ (underscore)

Do Not Use
(Reserved)

• / (forward slash)
• > (greater than)
• < (less than)
• | (pipe)
• : (colon)
• & (ampersand)

Avoid Using

• (white space)
• ( ) (parentheses)
• ‘ (quotes)
• ? (question mark)
• * (asterisk)
• \ (backslash)
• $ (dollar sign)

Avoid blank space in the file name: ("my data file" vs "my_data_file.txt")
Names are case sensitive

Section II: Directories



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



File Attributes: A look with ls
[user_NetID@ada ~]$ ls -l
total 37216
drwx------ 7 user_NetID    user_NetID         121 Sep  9 10:41 abaqus_files
-rw------- 1 user_NetID    user_NetID        2252 Aug 24 10:47 fluent-unique.txt
-rw------- 1 user_NetID    user_NetID    13393007 Aug 24 10:40 fluent-use1.txt
-rw------- 1 user_NetID    user_NetID         533 Aug 24 11:23 fluent.users
drwxr-xr-x    3 user_NetID    user_NetID          17 May  7 16:56 man
-rw------- 1 user_NetID    user_NetID    24627200 Sep  9 10:49 myHomeDir.tar
lrwxrwxrwx    1 root     root           21 May 28 16:11 README -> /usr/local/etc/README
-rwx------ 1 user_NetID    user_NetID         162 Sep  7 12:20 spiros-ex1.bash
-rwx--x--x    1 user_NetID    user_NetID          82 Aug 24 10:51 split.pl
drwxr-xr-x    2 user_NetID    user_NetID           6 May  5 11:32 verifyOLD

file name
file modification time

file modification date
file size in bytes

group name
user name

hard link count
file permissions

Section II: Attributes



File Ownership and Permissions

There are 3 permissions sets for each file:
– 1st set - user (the owner)
– 2nd set - group (to which file owner belongs)
– 3rd set - other (all other users) 

-rwx--x--x    1 user_NetID staff          82 Aug 24 10:51 split.pl

permissions user and group ownership

Octal Binary Permissions
0 000 - - -

1 001 - - x

2 010 - w -

3 011 - w x

4 100 r - -

5 101 r - x

6 110 r w -

7 111 r w x

user group other

drwx------ 7 user_NetID staff         121 Sep  9 10:41 abaqus_files

directory flag

Section II: Attributes

For files:
– The r indicates read permission
– The w indicates writes permission
– The x indicates execute permission

For directories:
– The r indicates that a user can list contents
– The w indicates that a user can add/delete files
– The x indicates that a user can cd into directory
– The x also indicates that a user can execute programs



The -R option recursively applies the specified permissions to all files and directories within 
target directory

$ chmod [options] [permission mode] [target_file]

$ chmod 777 myFile.txt ( the permissions will be set to rwxrwxrwx )

$ chmod o-x myFile.txt ( the permissions will change to rwxrwxrw- )

$ chmod gu-x myFile.txt ( the permissions will change to rw-rw-rw- )

$ chmod u+x myFile.txt ( the permitions will change to rwxrw-rw- )

Section II: Attributes

Edit File Attributes: the chmod command



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



36

Editing File Contents

Open a file with gedit:

Open a file with nano:

$ gedit [file name]

Open a file with vi:

$ nano [file name]

$ vi [file name]

Graphic User Interface (GUI) options require X11 forwarding.

Files can edited with text editors if you have the correct permissions.

How do I choose?
1) What is installed?
2) What am I comfortable with?

New users usually like:
1) Text: cat
2) GUI: gedit

Section II: Edit Files



Windows to UNIX/Linux

Text file edited with Windows contain different line terminators (CR/LF vs LF).  
Use dos2unix to convert a DOS/Windows edited text file to UNIX format.

$ dos2unix myDOSfile.txt

Some users prefer to edit file on their local Windows machine. 
Files are then transferred to the UNIX/Linux server.

Considerations:
1) How big are these files?
2) How often do the files update?
3) Is comfort worth inconvenience? 

Section II: Edit Files

-IMPORTANT-



Copying Files: the cp command

If source is a file, and…
– target is a new name: copy source and call it target
– target is a directory: copy source and place it in directory

If source is a directory, the -r option is used, and…
– target is a new name: copy source and contents into directory with new name
– target is a directory: copy source and place it in directory

$ cp [options] [source] [target]

$ cp hello.txt world.txt
$ ls

Exercise: $ mkdir dir1
$ cp hello.txt dir1/f1.txt
$ ls dir1

Section II: Edit Files



Moving/Renaming Files: the mv command

$ mv [source] [target]

$ mv hello.txt save.txt 
$ ls

$ mv save.txt dir1
$ ls
$ ls dir1

Section II: Edit Files

If source is a directory, and…
– target is an existing dir: source directory is moved inside target directory
– target is a new name: source directory is renamed to new name

If source is file, and…
– target is an existing dir: source file is moved inside target directory
– target is a new name: source file is renamed to new name

Exercise:



Deleting Files: the rm command

$ rm [options] [file name]

Commonly used options
-i prompt user before any deletion
-r    remove the contents of directories recursively
-f    ignore nonexistent files, never prompt

-- BE CAREFUL --
YOU CAN PERMANENTLY DELETE EVERYTHING 

“NEVER PROMPT” == NO CONFIRMATION

$ rm world.txt
$ ls

$ rm dir1
$ rm -rf dir1
$ ls

Exercise:

Section II: Edit Files



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



File Transfers Using FileZilla
The FileZilla Client:

1) Available on Windows, OS X, and UNIX/Linux
2) Allows permissions to be preserved or implied 
3) Easy to use without previous experience 

Download from:
https://filezilla-project.org

Connect with remote login

Drag and drop files

Section III: Transfer Files



File Transfers Using FileZilla

Section III: Transfer Files

Local 
Directories

(TAMU H-Drive)

Remote 
Directories
(Ada Home)



File Transfers Using FileZilla

Section III: Transfer Files

Local 
Directories

(TAMU H-Drive)

Remote 
Directories

(Ada Scratch)



For file fileB under /home/user2/verifyOLD:
– The absolute (full) pathname is:   /home/user2/verifyOLD/fileB
– The relative pathname is:  verifyOLD/fileB if the current working directory is /home/user2/

/

bin/etc/ scratch/ sbin/home/

user1/
user2/ user3/

fileA abaqus_dir/ verifyOLD/

fileA fileB

Absolute vs Relative Path

Section III: Transfer Files



Transfer Files Using scp

$ scp [[user@]host1:]filename1 [[user@]host2:]filena2

$ scp myfile1 user@ada.tamu.edu
$ scp myfile1 user@ada.tamu.edu:/scratch/user/[NetID]
$ scp user@ada.tamu.edu:myfile2 ~/Desktop/newFileName
$ scp -r user@ada.tamu.edu:dir3 local_dir/  (recursive)

The scp command allows transfers to remote locations without using a GUI. 

Destination must be addressable.
A server is addressable – You can connect to it. You know the IP or hostname.
Your laptop might not be – No public IP? Firewall? Router?

Section III: Transfer Files



Section I
Connect
Navigate

View Files

Overview
Section II
Directories
Attributes
Edit Files

Section III
Transfer Files

Processes
Signals

Section IV
Bash

Environment
Redirects & Pipes

Section V
Other Topics



Process: A program that is loaded into memory and executed
Program: Machine readable code (binary) that is stored on disk

Processes, ps, and top

The ps command shows currently running processes.

$ ps [options]

The top command displays real-time system resources usage.

$ top [options]

Section III: Processes



Part I
Connect
Navigate

View Files

Overview
Part II

Directories
Attributes
Edit Files

Part III
Transfer Files

Processes
Signals

Part IV
Bash

Environment
Redirects & Pipes

Part V
Other Topics



A signal is a notification to a process that some event has occurred.

Process Communication Using Signals

Various conditions can generate signals.  Some of them include:
– The kill command
– Certain terminal characters (e.g. ^C is pressed)
– Certain hardware conditions (e.g. the modem hangs)
– Certain software conditions (e.g. division by zero)

After a process terminates, it returns an exit status to the parent process.

The exit status is an integer between 0 and 255.
– Exit status 0 usually means successful execution
– Non-zero exit status means some failure
– Exit status 127 usually means “command not found”
– If command dies due to a fatal signal, status is 128 + sig #

Section III: Signals



The kill Command

kill can generate any type of signal, not just “kill” signals

$ kill [signal name] pid

The kill command can generate a signal to the process specified by a PID.

$ kill -l

The kill -l command lists all the signal names available.

$ kill -9 pid

The kill -9 command sends the (un-interruptible) kill signal.

Section III: Signals



Part I
Connect
Navigate

View Files

Overview
Part II

Directories
Attributes
Edit Files

Part III
Transfer Files

Processes
Signals

Part IV
Bash

Environment
Redirects & Pipes

Part V
Other Topics



The shell is command language interpreter that executes commands.
Commands can be read from stdin (keyboard) or from a file (script). 

What is a Shell?

There are several variants of shell.  Our clusters use Bash.
Bash has a number of start-up files that are used to initialize the shell.

Initialization differs depending on whether the shell is a login shell, an interactive 
shell, or a non-interactive shell.

In general:
– When a user logs on, /etc/profile is sourced
– If it exists, ~/.bash_profile is sourced
– If .bash_profile doesn’t exist, but a .bash_login file does exist, it is sourced
– If even the .bash_login doesn’t exist, but a .profile does exist, it is sourced

Section IV: Bash



Part I
Connect
Navigate

View Files

Overview
Part II

Directories
Attributes
Edit Files

Part III
Transfer Files

Processes
Signals

Part IV
Bash

Environment
Redirects & Pipes

Part V
Other Topics



Shell Variables

There are two types of variables: local and environment
– Local: known only to the shell in which they are created  
– Environment: available to any child processes spawned from the shell from which 

they were created

Variable names must begin with an alphabetic or underscore character.  
The remaining characters can be alphanumeric or an underscore.

Shell variables are name-value pairs created and maintained by the shell.

$ HELLO=“Hello World!”

Variable values can be extracted by suffixing the name with “$”

$ echo $HELLO

Section IV: Environment



$ export NAME="user_NetID"

Environment Variables
Environment variables can be thought of as global variables.

The export command makes variables available to child processes.

Some environment variables are set by the system upon login.

The export –p and env commands can be used to see the current variables.

$ export -p

$ env

Section IV: Environment



Part I
Connect
Navigate

View Files

Overview
Part II

Directories
Attributes
Edit Files

Part III
Transfer Files

Processes
Signals

Part IV
Bash

Environment
Redirects & Pipes

Part V
Other Topics



There are times when the user wants to read input from a source and/or send 
output to a destination outside these standard channels.

When an interactive shell starts, it inherits 3 I/O streams from the login program:
– stdin normally comes from the keyboard (fd 0)
– stdout normally goes to the screen (fd 1)
– stderr normally goes to the screen (fd 2)

I/O Redirection

This can be accomplished using I/O redirection.

$ echo “Hello!” > myTextFile.txt

Section IV: Redirects & Pipes



< redirects input
> redirects output
>> appends output
<< input from here document
2> redirects error
&> redirects output and error
>& redirects output and error
2>&1 redirects error to where output is going
1>&2 redirects output to where error is going

Redirection Operators

Section IV: Redirects & Pipes



Pipes
A pipe takes the output of one command and sends it to another.

$ who > tmp
$ wc -l tmp
38 tmp
$ rm tmp

(using a pipe saves disk space and time)

$ who | wc -l
38
$ du . | sort -n | sed -n '$p'
84480   .

“Left-Out is sent Right-In”
This can be done multiple times in a “pipeline”

Section IV: Redirects & Pipes



Part I
Connect
Navigate

View Files

Overview
Part II

Directories
Attributes
Edit Files

Part III
Transfer Files

Processes
Signals

Part IV
Bash

Environment
Redirects & Pipes

Part V
Other Topics



Aliases
An alias is a bash user-defined abbreviation for a command.

Aliases help simplify long commands or difficult syntax.

Aliases set at the command line are not inherited by subshells.  
They are normally set in the ~/.bashrc initialization file.

Section V: Other Topics



Aliases

$ alias
alias co=‘compress’
alias cp=‘cp -i’
alias mroe=‘more’ 

$ alias co=compress
$ alias cp=‘cp -i’
$ alias m=more
$ alias mroe=‘more’

$ unalias mroe
$ \ls

The unalias command deletes an alias. 
The \ character can be used to temporarily turn off an alias.

The alias built-in command lists all aliases that are currently set.

The alias command is also used to set an alias.

Section V: Other Topics



The ‘source’ and Dot Commands

The source command is a built-in bash command and the ‘.’ is simply another name for it.

Both commands take a script name as an argument.  The script will be executed in the 
context of the current shell.  All variables, functions, aliases set in the script will become a 
part of the current shell’s environment.

$ source .bash_profile
$ . .bash_profile

Section V: Other Topics



The find Command

$ find [target dir] [expression]

$ find . -name "*.txt" -print

$ find . -newer results4.dat -name "*.dat" -print

$ find /scratch/user_NetID -mtime +2  -print

$ find /scratch/user_NetID -mtime -7  -print

$ find /tmp -user user_NetID -print

Section V: Other Topics



Comparing Files – diff and cmp

$ diff [options] FILES

# basic example

$ diff file1 file2

# side by side comparison (long line truncated):

$ diff -y file1 file2

# side by side comparison with screen width of 180 characters

$ diff -y -W 180 file1 file2

$ cmp file1 file2

Section V: Other Topics



grep – Search pattern(s) in files 
$ grep [options] PATTERN [FILES ...]

# basic example

$ grep GoodData mydata.txt

# search multiple matches

$ grep -e GoodData -e Important mydata.txt

# excluding a pattern; show non-matched lines

$ grep -v NG mydata.txt

$ cat mydata.txt | grep GoodData
$ grep -v junk mydata.txt | grep -v NG
$ grep -e "^OUTPUT" mydata.txt

Section V: Other Topics



Used to “package” multiple files (along with directories if any) into one file 
suffixed with a .tar  suffix by convention.

Commonly used options:
x extract files from a tar
c create a new tar
t list the contents of a tar
v verbosely list files processed
f use the specified tar file
z the tar file is compressed

$ tar [options] [tar file] [file or dir name]

The tar Command

Section V: Other Topics



The backslash (\) is used to escape a single character from interpretation.

$ echo Where are you going\?
Where are you going?
$ echo \\
\
$ echo '\\'
\\
$ echo '\$5.00'
\$5.00
$ echo "\$5.00"
$5.00
$ echo 'Don\'t you need $5.00?"
>
>'
Don\t you need .00?

The Backslash

Section V: Other Topics



Single quotes protect all metacharacters from interpretation.  To print a single quote, it must 
be enclosed in double quotes or escaped with a backslash.

$ echo 'hi there
> how are you?
> when will this end?
> when the quote is matched
> oh'
hi there
how are you?
when will this end?
when the quote is matched
oh
$ echo Don\'t you need '$5.00?'
Don't you need $5.00?
$ echo 'Mother yelled, "Time to eat!"'
Mother yelled, "Time to eat!"

Section V: Other Topics

Single Quotes



Double quotes allow variable and command substitution, and protect any other 
metacharacters from interpretation by the shell.

$ name=user_NetID
$ echo “Hi $name, I’m glad to meet you!”
Hi user_NetID, I’m glad to meet you!
$ echo “Hey $name, the time is $(date)”
Hey user_NetID, the time is Mon Sep 13 12:15:34 CDT 2004

Double Quotes

Section V: Other Topics



References

Here are some slides from TACC and LSU on the similar subject.

Linux/Unix Basics for HPC:  October 9, 2014 (with video) [TACC]
https://portal.tacc.utexas.edu/-/linux-unix-basics-for-hpc

Express Linux Tutorial: Learn Basic Commands in an Hour [TACC]
https://portal.tacc.utexas.edu/c/document_library/get_file?uuid=ed6c16e9-bcbc-4b70-9311-
5273b09508b8&groupId=13601

Introduction to Linux for HPC [LSU]
http://www.hpc.lsu.edu/training/weekly-materials/2015-Fall/intro-linux-2015-09-02.pdf


