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Leveraging the power of vector and matrix operations }

Addressing bottlenecks

Generating and incorporating C code

Utilizing additional processing power

Summary
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Example: Block Processing Images

= Evaluate function at grid points

- Reevaluate function o ey — -
over larger blocks
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- Evaluate code performance
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Summary of Example

Used built-in timing functions

>> tic
>> toc

Used MATLAB Code Analyzer

to find suboptimal code
Preallocated arrays

Vectorized code
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Effect of Not Preallocating Memory

>> X
>> x(2)
>> x(3)
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Benefit of Preallocation

>> x = zeros(3,1)
>> x(1) = 4
>> x(2) =7
>> x(3) = 12
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MATLAB Underlying Technologies

= Commercial libraries

— BLAS:Basic Linear Algebra
Subroutines (multithreaded)

— LAPACK: Linear Algebra Package
— etc.

= JIT/Accelerator
— Improves looping
— Generates on-the-fly multithreaded code
— Continually improving
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Other Best Practices

« Minimize dynamically changing path

>> addpath(..) g instead of cd(..)
>> fullfile(..) ]

= Use the functional load syntax
>> x = load('myvars.mat')

X =

a: 5 \Qiinnﬂeadcﬁ load('myvars.mat')}
b: 'hello'

= Minimize changing variable class
> x = 1;

>> xnew = 'hello’; \Linstead of x = 'hello'; }




Agenda

= Leveraging the power of vector and matrix operations

[- Addressing bottlenecks }

= Generating and incorporating C code
= Utilizing additional processing power

= Summary
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Example: Fitting Data

Load data from multiple files

Extract a specific test

Fit a spline to the data

Write results to Microsoft Excel
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Summary of Example

Used profiler to analyze code

Targeted significant bottlenecks

Reduced file I/0O

Reused figure
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Interpreting Profiler Results

= Focus on top bottleneck
— Total number of function calls
— Time per function call

= Functions
— All function calls have overhead
— MATLAB functions often take vectors or matrices as inputs

— Find the right function — performance may vary
= Search MATLAB functions (e.g., textscan vs. textread)

=  Write a custom function (specific/dedicated functions may be faster)
= Many shipping functions have viewable source code
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Classes of Bottlenecks

- File I/O

— Disk is slow compared to RAM

— When possible, use 1oad and save commands
= Displaying output

— Creating new figures is expensive

— WIriting to command window is slow

- Computationally intensive
— Use what you’ve learned today
— Trade-off modularization, readability and performance

— Integrate other languages or additional hardware
= e.g. MEX, GPUs, FPGAs, clusters, etc.
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Steps for Improving Performance

= First focus on getting your code working
« Then speed up the code within core MATLAB

= Consider other languages (i.e. C MEX files) and additional processing
power
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Agenda

= Leveraging the power of vector and matrix operations

= Addressing bottlenecks

[- Generating and incorporating C code }

= Utilizing additional processing power

= Summary
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Why engineers and scientists translate MATLAB to C today?

@ b Integrate MATLAB algorithms w/ existing C environment
using source code and static/dynamic libraries

@ oxe Prototype MATLAB algorithms on desktops as
standalone executables

[ MEX Accelerate user-written MATLAB algorithms J

Implement C code on processors or hand-off to
<3 oo software engineers

4\ MathWorks
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Automatic Translation of MATLAB to C

Algorithm Design and
Code Generatonin
MATLAB acelliy / &\ VEX
e

With MATLAB Coder, design engineers can

« Maintain one design in MATLAB
» Design faster and get to C quickly
» Test more systematically and frequently

» Spend more time improving algorithms in MATLAB

4\ MathWorks
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Acceleration using MEX

- Speed-up factor will vary

= When you may see a speedup
— Often for Communications and Signal Processing
— Always for Fixed-point

— Likely for loops with states or when vectorization isn’t possible
= When you may not see a speedup

— MATLAB implicitly multithreads computation
— Built-functions call IPP or BLAS libraries

20
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Agenda

Leveraging the power of vector and matrix operations

Addressing bottlenecks

Generating and incorporating C code

)
]

Utilizing additional processing power }

= Summary
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Going Beyond Serial MATLAB Applications

MATLAB
Desktop (Client)

4\ MathWorks
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Parallel Computing Toolbox for the Desktop

Desktop Computer

= Speed up parallel applications

- Take advantage of GPUs

= Prototype code for your cluster

MATLAB
Desktop (Client)

‘ MathWorks:
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Scale Up to Clusters and Clouds

Desktop Computer

MATLAB |l~
Desktop (Client) _n

Computer Cluster

‘ MathWorks:
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Parallel Computing enables you to ...

N Larger Compute Pool ‘ Larger Memory Pool
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Programming Parallel Applications
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Programming Parallel Applications (CPU)

= Built-in support with toolboxes
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Tools Providing Parallel Computing Support

Optimization Toolbox
Global Optimization Toolbox

Statistics Toolbox #\ 4 4
Signal Processing Toolbox “\

Neural Network Toolbox el
Image Processing Toolbox

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.htmi

Directly leverage functions in Parallel Computing Toolbox

www.mathworks.com/builtin-parallel-support

4\ MathWorks
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Programming Parallel Applications (CPU)

= Built-in support with toolboxes

= Simple programming constructs:
parfor, batch, distributed
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Independent Tasks or Iterations

= Ideal problem for parallel computing
= No dependencies or communications between tasks

Examples: parameter sweeps, Monte Carlo simulations
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blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/
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Example: Parameter Sweep of ODEs
Parallel for-loops

= Parameter sweep of ODE system
— Damped spring oscillator

— Sweep through different values
of damping and stiffness

— Record peak value for each
simulation

= Convert for to parfor

= Use pool of MATLAB workers

Peak Response

A\
1.8 A\

Damping (b)
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Stiffness (k)

4\ MathWorks

31



Programming Parallel Applications (CPU)

= Built-in support with toolboxes

= Simple programming constructs:
parfor, batch, distributed
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createdJob, labSend, spmd

= Advanced programming constructs:

4\ MathWorks
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Performance Gain with More Hardware

Using More Cores (CPUSs)

Using GPUs
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Programming Parallel Applications (GPU)

= Built-in support with toolboxes

= Simple programming constructs:
gpulArray, gather

= Advanced programming constructs:
arrayfun, spmd
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= |nterface for experts:
CUDAKernel, MEX support

www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu

www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code

4\ MathWorks
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Use MATLAB Distributed Computing Server

Desktop Computer 1.

'Y 2

MATLAB MATLAB |I
\ code

Desktop (Client

Profile
(Local)

Prototype code

‘ MathWorks:
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Use MATLAB Distributed Computing Server

Computer Cluster 1.

2.

Scheduler

Profile
(Cluster)

Get access to an
enabled cluster

‘ MathWorks:
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Use MATLAB Distributed Computing Server

Desktop Computer Computer Cluster 1.

Cluster

MATLAB |I MATLAB |I
code code

Desktop (Client)
Profile
(Local)

3.  Switch cluster
profile to run on
cluster resources

Profile
(Cluster)
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Take Advantage of Cluster Hardware

= Offload computation:
— Free up desktop
— Access better computers

= Scale speed-up:
— Use more cores
— Go from hours to minutes

= Scale memory:
— Utilize distributed arrays
— Solve larger problems without re-coding algorithms

Computer Cluster
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Offloading Computations

= Send desktop code to cluster resources
— No parallelism required within code
— Submit directly from MATLAB

- Leverage supplied infrastructure
— File transfer / path augmentation
— Job monitoring
— Simplified retrieval of results

= Scale offloaded computations

MATLAB
code

Computer Cluster
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Scheduler
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Offload Computations with batch

Work

MATLAB —
Desktop (Client) C—

Result

batch(...)

‘ MathWorks:
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Offload and Scale Computations with batch

Work

MATLAB —
Desktop (Client) C—

Result

batch(.., 'Pool',..)

‘ MathWorks:
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Distributing Large Data

MATLAB

Desktop (Client)

Remotely Manipulate Array
from Client

Distributed Array
Lives on the Workers

‘ MathWorks:
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Distributed Arrays and SPMD

= Distributed arrays
— Hold data remotely on workers running on a cluster
— Manipulate directly from client MATLAB (desktop)
— Use MATLAB functions directly on distributed arrays

= www.mathworks.com/help/distcomp/using-matlab-functions-on-codistributed-arrays

= spmd
— Execute blocks of code on workers
— Explicitly communicate between workers with message passing
— Mix parallel and serial code in same program

&\ MathWorks’
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TAMU HPRC MATLAB Resources

Why use MATLAB on HPRC clusters?

Long running Matlab scripts

Large memory requirements
> At least 64GB per node, up to 2TB
> Distribute data over multiple nodes

Utilizing Matlab parallel toolbox
> Start up to 28 Matlab workers per
node
> Start Matlab workers on multiple
nodes

Utilizing Matlab GPU capabilities
> 48 nodes with dual K80 gpus on
terra
> 30 nodes with dual K40 gpus on
ada

>
>

Who can use HPRC resources?

All A&M students/staff/faculty
Apply for account at:
hprc.tamu.edu/accounts/apply/

What HPRC offers

Latest versions of Matlab
Matlab Distributed Computing

Server (MDCS) license

> Currently 96 tokens
> Distribute workers over nodes

Assistance parallelizing code
Consulting

Framework to run parallel code
HPRC Matlab App

> Submit Matlab jobs from your own
desktop/laptop

Y VYV
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MATLAB OPTIONS BATCH OPTIONS

High Performance Research Computing -- http://hprc.tamu.edu

A.F' Texas A&M University  High Performance Research Computing — http://hprc.tamu.edu
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45



Key Takeaways

Consider performance benefit of vector and matrix
operations in MATLAB

= Analyze your code for bottlenecks and address most
critical items

- Leverage MATLAB Coder to speed up applications
through generated C/C++ code

= Leverage parallel computing toolsto take advantage of
additional computing resources

4\ MathWorks
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Accelerating the pace of engineering and science
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