
High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Working on HPC Systems

Wes Brashear
Wednesday, 26 February 2025

PACES Research Training Workshop

1

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Outline

● HPC Architecture
● Bash Command Syntax
● Managing Directories and Files
● Useful Commands and Tools
● Job Orchestration

○ Submitting Jobs
○ Interactive sessions

2

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

HPC Architecture

Interconnect

Login node Login node Data Transfer Node

Compute
node

Compute
node

Compute
node

Compute
node (High

Memory)
Compute

node (GPU)

USER USER

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Shell Access via the Portal: Logging In

When you first log in,
you’re on a dedicated login
node.

(check your shell prompt to
see which one you’re on)

Login nodes are not
for running big
processes!
There are rules:
● No processes

longer than 1 hr
● Sessions idle for 1

hr will be killed
● Don’t use more

than 8 cores
● Don’t use “sudo”

4

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356 5

ACES Access - Portal

● Navigate from
HPRC homepage

● Login via ACCESS
● Open-OnDemand

Portal

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356 6

Shell Access via the Portal

Get a shell terminal
right in your browser

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Bash Command Syntax
When a command is typed at the prompt, the Shell processes the
command and sends it to the Linux kernel.
● Linux commands are case-sensitive
● Command line structure: Command [options] [arguments]

○ Example: [netid@grace1 ~] : ls -al /home/user/dir_name
● [netid@grace ~] : is the prompt
● ls is a command

○ list all the files in the current directory
● -al are options

○ options typically starts with dash, changes the way
commands work

● /home/user/dir_name is an argument
○ arguments - input given to a command to process

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

File Hierarchy Structure

8

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Navigating the File System
● Most Linux file systems are case-sensitive.

● pwd - prints your current working directory

● cd - changes to your home directory (change directory)

● cd name - change directory to name

○ absolute pathnames (start with a forward slash /)

● cd /home/chris/docs
○ relative pathnames (do NOT start with a /)

● . current directory

● .. parent directory

● ~ home directory

9

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Listing Files & Directories
Printing directory contents to the screen

○ ls - lists contents of working directory
○ ls dirname - lists the contents of the directory specified by dirname
○ ls -aCFl

● flags

○ -a print all files including hidden files
○ -l print long listing
○ -C list entries by columns
○ -F print a special character after special files
○ to find all possible flags, use the command: man ls

○ tree - recursive directory listing

10

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

File & Directory Names

● Do NOT use spaces in the file name
○ ("my data file.txt" vs "my_data_file.txt").

● File and directory names are case sensitive
● Avoid creating files on your Windows computer and

copying to Linux especially with spaces in the file
name

Commonly used:
A-Z
a-z
0-9
.
- dash
_ underscore

Do NOT use:
spaces or tabs

() parenthesis
" ' quotes
? Question mark
$ Dollar sign
* Asterisk
\ back slash
/ forward slash
: colon
; semi-colon
 ampersand
@ & [] ! < >

11

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Managing Files & Directories: mkdir
● Making a directory (dir)

○ mkdir dirname (creates a directory in the current dir)
○ mkdir tmp (creates the directory tmp in the current dir)
○ mkdir ~/tmp (creates the directory tmp in your home dir)
○ mkdir /home/netid/tmp (creates the directory tmp in /home/netid)

12

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Managing Files and Directories: mv
● Rename a directory

○ mv olddirname newdirname
● Renaming a file

○ mv oldfilename newfilename (note: new cannot be a directory name) You
need to specify the location of oldfilename and newfilename. This command
specifies the oldfilename and newfilename are in the current directory
because there is nothing in front of the names.

● Move a file into a new directory
○ mv filename dirname (note: dirname must be a directory that already exists.)
○ retains the filename but moves it to the directory dirname
○ You can rename the file while moving it to a new directory:

 mv oldfilename dirname/newfilename
● Safe mv

○ mv -i oldfilename newfilename
○ -i is a flag that modifies the way mv behaves. In this case –i tells the command

to prompt you for permission if you are about to overwrite a file.

13

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Managing Files and Directories: cp
● Making a copy of a file

○ cp oldfilename newfilename
● Makes a copy of the file named oldfilename and names it

newfilename in the current directory
● Note: newfilename cannot be the name of a directory

● Copying a file to a new directory
○ cp filename dirname

● Makes a copy of the file named filename to the directory
named dirname

● Note: dirname must already exist
● Safe copy

○ cp -i oldfilename newfilename
● will prompt you if you are about to overwrite a file named

newfilename

14

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Managing Files and Directories: cp

● Copying a directory
○ cp -R olddirname newdirname

● Makes a complete copy of the directory named olddirname
including all of its contents, and names it newdirname in the
current directory

● the -R flag makes the copying of directories recursive
● Note: newdirname cannot be the name of a directory that

already exists
15

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Managing Files and Directories: rm
● Deleting a file

○ rm filename
● Deletes the file named filename

● Safe delete
○ rm -i filename

● will prompt you for confirmation before deleting filename
● Deleting a directory

○ rmdir dirname
● Deletes an empty directory named dirname

○ rm -r dirname
● removes the directory named dirname and all of its contents.

● Warning! Once a file is deleted or overwritten it is gone. Be VERY careful when
using wildcards (we’ll talk about these later). rm -r * will remove everything from
that directory and down the hierarchy!

16

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

17

● Change to your home directory

● Print your current working directory

● List contents of the current directory including hidden files

● Make two directories named temp1 and temp2 in your current directory

● Show the current directory hierarchy using the tree command

Exercise: Directories & Files

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

● Change to your home directory

● Print your current working directory

● List contents of the current directory including hidden files

● Make two directories named temp1 and temp2 in your current directory

● Show the current directory hierarchy using the tree command

Solution: Directories & Files

18

pwd

mkdir temp1
mkdir temp2

cd

ls -a

tree

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

ls -l lists the files in the dir in long format
 Note: the flag is the letter l and not the number 1

Example output: -rwxr-xr-- 1 training lms 30 Oct 28 13:16 Molden

 number of hard links
 name of the file owner
 name of the group ID
 file size in bytes
 time the file was last

modified

filename

File Attributes

19

ls -l

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

File Attributes

 -rwx r-x r-- 1 training lms 30 Oct 28 13:16 Molden

groups of 3 for user, group, & others
 r permission to read
 w permission to write
 x permission to execute
 - permission is denied

leading character
- text
d directory
 l link

user other

group

Example:
-rwxr-xr-- 1 training lms 30 Oct 28 13:16 Molden
User has read, write and executable permission
Group has read and executable permission but not write
permission
Other has read permission but not write or executable permission

20

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Permissions

● chmod u+x filename (or dirname)
○ adds executable permission for the user

● chmod og-r filename (or dirname)
○ removes read permission for group and others

● chmod -R a+rx dirname
○ gives everyone read and executable permission from

dirname and down the hierarchy
● chmod u=rwx filename

○ sets the permission to rwx for the user
● chmod g= filename

○ sets the permission to --- for the group
● You can also use numbers

○ r = 4, w = 2, and x = 1, --- = 0
○ chmod 755 filename (result -rwxr-xr-x)
○ chmod 600 filename (result -rw-------)

--- 0
--x 1
-w- 2
-wx 3
r-- 4
r-x 5
rw- 6
rwx 7

21

To change the read, write and executable permission for users (u), group (g), others (o) and all (a)

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Displaying the Contents of a File

Printing ASCII (text) file contents to the screen

● less filename
● more filename
● cat filename
● cat -A filename

○ shows hidden characters

22

● head -n filename
○ n is an integer
○ displays the first n lines

● tail -n filename
○ displays the last n lines

● tail -f filename
○ Displays the last 10 lines of

a file and waits for new
lines, ctrl-c (^c) to exit.

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Useful Commands & Tools

23

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Searching File Contents
grep search-pattern filename - searches the file filename for the pattern
search-pattern and shows the results on the screen (prints the results to standard
out).

○ grep Energy run1.out
● searches the file run1.out for the word Energy
● grep is case sensitive unless you use the -i flag

○ grep Energy *.out
● searches all files that end in .out

○ grep "Total Energy" */*.out
● You must use quotes when you have blank spaces. This

example searches for Total Energy in every file that ends in
.out in each directory of the current directory

○ grep –R "Total Energy" Project1
● Searches recursively all files under Project1 for the pattern Total Energy

24

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Searching File Contents
 egrep 'pattern1|pattern2|etc' filename

○ searches the file filename for all patterns (pattern1, pattern2, etc) and
prints the results to the screen.

○ The | character is called a pipe and is normally located above the return
key on the keyboard.

○ egrep 'Energy|Enthalpy' *.out
● searches for the word Energy or Enthalpy in every file that

ends in .out in the current directory.

25

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Redirecting Input and Output
● > Redirects output

● command>outputfilename
●

● >> symbol appends to the end of the file instead of
overwriting it.

● < Redirects input
● program<inputfile
● g16<run1.com
● output would go to standard out (stdout)

● Redirecting input and output together and running in the background
○ program<inputfilename>outputfilename&
○ g16<run1.com>run1.log&

26

ls -al>list-of-files.txt

ls -al>>list-of-files.txt

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Pipes
Pipes |
● takes the output of one command and sends it to another
● ls | more
● ls | less

○ List the files one page at a time
● grep Energy run1.out | grep HF
● grep Energy run1.out | grep HF > HF_output.txt

○ Searches a file named run1.out for the word Energy and then searches for
the word HF in the lines that have the word Energy. The resulting
information is then sent to a file named HF_output.txt 27

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

history, !, ↑, ↓
● history

○ The history command will list your last n commands (n = integer).
!! repeats your last command
!n repeats the nth command
!name repeats the last command that started with name

● You can use the up (↑) and down (↓) arrow keys to scroll through previous
commands

● Examples:
○ history | grep wget

search history commands that contains wget
○ history | tail
see the last 10 commands

28

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Using Tab for Autocompletion
Tab will try to complete the rest of the file/directory name you are typing

Example:

Type the first few characters of the file name

29

 ls my

Then hit the tab key to autocomplete the file name

 ls my_favorite_foods.txt

Then hit enter to see the command results

If the tab key did not complete the file name then either the file does not exist
or there are two or more files that begin with the same characters in which
case you need to hit tab twice then type a few more characters and hit tab
again to complete.

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Slurm SBATCH Parameters

30

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Slurm Job Script Example
#!/bin/bash
#SBATCH --job-name=spades # keep job name short with no spaces
#SBATCH --time=1-00:00:00 # request 1 day; Format: days-hours:minutes:seconds
#SBATCH --nodes=1 # request 1 node
#SBATCH --ntasks-per-node=1 # request 1 task (command) per node
#SBATCH --cpus-per-task=1 # request 1 cpu (core, thread) per task
#SBATCH --mem=5G # request 5GB total memory per node
#SBATCH --output=stdout.%x.%j # save stdout to a file with job name and JobID appended to file name
#SBATCH --error=stderr.%x.%j # save stdout to a file with job name and JobID appended to file name

unload any modules to start with a clean environment
module purge
load software modules
module load GCC/11.3.0 SPAdes/3.15.5
run commands
spades.py -1 s22_R1.fastq.gz -2 s22_R2.fastq.gz -o s22_out --threads 1

● Always include the first line exactly as it is; no trailing spaces or comments.
● Slurm job parameters begin with #SBATCH and you can add comments afterwards as above.
● Name the job script whatever you like, but be consistent to make it easier to search for job scripts.

○ my_job_script.job
○ my_job_script.sbatch
○ run_program_project.sh
○ job_program_project.slurm

31

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

● --nodes
○ number of nodes to use where a node is one computer unit of many in an HPC cluster

■ --nodes=1 # request 1 node
○ used for multi-node jobs

■ --nodes=10
○ if number of cpus per node is not specified then defaults to 1 cpu
○ can be used with --ntasks or --ntasks-per-node

● --ntasks
○ a task can be considered a command such as blastn, bwa, script.py, etc.
○ --ntasks=1 # total tasks across all nodes where each task is scheduled a max of 1 cpu
● when using --ntasks > 1 without --nodes=1, the job might be scheduled on multiple compute nodes

● --ntasks-per-node
○ use together with --cpus-per-task
○ --ntasks-per-node=1

● --cpus-per-task
○ number of CPUs (cores) for each task (command)
○ --cpus-per-task=96

 spades.py --threads 96

one task 96 cpus

32

Commonly Used Slurm SBATCH Parameters

either --ntasks, --ntasks-per-node or --nodes needs to be provided.

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Commonly Used Slurm SBATCH Parameters
● --time

○ max runtime for job (required); format: days-hours:minutes:seconds (days- is optional)
○ --time=24:00:00 # set max runtime 24 hours (same as --time=1-00:00:00)
○ --time=7-00:00:00 # set max runtime 7 days

● --mem
○ total memory for each node (required)
○ --mem=488G # request 488GB total memory (max available for 512gb nodes)

● --job-name
○ set the job name; keep it short and concise without spaces (optional but highly recommended)
○ --job-name=myjob

● --output
○ save all stdout to a specified file (optional but highly recommended for debugging)
○ --output=stdout.%x.%j # saves stdout to a file named stdout.jobname.JobID

● --error
○ save all stderr to a specified file (optional but highly recommended for debugging)
○ --error=stderr.%x.%j # saves stderr to a file named stderr.jobname.JobID
○ use just --output to save stdout and stderr to the same output file: --output=output.%x.%j.log

● --partition
○ specify a partition (queue) to use (optional, use as needed)
○ partition is automatically assigned to cpu so you don't need --partition unless you want to use accelerators.

■ need to specify --partition parameter to use gpu, bittware, memverge, nextsilicon, pvc

33

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Commonly Used Optional Slurm Parameters
● --gres

○ used for requesting 1 or more GPUs; use GPU type in lowercase
○ use gpuavail command to see number of GPUs per compute node
○ --gres=gpu:h100:1 # request 1 H100 GPU; use replace :1 with :2 for two GPUs, etc
○ --partition=gpu # also include this line when requesting GPUs

● --account
○ specify which account to use; use myproject to see your accounts
○ --account=ACCOUNTNUMBER
○ default account from myproject output is used if not specified

● --mail-user
○ --mail-user=myemail@myuniversity.edu

● --mail-type
○ send email per job event: BEGIN, END, FAIL, ALL
○ --mail-type=ALL

● --dependency
○ schedule a job to start after a previous job successfully completes
○ --dependency=afterok:JobID

■ get the JobID of the previous job with squeue --me

34

High Performance Research Computing | hprc.tamu.edu | NSF # 2417929 & 2112356

Submitting Slurm Jobs
● A job script is a text file of Unix commands with #SBATCH parameters.
● #SBATCH parameters provide resource configuration request values.

○ time, memory, nodes, cpus, output files, ...
● Jobs can be submitted using a job script or directly on the command line.

○ start time depends on available resources
● Submit the job using sbatch command with the job script name.

○ Your job script provides a record of commands used for an analysis.
○ sbatch job_script.sh

● Submit command on the command line by specifying all necessary parameters.
○ sbatch -t 01:00:00 -n 1 -J myjob --mem 4G -o stdout.%j commands.sh

● You can start an interactive job on the command line using the srun command instead of
sbatch. Your srun job ends when you exit the terminal.

○ Do not to use more than the requested memory and CPUs when your srun job starts.
○ srun --time=04:00:00 --mem=4G --ntasks=1 --cpus-per-task=1 --pty bash

slurm.schedmd.com/sbatch.html

35

sbatch my_job_script.job

sbatch -t 01:00:00 -n 1 -J myjob --mem 5G -o stdout.%j commands.sh

srun --time=04:00:00 --mem=5G --ntasks=1 --cpus-per-task=1 --pty bash

http://slurm.schedmd.com/sbatch.html

