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Abstract

This talk gives an overview of the end to end application life cycle of
deep learning in the enterprise along with numerous use cases and
summarizes studies done by Bitfusion and Dell on a high performance
heterogeneous elastic rack of DellEMC PowerEdge C4130s with Nvidia
GPUs. Some of the use cases that will be talked about in detail will be
ability to bring on-demand GPU acceleration beyond the rack across
the enterprise with easy attachable elastic GPUs for deep learning
development, as well as the creation of a cost effective software defined
high performance elastic multi-GPU system combining multiple
DellEMC C4130 servers at runtime for deep learning training.
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Deep Learning and Al Are being adopted
across a wide range of market segments
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Industry/Function Al Revolution

ROBOTICS Computer Vision & Speech, Drones, Droids
ENTERTAINMENT Interactive Virtual & Mixed Reality
AUTOMOTIVE Self-Driving Cars, Co-Pilot Advisor

FINANCE Predictive Price Analysis, Dynamic Decision

PHARMA >upport
HEALTHCARE Drug Discovery, Protein Simulation

ENERGY Predictive Diagnosis, Wearable Intelligence
EDUCATION G€0-Seismic Resource Discovery
SALES Adaptive Learning Courses
SUPPLY CHAIN Adaptive Product Recommendations
CUSTOMER SERVICE Dynamic Routing Optimization
MAINTENANCE Bots And Fully-Automated Service
Dynamic Risk Mitigation And Yield Optimization



...but few people have the time,
knowledge, resources to even get started
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PROBLEM 1: HARDWARE INFRASTRUCTURE LIMITATIONS

®Increased cost with dense servers

0298 L © @® TOR bottleneck, limited scalability

® Limited multi-tenancy on GPU
servers (limited CPU and memory
per user)

®Limited to 8-GPU applications

R0 ® Does not support GPU apps with:
O High storage, CPU, Memory
requirements
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PROBLEM 2: SOFTWARE COMPLEXITY OVERLOAD

& sciPy ]
‘ B Numpy & matplotlib Y Bitbucket
Catfe pyTbRrcH IPIv): Fetren..... ()
, Model Management QGitHUb GitLab
Software Management Pandasu; s & g
GPU Driver Management Code Version Management SIGOPT
Framework & Library Installation Hyperparameter Optimization @
Deep Learning Framework Configuration Experiment Tracking =) Jenkins
Package Manager ft\° 3 Deployment Automation
upyter .
Jupyter Server or IDE Setup J.\m.// ANACONDA Deployment Continuous Integration Apache Airflow
>
«gz— @
© splunk>
aaamazon |Nfrastructure Management Data Management Workload Management
" webseniess - Cloud or Server Orchestration Data Uploader FTP Job Scheduler loggly
2= Yicosot GpY Hardware Setup oo, Shared Local File System , Log Management "'.‘ elastic
Googe GPU Resource Allocation Data Volume Management @‘ User & Group Manageme a
Container Orchestration o Data Integrations & Pipelining Inference Autoscaling @ ffe§|E?A

@ influxdb Networking Direct Bypass g,
ios: MPI/ RDMA/RPI/ gRPC 2985 MESOS 3 ‘ .
Nagios’ 9 s 1l S Qr K R amazon

» Monitoring @z v v\, " webservices™
W @ nVIDIA. Amazon Elastic File System (Amazon EFS)  Amazon Kinesis Moab EFKIEE‘! "'”;'!a-rgelr Amq.@lwap
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Need to Simplify and
Scale



SOLUTION 1/2: CONVERGED RACK SOLUTION

® Up to 64 GPUs per application

® GPU applications with varied storage,
memory, CPU requirements

®30-50% less cost per GPU

® > {cores, memory} / GPU

® >> intra-rack networking bandwidth

®Less inter-rack load

® Composable - Add-as-you-go

*‘ Composable compute bundle




SOLUTION 2/2: COMPLETE, STREAMLINED Al DEVELOPMENT

& DEevELOP

F TensorFlow - Caffe . lorch
theano

Zjupyter untied
e

View  set €l Kemel  Hep

Develop on pre-installed, quick
start deep learning containers.

Get to work quickly with
workspaces with optimized pre-
configured drivers, frameworks,
libraries, and notebooks.

Start with CPUs, and attach Elastic
GPUs on-demand.

All your code and data is saved
automatically and sharable with
others.

TRAIN

GPU GPU GPU ] GPU

GPU GP GPU GPU
V]

GPU GPU GPU GPU

GPU GPU GPU GPU

GPU GPU W GPU W GPU

GPU GPU GPU GPU
GPU GPU GPU GPU
GPU_ || GPu L GPU GPU

Transition from development
to training with multiple
GPUs.

Seamlessly scale out to more
GPUs on a shared training cluster
to train larger models quickly and
cost-effectively.

Support and manage multiple
users, teams, and projects.

Train multiple models in parallel
for massive productivity
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Push trained, finalized models
into production.

Deploy a trained neural network
into production and perform real-
time inference across different
hardware.

Manage multiple Al applications
and inference endpoints
corresponding to different trained
models.
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Dell EMC Deep Learning Optimized servers

Vertical

Applications =5

B-----------------------------

Open Caffa™” DLAY - mxnet SN e
(Caffe ( DLbh—=— [ Nx  (mnet) @ (F ) *

Source - | B N | KERAS N \Tesorow,
R ner— e | . —— .
Frameworks o I D MINERA {ylearnz thEm};}l\le-:ln )
DEEP LEARNING FRAMEWORKS
-----------------------------
cuSPARSE NCCL

e WL NN et
Libraries { LOWER-LEVEL PRIMITIVEFUNCTIONS [ 75 CUDNN 136 i B

Operating { ‘QZ’ CentOS LiIlllX“A '(.4
) R

System
Ubuntu 16.04 LTS

Processor/
Accelerator : 4 R e A ot Processor
GPU : KNL Phi in
- NvLink-GPU
vEn C6320P Sled
I I I ..
;-_=| — o o
CU e — {
Platform 0

J C4130 R730 C6320P in C6300
L
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C4130 DEEP LEARNING Server

CPU sockets
(under heat

Power

GPU R |
accelerators Sy REREES -
Dual SSD (4)

IDRAC NIC NIC (optional) Redundant Front
Power Supplies
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GPU DEEP LEARNING RACK SOLUTION

ZJjupyter untitied e

A Configuration Details
R e — - Pre-Built App
" iy Containers
- GPU and Workspace m R7S0 4130
Manqgement CPU E5-2669 v3@2.1GHz E5-2630 v3@ 2.4Ghz
- Elastic GPUs across the
Datacenter
. . - Software defined Memory 4GB 1TB/node; 64G DIMM
b|tfu5|0n Scaled out GPU Servers
— Storage Intel PCle NVME Intel PCle NVME
Networking 10 CX3 FDR InfiniBand CX3 FDR InfiniBand
GPU NA M40-24GB
TOR Switch Mellanox SX6036- FDR Switch
Cables FDR 56G DCA Cables

DELLEMC



GPU DEEP LEARNING RACK SOLUTION

End to End Deep Learning Application Life Cycle

Zjupyter untitied a
Fo B Vew ket oo

- Pre-Built App Containers

- GPU and Workspace 1 Develop 2 Train
Management f
- Elastic GPUs across the e e (Eege] ﬂ;
Datacenter ‘ cen ) cen ] oo o
- Software defined Scaled out Coam e e ﬂj
. . GPU Servers [ ceu [ ceu ] [ ceu
t_)lthSIOn CendCen) T )

GPU Nodes

CPU Nodes

fCa130 #3 : S PCle 2 x16

PCle 1 xB

Infiniband Switch
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...but wait, ‘converged compute’
requires network attached GPUs...
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BITFUSION CORE VIRTUALIZATION

GPU Device Virtualization
@® Allows dynamic GPU attach on a per- Applcation
application basis

Manageability Node 1 ]
1.0
Node 2 ]
| [Node 3 ]
] Node 4

Features | | i
@® APIs: CUDA, OpenCL “ i iR
® Distribution: scale-out to remote GPUs NVidia CUDA Driver \ NVidia CUDA Toolit al
® Pooling: Oversubscribe GPUs .
@® Resource Provisioning: Fractional vGPUs Opereing System
@® High Availability: Automatic DMR _ i s et
® Manageability: Remote nvidia-smi e
® Distributed CUDA Unified Memory ] — ’
® Native support for IB, GPUDirect RDMA
@® Feature complete with CUDA 8.0

Distribution and Resource High Availability
Pooling 1.0 Provisioner 1.0
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PUTTING IT ALL TOGETHER

L )
|
F ¢ Caffe
e theano
mxnet

Bitfusion Flex,
managed containers

Bitfusion Service Daemon

GPU GPU GPU
SERVER SERVER SERVER
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NATIVE VS. REMOTE GPUs

E_ N

GPUO GPU 1

Completely transparent: All CUDA Apps see local and remote GPUs as if directly connected
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Results
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REMOTE GPUs - LATENCY AND BANDWIDTH

* Data movement overheads is the primary scaling
limiter

* Measurements done at application level -

cudaMemcpy Fast Local GPU copies

Native GPUs . .
Latency Matrix (us) PCle Intranode copies

src\dst O 1 2 3
H

Bandwidth Matrix (GB/s)
0 1 2 3

4 14
24

wNERe OI

w N = O



16 GPU virtual system: Naive implementation w/ TCP/IP

TCP/IP over IPolB
Bandwidth Matrix (GB/s)
sr(\dst 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H 4 106 109 108 113 11.1 11.6 113 10.7 10.7 11.1 113 112

0 53 57 58
1 ™ 53 54
node 0 2 5 5.7
3 ‘
4
5
node 1 6
7
8
9
node 2 10
11
12 56 58 5.7
13 = 57 5.7
node 3 14 = 57
15 /)
Latency Matrix (us)

src\ds! 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
H 1119 : 12.2 9.54 8.99 931 10.4

130 153 139 155

0 153
1 [ 1sey 137 141 164 172 152
2 B 127 162 162 165 182
3 o 160 177 166 157
4 SpEm— 151 149 151 168 153 160 176
5 168 162 162 153[ 1asy 128 152

6 172 168 163 169 As 149

7 156 167 50 6 142 173 166 171 160
8 163 155 146 146 1590 161 169 166 156
9 164 . 115 152 166 160 157 158
10 173 05 1540162 162 197 159
11 164 175 45% - e mied

12 161 162 147 148 162
13 186 165 260 139 139
14 162 158 s 6 167

15

Native GPUs

Bandwidth Matrix (GB/s)
o 1 2 3

w NP oI

Fast local GPU copies

Intranode copies via PCle

Latency Matrix (us)
src\dsi 0 1 2 3

167 166
163 155 162ﬂ\ Low BW, High Latency remote copies

OS Bypass needed to avoid
primary TCP/IP overheads
Al apps are very latency sensitive




16 GPU virtual system: Bitfusion optimized transport and runtime

IB+RDMA attached GPUs TCP/IP over IPoIB
Bandwidth Matrix (GB/s) Bandwidth Matrix (GB/s)
rc\d 1 12 1 src\dst O 1 2 3 4 5 6 7 8 9 10 12 13
S a mél F1D R)éa'g I ['z'a ﬁSP érf% 1b Lllit‘l 1Fﬂ@ (IBP( H 114 106 109 10.8 113 11.1 116 11.3 10.7 10.7 11.1 113 11.2
57 56 55 39 40 39 3 39 39 39 38 38 137 53 57 58

BatE Ealle withriative:ls

38 41 39 39 38 40 40 39 39 40 40 338

bk) @fslﬁti“aihﬁdé RDN

Reptaii

54 53 54

Runtlmé &E

W N s WNRE O

3.8 3.7 37 38 47 4 52 39 39 39 39 37
C u d a M é mt 48 5.0 4.0 4.0 3.9 39 39 39
3 8 56 56 4.0 3 9 39 39

38 39 38 38 37 38 38 5.4

Multj-ratl eanarunicati

12 37 38 39 38 39 38 38 38 38 38

Runfigne gatimizations:

15 35 38 39 39 40 40 38 40 39 39 40 39 56 55

e V Latency Matrix (us)

14

15

e&ggmyg,n dlstrlbuted cachlng &
=

src\dst 0 src\dst 0 1 3 4 5 6 7 8 9 10 12 13 15
H 8 - 7 9 s 5 12 5 13 - 12 5 - 9 H 893-934 12.2 9.54 8.99 931 10.4
e 0 7 13 14 14 14 13 11 14 13 13 14 14 14 13 12 130 153 153 155
1 147 12 15 13 11 11 12 12 12 12 12 14 14 14 179 172 152
2 13 11 7 14 12 12 13 12 12 13 13 14 12 12 13 162 165 182
3 14 13 13 7 14 15 13 14 14 12 13 13 14 14 13 177 166 157
4 13 13 12 13 8 12 12 14 12 14 13 13 12 12 13 153 160 176
5 14 13 14 14 14 & 12 13 13 15 13 12 11 11 12 167 166 170
6 14 14 13 16 13 15 7 12 11 14 13 13 12 13 12 155 162 182
7 13 14 12 13 12 13 12 7 13 14 11 14 14 1 166 171 160
8 14 14 11 12 14 15 11 14 7 13 14 13 15 12 <ﬂ>5 146 146 159 161 169 166 156
9 12 14 14 13 13 12 15 12 23 7 14 13 15 12 115 152 166 160 157 158
0 14 14 11 14 13 14 12 12 14 12 8 15 14 13 12 14 154 162 162 197 159
11 13 12 13 13 12 12 14 23 12 13 14 8 14 22 12 13 11 154 175 171 151 142 145 167 164
12 13 13 13 12 13 12 13 13 13 14 12 13 | 6 14 12 13 12 161 162 156 162
13 12 13 12 13 12 14 12 13 12 12 13 14 15 7 12 14 13 186 165 157
14 13 14 12 14 13 11 12 14 12 11 12 13 16 14 7 14 14 162 158 159
15 12 12 14 13 13 13 11 13 12 15 12 14 15 14 15 7 15




SLICE & DICE - MORE THAN ONE WAY TO GET 4 GPUs

DYLEMC bitfusion

Relative Performance of Remotely attached GPUs vs. Native

 Native Remote

Native GPU performance with network :..
attached GPUs

Run time comparison (lower is better) - %M 1 | . ‘ ' ~

Multiple ways to create a virtual 4 GPU node, with native ;.. ] [
256 ‘ 256 | 256 ‘ 512 ‘ ‘ 12
T e Ean

efficiency
(secs to train Caffe GoogleNet, batch size: 128)

1024

4

m [ GPU ] [ GPU ] m Batch Size and Number of GPUs =
m GPU GPU GPU TensorFlow
Caffe GoogleNet .
=N \ \ =R ’ Pixel-CNN
N4 L4 L2R2 R4
Native 4 GPUs (w/o Boost) 4 Local GPUs 2 Local, 2 Remote GPUs 4 Remote GPUs
323 301 295 293
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TRAINING PERFORMANCE

——Em

R730

C4130
Continued Strong Scaling
Caffe GoogleNet ]
Weak-scaling
w  TRLSIGPU L bridge fimit . Accelerate Hyper parameter Optimization
‘“2'22"” A / Caffe GoogleNet TensorFlow 1.0 with Pixel-CNN
350 R4 -4 GPU
—LAR4 - 8 GPU / \ / e 0.0018
%:: | —L4R4"3-16GPU P / k - / B iy
E §1500 86%
: ird N B I ;
‘otal Batch size (GPUs x batch_size) N2 N4 L4R4 Native 4 GPU Remote 8 GPU

native remote



Other PCle GPU Configurations Available

Optional

PCle 2 x16

PCle 1 x8

Optional
PSU

Currently Testing

PClel x16

Further reading: C f ‘G
onfig

http://en.community.dell.com/techcenter/high-performance-computing/b/gener
al_hpc/archive/2016/11/11/deep-learning-performance-with-p100-gpus

http
:/[len.community.dell.com/techcenter/high-performance-computing/b/general_h

pc/archive/2017/03/22/deep-learning-inference-on-p40-gpus
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Nlenk Conflguratlon

" Four (4) Tesla P100 ]

* 4 P100-16GB SXM2 GPU

SXM2 GPUs

% | Dual CPU Sockets] e 2 CPU
Use PCle slots }

for FDR or EDR PCle switch

InfiniBand

e 1PCleslot-EDRIB
Conflg ‘K’

-E—i-

e

B DELLEMC



NvLink Configuration

* 4 P100-16GB SXM2 GPU

- cru  2CPU

| X | x e PCle switch

e 1PCleslot-EDRIB

* Memory : 256GB w/16GB
@ 2133

* OS: Ubuntu 16.04
 CUDA:8.1

BY DELLEMC
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Overview — Bright ML

> Dell EMC has partnered with Bright Computing to offer their Bright ML package as the software stack on Dell EMC Deep learning hardware

solution.

@339

-~

3% Bright Computing
Open Source Frameworks

TensorFlow, MxNet, CNTK, Theano, Torch,
“CaffelCaffe2 .~

Meural network Libraries

N

MLPython, CaffeOnSpark, cuDNN, cuBLAS, NCCL,

2 Bright ML comes with all these Open source frameworks

1\& Keras GIE_ .. _‘/1 integrated along with the libraries needed to run Meural
maodels.
2 It comes as single *.150 image.

4 N

Hardware
S - =111
. 3 The Neural networks are trained on hardware like
| A1tk Ca130-PCleGPU - C4130 using NVIDIA GPUs
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http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2016/11/11/deep-learning-performance-with-p100-gpus
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2016/11/11/deep-learning-performance-with-p100-gpus
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2017/03/22/deep-learning-inference-on-p40-gpus
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2017/03/22/deep-learning-inference-on-p40-gpus
http://en.community.dell.com/techcenter/high-performance-computing/b/general_hpc/archive/2017/03/22/deep-learning-inference-on-p40-gpus

Bright ML Overview

Bright 8.0 Features

- Bright View administrator web interface
- Cloud bursting support for Azure

- New monitoring subsystem

« Ubuntu 16.04 LTS support

- OpenStack Newton

- Mesos integration (+ Marathon)

- Improved Kubernetes integration

- Updated and new machine learning packages
« NVIDIA DCGM integration

« CephFS support

- Job based metrics enabled by default

a349

FRAMEWORKS
Caffe / (Caffe2)
TensorFlow

Theano
Torch
(CNTK)

(MXNet)
(Caffe-MPI)

LIBRARIES
MLPyvthon
cuDNN
DIGITS
CaffeOnSpark
NCCL

(GIE)

(Keras)
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Machine Learning in Seismic
Imaging Using KNL + FPGA
— Project # 1

Bhavesh Patel - Server Advanced Engineering,

Robert Dildy - Product Technologist Sr. Consultant,
Engineering Solutions
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Abstract

This paper is focused on how to apply Machine Learning to seismic imaging with the use of FPGA as a co-

accelerator.

It will cover 2 hardware technologies: 1) Intel KNL Phi 2) FPGA and also address how to use Machine learning for

seismic imaging.

There are different types of accelerators like GPU, Intel Phi but we are choosing to study how we can use i-ABRA
platform on KNL + FPGA to train the neural network using Seismic Imaging data and then doing the inference.

Machine learning in a broader sense can be divided into 2 parts namely : Training and Inference.

iterate

until

satisfied

36

training data

e

real word data

trained
parameters

or weights (W) | Classification

C

Engine

useful
intelligence
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Background

Seismic Imaging is a standard data processing technique used in creating an image of subsurface structures of
the Earth from measurements recorded at the surface via seismic wave propagations captured from various
sound energy sources.

There are certain challenges with Seismic data interpretation like 3D is starting to replace 2D for seismic
interpretation.

There has been rapid growth in use of computer vision technology & several companies developing image
recognition platforms. This technology is being used for automatic photo tagging and classification. The same
concept could be applied to identify geometric patterns in the data and generate image captions/descriptions. We
can use Convolutional Neural Networks (CNN) to learn visual concepts using massive amounts of data which
would help in doing objective analysis of it.

The use of machine learning and image processing algorithms to analyze, recognize and understand visual
content would allow us to analyze data both in Supervised neural networks(SNN) and unsupervised neural
networks (UNN) like CNN.

37 DEALEMC



Observing both plane and cross-section

- ,’ g .." - -' b .
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Seismic Stratigraphic image learning Seismic Geomorphology image learning
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Models in plane and cross-section

Seismic Strafigraphic image models
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Train the data to recognize geometrcal patterns and
vtilization of “iPhoto" and “Facebook" technology and
methodology to inferact with the training.

39

Seismic Geomorphology image models

Algonthms already established in geclogical modeling
software.

Fequire some guidance with a low frequency sudace

model in data to mimic dips and curvatures in stratigraphic
response of data
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Tags with ‘facies’ recognition

Linzenfarmily

I:lnrn= ﬂn.l:.'lure

*#" ﬂ#-“ .,._._.ﬂ,_.,_ ...,__,,__.._. oo m e

OSSR L4 ST R | M e ML e i gy
Bauiemm ‘ R e e, e p——

e R

You give input fo the unsupervised fraining of your dafa. It will automatically identify similar ones
and/or give you a choice of places it finds similar, and you choose to fell its right or wrong.

40 DELLEMC



Solution

For this paper we will be using the following Hardware and Software platforms:
Hardware Platform:

C6320P Sleds with Intel KNL Phi + Intel Arria 10 (A10PL4) FPGA adapter.

Software Platform:;

I-ABRA Deep learning framework

This will be a joint collaboration with :
Dell EMC
Intel
I-ABRA

Seismic Imaging firm - TBD
n DEALLEMC



Thank You
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