
1© 2017 The MathWorks, Inc.

Optimizing and Accelerating MATLAB Code

Tom McHugh Account Manager

Saket Kharsikar Application Engineer

2

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

3

Example: Block Processing Images

 Evaluate function at grid points

 Reevaluate function

over larger blocks

 Compare the results

 Evaluate code performance

4

Summary of Example

 Used built-in timing functions

>> tic

>> toc

 Used MATLAB Code Analyzer

to find suboptimal code

 Preallocated arrays

 Vectorized code

5

Effect of Not Preallocating Memory

>> x = 4

>> x(2) = 7

>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4 4

4

7

4

7

4

7

12

X(3) = 12X(2) = 7

6

Benefit of Preallocation

>> x = zeros(3,1)

>> x(1) = 4

>> x(2) = 7

>> x(3) = 12

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0

0

0

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

0x0000

0x0008

0x0010

0x0018

0x0020

0x0028

0x0030

0x0038

4

0

0

4

7

0

4

7

12

8

MATLAB Underlying Technologies

 Commercial libraries

– BLAS:Basic Linear Algebra

Subroutines (multithreaded)

– LAPACK: Linear Algebra Package

– etc.

 JIT/Accelerator

– Improves looping

– Generates on-the-fly multithreaded code

– Continually improving

9

Other Best Practices

 Minimize dynamically changing path
>> addpath(…)

>> fullfile(…)

 Use the functional load syntax
>> x = load('myvars.mat')

x =

a: 5

b: 'hello'

 Minimize changing variable class
>> x = 1;

>> xnew = 'hello';

instead of cd(…)

instead of load('myvars.mat')

instead of x = 'hello';

11

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

12

Example: Fitting Data

 Load data from multiple files

 Extract a specific test

 Fit a spline to the data

 Write results to Microsoft Excel

13

Summary of Example

 Used profiler to analyze code

 Targeted significant bottlenecks

 Reduced file I/O

 Reused figure

14

Interpreting Profiler Results

 Focus on top bottleneck

– Total number of function calls

– Time per function call

 Functions

– All function calls have overhead

– MATLAB functions often take vectors or matrices as inputs

– Find the right function – performance may vary

 Search MATLAB functions (e.g., textscan vs. textread)

 Write a custom function (specific/dedicated functions may be faster)

 Many shipping functions have viewable source code

15

Classes of Bottlenecks

 File I/O

– Disk is slow compared to RAM

– When possible, use load and save commands

 Displaying output

– Creating new figures is expensive

– Writing to command window is slow

 Computationally intensive

– Use what you’ve learned today

– Trade-off modularization, readability and performance

– Integrate other languages or additional hardware

 e.g. MEX, GPUs, FPGAs, clusters, etc.

16

Steps for Improving Performance

 First focus on getting your code working

 Then speed up the code within core MATLAB

 Consider other languages (i.e. C MEX files) and additional processing

power

17

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

18

Why engineers and scientists translate MATLAB to C today?

Integrate MATLAB algorithms w/ existing C environment

using source code and static/dynamic libraries

Prototype MATLAB algorithms on desktops as

standalone executables

Accelerate user-written MATLAB algorithms

Implement C code on processors or hand-off to

software engineers

19

Algorithm Design and

Code Generation in

MATLAB

With MATLAB Coder, design engineers can

• Maintain one design in MATLAB

• Design faster and get to C quickly

• Test more systematically and frequently

• Spend more time improving algorithms in MATLAB

Automatic Translation of MATLAB to C

verify /accelerate

ite
ra
te

20

Acceleration using MEX

 Speed-up factor will vary

 When you may see a speedup

– Often for Communications and Signal Processing

– Always for Fixed-point

– Likely for loops with states or when vectorization isn’t possible

 When you may not see a speedup

– MATLAB implicitly multithreads computation

– Built-functions call IPP or BLAS libraries

21

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

22

Going Beyond Serial MATLAB Applications

MATLAB

Desktop (Client)

Worker

Worker

Worker

Worker

Worker

Worker

23

Parallel Computing Toolbox for the Desktop

 Speed up parallel applications

 Take advantage of GPUs

 Prototype code for your cluster

MATLAB

Desktop (Client)

Local

Desktop Computer

24

Scale Up to Clusters and Clouds

MATLAB

Desktop (Client)

Local

Desktop Computer

Cluster

Computer Cluster

Scheduler

25

Parallel Computing enables you to …

Larger Compute Pool Larger Memory Pool

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Speed up Computations Work with Large Data

26

Programming Parallel Applications

E
a

s
e

 o
f

U
s

e

G
re

a
te

r C
o

n
tro

l

27

Programming Parallel Applications (CPU)

 Built-in support with toolboxes
E

a
s

e
 o

f
U

s
e

G
re

a
te

r C
o

n
tro

l

28

Tools Providing Parallel Computing Support

 Optimization Toolbox

 Global Optimization Toolbox

 Statistics Toolbox

 Signal Processing Toolbox

 Neural Network Toolbox

 Image Processing Toolbox

 …
http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html

BLOCKSETS

Directly leverage functions in Parallel Computing Toolbox

www.mathworks.com/builtin-parallel-support

http://www.mathworks.com/products/parallel-computing/builtin-parallel-support.html
http://www.mathworks.com/builtin-parallel-support

29

Programming Parallel Applications (CPU)

 Built-in support with toolboxes

 Simple programming constructs:

parfor, batch, distributed

E
a

s
e

 o
f

U
s

e
G

re
a

te
r C

o
n

tro
l

30

 Ideal problem for parallel computing

 No dependencies or communications between tasks

 Examples: parameter sweeps, Monte Carlo simulations

Independent Tasks or Iterations

TimeTime

blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

http://blogs.mathworks.com/loren/2009/10/02/using-parfor-loops-getting-up-and-running/

31

Example: Parameter Sweep of ODEs
Parallel for-loops

 Parameter sweep of ODE system

– Damped spring oscillator

– Sweep through different values

of damping and stiffness

– Record peak value for each

simulation

 Convert for to parfor

 Use pool of MATLAB workers



  0
,...2,1,...2,1

5

 xkxbxm 

32

Programming Parallel Applications (CPU)

 Built-in support with toolboxes

 Simple programming constructs:
parfor, batch, distributed

 Advanced programming constructs:
createJob, labSend, spmd

E
a

s
e

 o
f

U
s

e
G

re
a

te
r C

o
n

tro
l

33

Core 1

Core 3 Core 4

Core 2

Cache

Performance Gain with More Hardware

Using More Cores (CPUs) Using GPUs

Device Memory

GPU cores

Device Memory

34

Programming Parallel Applications (GPU)

 Built-in support with toolboxes

 Simple programming constructs:
gpuArray, gather

 Advanced programming constructs:
arrayfun, spmd

 Interface for experts:

CUDAKernel, MEX support

E
a

s
e

 o
f

U
s

e
G

re
a

te
r C

o
n

tro
l

www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu

www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code

http://www.mathworks.com/help/distcomp/run-cuda-or-ptx-code-on-gpu
http://www.mathworks.com/help/distcomp/run-mex-functions-containing-cuda-code.html

35

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Profile
(Local)

1. Prototype code

MATLAB

code

36

Use MATLAB Distributed Computing Server

Cluster

Computer Cluster

Scheduler

Profile
(Cluster)

1. Prototype code

2. Get access to an

enabled cluster

37

Use MATLAB Distributed Computing Server

MATLAB

Desktop (Client)

Local

Desktop Computer

Cluster

Computer Cluster

Scheduler

Profile
(Local)

Profile
(Cluster)

MATLAB

code
MATLAB

code

1. Prototype code

2. Get access to an

enabled cluster

3. Switch cluster

profile to run on

cluster resources

38

 Offload computation:

– Free up desktop

– Access better computers

 Scale speed-up:

– Use more cores

– Go from hours to minutes

 Scale memory:

– Utilize distributed arrays

– Solve larger problems without re-coding algorithms

Cluster

Computer Cluster

Scheduler

Take Advantage of Cluster Hardware

MATLAB

Desktop (Client)

39

Offloading Computations

 Send desktop code to cluster resources

– No parallelism required within code

– Submit directly from MATLAB

 Leverage supplied infrastructure

– File transfer / path augmentation

– Job monitoring

– Simplified retrieval of results

 Scale offloaded computations

MATLAB

code

Cluster

Computer Cluster

Scheduler

40

MATLAB

Desktop (Client)

Offload Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…)

41

MATLAB

Desktop (Client)

Offload and Scale Computations with batch

Result

Work

Worker

Worker

Worker

Worker

batch(…,'Pool',…)

42

Distributed Array

Lives on the Workers

Remotely Manipulate Array

from Client

11 26 41

12 27 42

13 28 43

14 29 44

15 30 45

16 31 46

17 32 47

17 33 48

19 34 49

20 35 50

21 36 51

22 37 52

Distributing Large Data

Worker

Worker

Worker

Worker

MATLAB

Desktop (Client)

43

Distributed Arrays and SPMD

 Distributed arrays

– Hold data remotely on workers running on a cluster

– Manipulate directly from client MATLAB (desktop)

– Use MATLAB functions directly on distributed arrays
 www.mathworks.com/help/distcomp/using-matlab-functions-on-codistributed-arrays

 spmd

– Execute blocks of code on workers

– Explicitly communicate between workers with message passing

– Mix parallel and serial code in same program

http://www.mathworks.com/help/distcomp/using-matlab-functions-on-codistributed-arrays.html

Texas A&M University High Performance Research Computing – http://hprc.tamu.edu

TAMU HPRC MATLAB Resources

 Latest versions of Matlab
 Matlab Distributed Computing

Server (MDCS) license
 Currently 96 tokens
 Distribute workers over nodes

 Assistance parallelizing code
 Consulting
 Framework to run parallel code
 HPRC Matlab App

 Submit Matlab jobs from your own
desktop/laptop

What HPRC offers

 Long running Matlab scripts
 Large memory requirements

 At least 64GB per node, up to 2TB
 Distribute data over multiple nodes

 Utilizing Matlab parallel toolbox
 Start up to 28 Matlab workers per

node
 Start Matlab workers on multiple

nodes

 Utilizing Matlab GPU capabilities
 48 nodes with dual K80 gpus on

terra
 30 nodes with dual K40 gpus on

ada

Why use MATLAB on HPRC clusters?

 All A&M students/staff/faculty
 Apply for account at:

hprc.tamu.edu/accounts/apply/

Who can use HPRC resources?

45

Agenda

 Leveraging the power of vector and matrix operations

 Addressing bottlenecks

 Generating and incorporating C code

 Utilizing additional processing power

 Summary

46

Key Takeaways

 Consider performance benefit of vector and matrix

operations in MATLAB

 Analyze your code for bottlenecks and address most

critical items

 Leverage MATLAB Coder to speed up applications

through generated C/C++ code

 Leverage parallel computing toolsto take advantage of

additional computing resources

47© 2017 The MathWorks, Inc.

© 2016 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks

for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

http://www.mathworks.com/trademarks

