
Containers for HPC
Reproducibility:
Building, Deploying,
and Optimizing

Carlos del-Castillo-Negrete
Research Associate, Texas
Advanced Computing Center

Slide Deck Available at:

https://github.com/cdelcastillo21/tamu_hpc_containers

Workshop Outline
Ø9:00 AM - 9:45 AM: Introduction to

Containers in HPC
ØOverview of container technology
ØBenefits of using containers in HPC

environments
ØComparison of Docker and

Singularity/Apptainer.
Ø9:45 AM – 10:00 AM: Break (finish set-up)
Ø9:30 AM – 10:30 AM: Building & Running Your

First HPC Container
ØBuilding a simple container using Docker
ØRunning container locally
ØRunning and managing containers on

HPC systems

Ø10:30 AM – 10:45 AM: Break

Ø10:45 AM – 11:15 AM: GPU Containers
ØOverview of GPU support in containers
ØUsing NVIDIA GPUs with containers

Ø11:15 AM - 11:30 AM: Break
Ø11:30 AM - 12:00 AM: Q&A and Wrap-Up OR

mini-Hackathon
ØOpen floor for questions and discussion

OR
ØMini-Hackathon – Build and run a

container of your choosing

What you’ll need
• Docker

• Docker Engine (required) - https://docs.docker.com/engine/install/
• Preferably Docker Desktop (optional) :

• Mac - https://docs.docker.com/desktop/install/mac-install/
• Windows - https://docs.docker.com/desktop/install/windows-install/

• Docker hub account (required) - https://hub.docker.com
• Docker Build cloud (alternate to building locally) - https://build.docker.com

• Local editor and Terminal Environment
• VSCode - Recommended best cross-platform solution – https://code.visualstudio.com
• MobaXTerm– Alternative Terminal for windows users - https://mobaxterm.mobatek.net

• Access to FASTER via web portal (required) :
• https://portal-faster-access.hprc.tamu.edu/
• https://portal-faster.hprc.tamu.edu

https://docs.docker.com/engine/install/
https://docs.docker.com/desktop/install/mac-install/
https://docs.docker.com/desktop/install/windows-install/
https://hub.docker.com/
https://build.docker.com/
https://code.visualstudio.com/
https://mobaxterm.mobatek.net/
https://portal-faster-access.hprc.tamu.edu/
https://portal-faster.hprc.tamu.edu/

Learning Resources and Links
• TAMU HPRC:

• HPRC Wiki https://hprc.tamu.edu/wiki/SW:Singularity
• HPRC on Youtube https://www.youtube.com/c/TexasAMHPRC
• HPRC ACES Container tutorials -

https://hprc.tamu.edu/training/aces_containers_scientific.html
• Singularity Manual https://apptainer.org/user-docs/3.8/
• Docker Manual https://docs.docker.com/
• Other container courses:

• NBIS - https://nbis-reproducible-research.readthedocs.io/en/latest/singularity/
• Arizona https://learning.cyverse.org/projects/Container-camp-2020/
• TACC https://learn.tacc.utexas.edu/mod/page/view.php?id=95

https://hprc.tamu.edu/wiki/SW:Singularity
https://www.youtube.com/c/TexasAMHPRC
https://hprc.tamu.edu/training/aces_containers_scientific.html
https://apptainer.org/user-docs/3.8/
https://docs.docker.com/
https://learning.cyverse.org/projects/Container-camp-2020/

Remember – Ask Questions!

Ok - Ready?

Containers for HPC
Part 1 – Introduction to Containers in
High Performance Computing

Introduction to
Containers in HPC:
Outline

• Overview of container technology

• Benefits of using containers in
HPC environments

• Comparison of Docker,
Singularity/Apptainer

• Security considerations and best
practices

Containers – What’s
the fuss?

• Containers: A Vital Tool for Modern Computing
• Application Development
• Web Services
• Scientific Computing

• Packaging Made Easy
• Bundle applications with all dependencies

• Consistency Across Environments
• Ensure* isolation, consistency, and

reproducibility

• Deployment Without Borders:
• A leap towards platform-agnostic

deployment

HPC Research Computing Use Cases

• Difficult to build code? Do it once, containerize, and
then use built container to run in multiple places.

Enhanced
reproducibility

• Test small before using HPC resourcesLocal development

• JupyterLab with custom python kernels for data
analysis and visualizations

Interactive
visualization

environments

But wait, what
about Virtual
Machines (VMs)?

• VMs were the traditional
solution to the portability issue.
Only problem
• High overhead when

running on top of a
hypervisor.

• VMs take up more disk
space and have long start
up times.

• Makes managing multiple
VMs on the same
infrastructure difficult.

Enter
Containers
• Containers on the other

hand:
• Run on host OS
• Take up less disk space

• A variety of containerization
tools exist:
• In cloud solutions –

Docker, Podman,
CharlieCloud

• In HPC solutions –
Singularity, Apptainer

Containerization Technologies
• Docker

• Most popular, but requires root privileges.
• Most HPC containerization platforms are compatible with

Docker images.
• Singularity (now Apptainer)

• Designed to have bare-metal performance, and does not
require root permissions for running (does for building).

• Secure, portable, and 100% reproducible in HPC
environments.

• Workflow – Use Docker to build and test locally, and use
Singularity to run on HPC.

Container Workflow - Local

Docker Overview
• One of the earliest container solutions created.
• Components

• Docker Engine - Core Service for creating and
managing containers.

• Docker Hub – Repository for sharing and storing
image containers

• Docker Desktop – UI provided in docker desktop
to help manage builds, containers, volumes and
more.

• Concepts
• Dockerfile
• Image vs Container
• Registry and Image Tags

Core concepts
- Dockerfile
• The recipe for creating Docker Images.

• Sequence of commands that “build” a
container image, with keywords like:
• FROM – Base image to start
• RUN – run a bash command, for

example to install software.
• COPY – Copy data from outside the

container inside of it
• ENTRYPOINT – Define what should be

the entrypoint script of the container
when launched.

Core Concepts - Building Image
docker image build –t clos21/tamu_hpc_containers:mpi_hello_world -–push .

Core Concepts - Image Registry

Core Concepts – Running Container
docker run --rm mpi-hello-world

Container Workflow - Local

Running on HPC? – Enter Singularity

Singularity can fetch images from the docker hub registry and
convert it to a singularity format with the ‘singularity pull’
command.

singularity pull docker://clos21/tamu_hpc_containers:mpi_hello_world

Docker vs Singularity – Host Directories

Docker: None by default. Use -v <source>:<destination> to mount a source host directory
to an arbitrary destination within the container.

Singularity: Mounts your current working directory, $HOME directory, and some system
directories by default. Other defaults may be set in a system-wide configuration. The --
bind flag is supported to provide similar functionality as –v in docker

Docker vs Singularity – User ID

Docker: Defined in the Dockerfile, but containers run as root unless a different user is defined or
specified on the command line. This user ID only exists within the container, and care must be taken
when working with files on the host filesystem to make sure permissions are set correctly.

Singularity: Containers are run in “userspace”, so you are the same user and user ID both inside and
outside the container.

Docker vs Singularity – Image Format

Docker: Containers are stored in layers and managed in a repository by Docker.
The ’docker images’ command will show you what containers are on your local
machine and images are always referenced by their repository and tag name.

Apptainer: Containers are files. Apptainer can build a container on the fly if you
specify a repository, but ultimately they are stored as individual files, with all the
benefits and dangers inherent to files.

Containers for HPC
Part 2 – Building and Running your First

Container

Building a Docker Image –MPI Hello World

Locally clone the github repo:

git clone https://github.com/cdelcastillo21/tamu_hpc_containers

Navigate to the the first example directory, and build the docker file:

docker image build \
-t clos21/tamu_hpc_containers:mpi_hello_world \
.

https://github.com/cdelcastillo21/tamu_hpc_containers

Testing container locally:

We use the docker run command to launch an image (making it a
container):

docker run –rm clos21/tamu_hpc_containers:hello_world

Testing On HPC - IMPORTANT Set-up

Return to your tutorial directory (if necessary)

cd $SCRATCH/s_tutorial Set your singularity cache directory for temporary files

export SINGULARITY_CACHEDIR=$TMPDIR

Connect to the internet for fetching images:

module load WebProxy

Docker – Cloud Build

docker buildx build \
--builder cloud-clos21-tamu-hpc \
-t clos21/tamu_hpc_containers:mpi_hello_world \
--load \
--push \
.

Docker Cross Platform Build (Using Cloud
Builder)

docker buildx build \
--platform=linux/amd64,linux/arm64 \
--builder cloud-clos21-tamu-hpc \
-t clos21/tamu_hpc_containers:mpi_hello_world \
--load \
--push \
.

Containers for HPC
Part 3 – MPI Containers

HPC Container Technology Gotchas

• HPC Systems have high-speed, low latency networks that have
special drivers.
• Infiniband, Aries, and OmniPath are three different specs for these

types of networks.
• When running MPI jobs, if the container doesn’t have the right libraries,

it won’t be able to use those special interconnects to communicate
between nodes.

• This means that MPI containers don’t provide as much
portability between systems.

HPC MPI – Getting things right
• By default = the network is the same inside and outside the container, the

communication between containers usually just works.
• Container needs the right set of MPI libraries to interact with HPC high-

speed fabrics.
• MPI is an open specification, but there are several implementations

(OpenMPI, MVAPICH2, and Intel MPI to name three) with some non-
overlapping feature sets.

• Different hardware implementations (e.g. Infiniband, Intel Omnipath, Cray
Aries) that need to match what is inside the container. If the host and
container are running different MPI implementations, or even different
versions of the same implementation, MPI may not work.

• General rule: version of MPI inside the container to be the same version or
newer than the host

Containers for HPC
Part 3 – GPU Containers

Using Singularity containers with GPU

Ensure your container is built with an adequate version of CUDA
(>=11)
• Adding the --nv flag to the usual singularity command you use.
• NVIDEA container registry:

• https://catalog.ngc.nvidia.com/

• Docker containers with GPU – search for “gpu” tag

https://catalog.ngc.nvidia.com/

Tensorflow GPU Exercise

• Image file: pytorch_23.09-py3.sif
• from docker://nvcr.io/nvidia/pytorch:23.09-py3

singularity pull docker://nvcr.io/nvidia/pytorch:23.09-py3

• To run:
singularity exec –np pytorch_23.09-py3.sif nvidia-smi
singularity exec --nv pytorch_23.09-py3.sif python3 -c "import torch;

print(torch.cuda.device_count())"

Appendix A
More info – VMs vs Containers

VMs vs Containers – When to use each?
• Isolation and Security - VMs win

• VMs offer a stronger level of security, since there is a full separation of the
OS kernels.

• Containers rely on host OS security.

• Resource Efficiency – Containers win
• Containers have less overhead
• Are better suited for dense deployments

• Start-up Times – Containers win
• Containers can start in milliseconds, VMs take minutes

• Portability – Containers win
• More portable, since setting up VM hypervisor is in itself a complex

process.

Appendix B
Docker – Advanced Topics

Docker Buildx vs Docker Build

• Multi-platform Builds:
• Buildx: Supports building multi-platform images using QEMU.
• Build: Limited to building images for the host's architecture.

• Extended Functionality:
• Buildx: Provides advanced features like cache imports/exports and build drivers.
• Build: Basic build functionalities without extended features.

• Enhanced Performance:
• Buildx: Can leverage BuildKit for faster and more efficient builds.
• Build: Traditional Docker build process, potentially slower.

• Experimental Features:
• Buildx: Supports experimental features and new build capabilities (such as cloud builds)
• Build: Standard and stable features without experimental options

Appendix C
HPC Containers – Advanced Topics

HPC Container Technology Gotchas

• HPC Systems have high-speed, low latency networks that have
special drivers.
• Infiniband, Aries, and OmniPath are three different specs for these

types of networks.
• When running MPI jobs, if the container doesn’t have the right libraries,

it won’t be able to use those special interconnects to communicate
between nodes.

• This means that MPI containers don’t provide as much
portability between systems.

HPC MPI – Getting things right
• By default = the network is the same inside and outside the container, the

communication between containers usually just works.
• Container needs the right set of MPI libraries to interact with HPC high-

speed fabrics.
• MPI is an open specification, but there are several implementations

(OpenMPI, MVAPICH2, and Intel MPI to name three) with some non-
overlapping feature sets.

• Different hardware implementations (e.g. Infiniband, Intel Omnipath, Cray
Aries) that need to match what is inside the container. If the host and
container are running different MPI implementations, or even different
versions of the same implementation, MPI may not work.

• General rule: version of MPI inside the container to be the same version or
newer than the host

Launching Singularity – Command LIne

