
Lars Koesterke
Seventh Annual Texas A&M Research Computing Symposium

5/21/24

Intermediate Level:
Writing an Optimized Kernel using

Shared Memory and Streams
1

CUDA Programming
Basic Concepts in C and Fortran

Overview
• Tutorial is meant for programmers (C/C++/Fortran)

– No exposure to CUDA programming, yet
– Basic knowledge of C/Fortran, or generally of a programming language

• Focus
– Basic concepts: ‘software matching hardware’
– Performance optimization and techniques beneficial under most circumstances

• Simple kernel: ‘Hello World’ equivalent for GPUs
• Lab
• Stencil update

1. Using main memory on card
2. Using shared memory of each SM (Streaming Multiprocessor)
3. Interleaving data transfer and calculations

• Using the host as well
• Using multiple nodes with MPI

2

Why GPUs?
GPUs promise a performance advantage vs CPUs

Single precision GPUs, i.e. graphics cards
• Machine learning, pattern matching, etc.

• Undoubtedly, the performance per dollar is outstanding

Double precision GPUs, Nvidia A100/H100, AMD MI200
• ‘Classical’ number crunching

• Advantages v. CPUs are not so clear cut

• Apples to apples: dual-socket CPU node with a single GPU

• # of transistors, power consumption, price per device are similar

• The gain is often modest

• However, excellent performance for Machine Learning
– Specialized hardware: Tensor cores

3

This option (for compute) has gone away
Frontera-GPU may be the last holdout

Why CUDA?
• GPUs from a variety of vendors can be programmed in

– OpenCL à tough going

– OpenMP, OpenACC à Pragma based language extension

– CUDA (Nvidia), HIP (AMD), SYCL (Intel)

• NVIDIA: language developed for specific hardware

• AMD is now developing HIP, a CUDA equivalent

• OpenMP offload or OpenACC not available everywhere

• Advantages and Disadvantages
– Supposedly faster language evolution

– How does CUDA translate to other options? Execution and development
speed

– CUDA is supported by C and Fortran compilers

This class will be bi-lingual: C & Fortran

4

CUDA: C and Fortran

• CUDA (from Nvidia) is an addition to C

• Nvidia provides a separate compiler for Fortran

• User profile at TACC: 65% C/C++ and 35% Fortran

• Being able to teach both languages is a big plus!

• C + CUDA: all code is written in C

• Nvidia CUDA Fortran Compiler: all code is written in Fortran

5

Cluster with GPUs

Network

P

M

P P P P P

M M M M M

P

M

P

M

P

M

P

M

P

M

P

MMemory GPU

GPU

CPU

Memory CPU

Step 1:
One node

Step 2:
Multiple nodes

Programming for a CPU/GPU pair is like programming
for a small CPU cluster

6

GPU Memory Hierarchy

• GPUs have multiple memories
• Main Memory: accessible by all Threads executing on the SMs (Streaming

Multiprocessors)
– On the smaller side: 40 – 80 GB
– High bandwidth: DDR5 à HBM

• Each SM has shared memory that is local to an SM
– Very small: ~16KB per SM
– Faster, compared to the Main GPU Memory. Can also act as a cache

• Additional Memories: Texture, Constants, etc.

7

CPU
• Dozens computation cores

– Independent execution
– Drawing from a pool of memory

• Lock-step execution
– Vectorization (SIMD) with few (8/16) vector

lanes
– Hundreds of vector lanes
–

• Optimized for serial and parallel exec.
• Memory latency hidden by

– Caches, prefetching
– Parallel execution (thread-# ~ core-#)

GPU
• Dozens Streaming

Multiprocessors
– ‘Core’ = Streaming Multiprocessor
– Independent execution
– Drawing from a pool of memory

• Lock-step execution
– Single Instruction Multiple Threads

(SIMT)
– Warps (bundles of 32) and many

(1000’s) CUDA cores

• Optimized for parallel execution
• Memory latency hidden by

– Parallel execution (many, many
threads)

– Caches, prefetching

Hardware Overview:
CPU vs. GPU characteristics

8

Hardware Comparison
(Frontera and Lonestar)

Dual
socket
Intel

Cascade
Lake

Dual
socket
AMD
Milan

Nvidia
H100

Nvidia
A100

Nvidia
A30

Core/SM 56 128 144 108 56?

Speed
(GHz) 2.7 2.45 1.6 1.41 1.24

SIMD /
SIMT
width

(32 bit)

16 8 32 32 32

Vector
lanes/
CUDA
cores

896*2 1024*2 16896 6912 3584

FMA FMA
9

Programming should match the hardware:
Thread configuration

• Two-tiered hierarchy: grids and blocks (to match hardware)
– A kernel contains one grid “The grid executes on all SMs”

– A grid is a grid of blocks “Each block executes on one SM”

– A block contains threads “The threads in a block are configured to Warps”

• When CPU code is translated into GPU code:
– A specific thread (typically) executes one specific “loop iteration”

• Example: Thread “#1202” may execute loop iteration i=12, j=27 (nested loop here)

• Only one thread is mapped to a specific loop iteration

• Only one loop iteration is mapped to a specific thread

• This is called a bijection

– Thread-# is not a linear construct, but has 6 components
• Grid:3; Block:3; confusing in the beginning, but quite helpful later

10

Thread configuration
• Why is the hierarchy two-tiered?

– All threads of a block (an element of the grid) execute on one SM

– Threads on a single SM can be synchronized (execution and memory)

– Synchronization beyond a single block is more complicated and costly

– The hardware provides multiple SMs. Therefore, a grid must contain multiple blocks to
keep the SMs busy

– If your hardware has 144 SMs (H100), you should select a setup with at least 144
blocks. For performance you will likely need (many) more!

• The blocks in a grid match the HW parallelism on the SM level ➞
multiple blocks

• An SM is also executing in parallel: “CUDA” cores

• Multiple threads will execute concurrently on an SM

11

Thread configuration
• All blocks in a grid are configured the same

• A specific thread has
– A block-identifier (it’s position in the block)

– A grid-identifier (the position of the block in the grid)

• Let’s assume that both identifiers are linear indices of type integer:
– threadidx: index of thread in block

– blockidx: index of block in the grid

• And the blocks and the grid have “sizes”
– blocksize: size of the block, i.e. number of threads in a block

– gridsize: number of blocks in the grid

12

Thread configuration
• Example:

– Blocksize = 32 (one warp)
– Gridsize = 8 (Note: there are 80 SMs in Longhorn’s GPUs)
– Total number of threads = 256 (32 x 8)

• What block and thread position does thread-# 72 have (C indexing)?
Block-# 0: 32 threads (thread index: 0,...,31)
Block-# 1: 32 threads (thread index: 32,...,63)
Block-# 2: 32 threads (thread index: 64,65,66,67,68,69,70,71,72,...,95)
9th position in block 2 1, 2, 3, 4, 5, 6, 7, 8, 9 position (nth-thread)

• What block and thread position does thread-# 72 have (Fortran indexing)?
Block-# 1: 32 threads (thread index: 1,...,32)
Block-# 2: 32 threads (thread index: 33,...,64)
Block-# 3: 32 threads (thread index: 65,66,67,68,69,70,71,72,73,...,96)
8th position in block 3 1, 2, 3, 4, 5, 6, 7, 8 position (nth-thread)

• What is the thread-# for the 7th thread in 5th block?
– C-Index: (5-1) x 32 + 7 = 135 F-Index: (5-1) x 32 + 7-1 = 134

• Note, that I have carefully use “position” at times.
– Indices in C/Fortran start at 0 and 1, respectively

14

Thread configuration
• Example:

– Blocksize = 32 (one warp)

– Gridsize = 8

• What block/grid index does thread #72 have?
– C: #72 is in Block w/ index 2 and has the index 7 in the block

– Fortran: #72 is in Block w/ index 3 and has the index 8 in the block

• What is the thread-# for the 7th thread in 5th block?
– C: threadidx=6, blockidx=4

 thread-# = blockidx * blocksize + threadidx

– Fortran: threadidx=7, blockidx=5

 thread-# = (blockidx-1) * blocksize + threadidx

 C, Fortran: thread-# starts at 0 and 1, respectively

15

Thread configuration
• Linear configuration ➞ Cubes

• A grid contains a cube of blocks: 3 coordinates, x/y/z

• A block contains a cube of threads: 3 coordinates, x/y/z

• There is some freedom on what coordinate to use
– Some constraints are discussed later

– minimum: 1 coordinate for the blocks, 1 coordinate for the grid

• Why x/y/z?
 Maps nicely to numerical code that uses a
 1d (x), 2d (x/y), or 3d (x/y/z) grid

16

Thread configuration
• The thread configuration is specified in the host code (code that is

executed on the host)

• You are free to choose a name
– Here I use blocksize and gridsize

• The configuration variables are structures of type dim3
– dim3 is predefined in the header file cuda_runtime.h and the module mod_gpu,

respectively

– dim3 contains the integer components x, y and z

– Same example as before: 32 threads in a block (x),
 8 blocks in the grid (x)

use mod_gpu
type(dim3) :: blocksize, gridsize

gridsize = dim3(8,1,1)
blocksize = dim3(32,1,1)

#include <cuda_runtime.h>

dim3 gridsize(8,1,1)
dim3 blocksize(32,1,1)

17

Thread configuration
• blocksize = 32,2,1; gridsize = 8,3,1

• Total threads in a block: 64 = 32 x 2 (x 1)
• Total number of blocks in the grid: 24 = 8 x 3 (x 1)
• Total number of threads: 1536 = 32 x 24
• Threads are arranged: first x, then y, then z;

 “threads in block” before “blocks in grid”
 “thread in block” “block in grid”
• 1st thread: position (1,1,1) (1,1,1)

• 2nd thread: (2,1,1) (1,1,1)

• 32nd thread: (32,1,1) (1,1,1)

• 33rd: (1,2,1) (1,1,1)

• 64th: (32,2,1) (1,1,1)

• 65th: (1,1,1) (2,1,1)

• Etc.

18

y->
x
|
v

Thread configuration: uneven setup
• blocksize = 17,4,1; gridsize = 2,1,1

• Total threads in a block: 68 = 17 x 4 (x 1)

• How are the warps formed? ⎯ in chunks of 32

 f=full, p=partial row in x

• 1st warp: 32 = 17+15 y=1(f) y=2(p)

• 2nd warp: 32 = 2+17+13 y=2(p) y=3(f) y=4(p)

• 3rd warp: 4 = 4 y=4(p)

• Two full warps, one partial warp
– The partial warp contains also 32 threads, but 28 are doing nothing

– No spill-over to the next block in the grid; why?

19

Kernel launch, Chevron syntax
• A kernel is a routine that is executed on the GPU

• Calling a kernel (from the host) is called “launching a kernel”

• Calling a kernel uses familiar syntax (function/subroutine call)
augmented by Chevron syntax containing configuration arguments

• The Chevron syntax (<<<…>>>) communicates the thread
configuration to the kernel

– First argument: grid configuration

– Second argument: block configuration

use mod_gpu
type(dim3) :: blocksize, gridsize

gridsize = dim3(8,1,1)
blocksize = dim3(32,1,1)

call do_this<<<gridsize,blocksize>>>()

#include <cuda_runtime.h>

dim3 gridsize(8,1,1)
dim3 blocksize(32,1,1)

do_this<<<gridsize,blocksize>>>()

No arguments
passed to function

in this example!

20

Thread configuration on the GPU
• How does this information appear on the GPU?

– Kernel launched with:
 blocksize = 32,2,1; gridsize = 8,3,1: 1536 threads total

• 1536 threads are started on the GPU

• Inside the kernel: The size of the blocks and the grid is stored in

 blockDim and gridDim

• Every thread holds a unique position in the block and grid space

• Every thread can be uniquely identified with: threadIdx, blockIdx

• These 4 variables are again of type dim3, and they are predefined in the kernel code

21

Kernel
• A kernel is decorated with the global attribute
• Every thread executes the same code in parallel

• Block/grid variables are filled with different content

 host kernel

• 1st Chevron argument: gridsize ➞ gridDim

• 2nd Chevron argument: blocksize ➞ blockDim

module mod_gpu

!*** Use CUDA module
use, intrinsic :: cudafor

contains

attributes(global) subroutine do_this()

! blockdim, griddim, blockidx, threadidx
! are predefined and of type dim3

#include <cuda_runtime.h>

__global__ void do_this(void)

/* blockDim, gridDim, blockIdx, threadIdx */
/* are predefined and of type dim3 */

22

Thread configuration on the GPU
• 1st Chevron argument: gridsize ➞ gridDim

• 2nd Chevron argument: blocksize ➞ blockDim

• Every thread has a unique position in the block and the grid
– threadIdx holds the 3 components of the position in the block

– blockIdx holds the 3 components of the position in the grid

• blockDim = 32,2,1; gridDim = 8,3,1

Fortran Thread-#
 1 2 32 33 65

threadidx%x = 1 2 32 1 1
threadidx%y = 1 1 1 2 1
threadidx%z = 1 1 1 1 1
 blockidx%x = 1 1 1 1 2
 blockidx%y = 1 1 1 1 1
 blockidx%z = 1 1 1 1 1

C Thread-#
 0 1 31 32 64

threadidx.x = 0 1 31 0 0
threadidx.y = 0 0 0 1 0
threadidx.z = 0 0 0 0 0
 blockidx.x = 0 0 0 0 1
 blockidx.y = 0 0 0 0 0
 blockidx.z = 0 0 0 0 0

23

Why is this so important?

• The thread-# relates to the loop indices in CPU code

• The translation of loop index to thread indices is crucial

• Remember, a specific thread executes only one loop iteration in this
example

24

First Kernel
• Let’s consider this operation: xi = xi + 1.1

• Vector x holds 256 elements
– Pseudo code using variables x_f and x_c

• x_f: 1 - 256

• x_c: 0 - 255

*** 1d arrays with 256 elements
x_f(1..256)
x_c[0..255]

* Fortran
Loop i from 1 to 256
 x_f(i) = x_f(i) + 1.1
Loop end

* C
Loop i from 0 to 255
 x_c[i] = x_c[i] + 1.1
Loop end

How do we translate
this into CUDA?

25

First kernel
• Pseudo code and kernels in C and Fortran

• Loop index i from the CPU code translates to index i in the kernel

• Thread configuration variables are used

#include <cuda_runtime.h>

__global__ void add(float *x, int n)
{
/* blockDim, gridDim, blockIdx, threadIdx */
/* are predefined and of type dim3 */

i = threadidx.x + blockidx.x * blockdim.x

x[i] = x[i] + 1.1
}

attributes(global) subroutine add(x,n)

! blockdim, griddim, blockidx, threadidx
! are predefined and of type dim3

real, dimension(n) :: x
integer, value :: n

i = threadidx%x + (blockidx%x-1) * blockdim%x

x(i) = x(i) + 1.1

end subroutine

*** 1d arrays with 256 elements
x_f(1..256)
x_c[0..255]

* Fortran
Loop i from 1 to 256
 x_f(i) = x_f(i) + 1.1
Loop end

* C
Loop i from 0 to 255
 x_c[i] = x_c[i] + 1.1
Loop end

Blocksize: x/y/x = 64,1,1
Gridsize: x/y/z = 4,1,1

26

Data Copy and Kernel Launch (C)
• 256 results are being calculated
• Each thread calculates 1 result à 256 threads are needed
• Example: 4 blocks with 64 threads each

!*** Copy first array to GPU
 x_d = x ! Arrays were allocated with 256 elements

!*** Kernel launch 4 blocks with 64 threads each
 blocksize = dim3(4, 1, 1)
 gridsize = dim3(64, 1, 1)

!*** Kernel launch
 call add<<<gridsize,blocksize>>>(x_d, n)

!*** Barrier
 ierr = cudaDeviceSynchronize()

!*** Copy result back from GPU
 x = x_d

/* copy x to x_d on GPU */
cudaMemcpy(x_d, x, 256*sizeof(float), cudaMemcpyHostToDevice);

/* launch kernel on GPU 4 blocks with 64 threads each */
dim3 blockSize(4);
dim3 gridSize(64);

/* Kernel launch */
add<<<gridSize,blockSize>>>(x_d, n);

/* Barrier */
cudaDeviceSynchronize();

/* copy x_d to x on CPU */
cudaMemcpy(x, x_d, 256*sizeof(float), cudaMemcpyDeviceToHost);

27

CUDA Mini-Lab

Lars Koesterke
Hanning Chen

Please find the slides at

28

Introduction to a Short Lab

• Access Lonestar 6 and its GPU nodes (Nvidia A30)
• Inspect source code
• Compile code
• Run jobs
• Interpret results

Unfortunately, time does not permit a full lab with source code manipulation

What you will learn

29

ACES

How to compile and run CPU and GPU demo codes on Texas A&M’s Launch cluster

Step 1: Log onto TAMU’s Launch cluster by clicking on https://portal-aces.hprc.tamu.edu/

Step 2: Open a terminal: Clusters >_launch Shell Access

Step 3: Copy the demo codes by typing: cp /scratch/training/tamu_cuda_labs_2024.tar.gz

Step 4: Decompress the tar ball: tar xvfz tamu_cuda_labs_2024.tar.gz

Step 5: Read the file named “README” under folder “1D_ARRAY” for more instructions

Step 6: To compile the CPU demo code, enter the CPU folder and type: make -f Makefile_cpu

Step 7: To execute the CPU demo code, type: ./runjob_interactive.sh

Step 8: Enter the GPU folder and load the CUDA module by typing: module load CUDA

Step 9: To compile the GPU demo code, type: make -f Makefile_gpu

Step 10: To execute the GPU demo code, type: ./runjob_interactive.sh

Lab: CPU & 1st GPU experiment

Inspect the source code
• Is the CPU code serial or parallel?
• How many cores does the CPU code use?

• How many threads are being used on the GPU?
• How many SM’s are being used?
• Is the GPU code faster?
• Do you see good scaling?
• How fast is the data transfer?

• Compile and run the GPU experiment
• cd GPU_Experiment_1
• module load cuda
• make –f Makefile_gpu
• sbatch runjob_EXP1.sh

1

2

3

CPU code

for(unsigned long i = 0; i<SIZE; i++){
cpu_array[i] = sqrt((float) i) * sqrt((float) i);

32

• Compile and run the CPU baseline
• cd CPU
• make –f Makefile_cpu
• sbatch runjob_CPU.sh

Codes
array_cpu.c
array_gpu.cu

Monitor the queues
showq –l –u # your jobs
showq –l | grep gpu-a100 # All jobs in the A100 GPU queue
 # Jobs with run-time = 3 mins are from this lab exercise

#SBATCH –A training_may21

srun --reservation training_may21 --time=00:04:00 --mem=10G --cpus-per-task=1 --pty bash

Lab: CPU & first GPU experiment (2)
GPU source code

33

GPU kernel
__global__ void kernel(float* gpu_array, unsigned long SIZE) {
// Helper indices:
// global_index: global index in the gpu_array
// ntotal_threads: total number of threads
// niter: number of iterations for each GPU thread
// ipos: position of the thread
// global_index: index of array element

unsigned global_index;
unsigned long ntotal_threads = gridDim.x*blockDim.x;
unsigned long niter = SIZE / ntotal_threads;
unsigned long ipos = blockIdx.x*blockDim.x + threadIdx.x;
for(unsigned long i = 0;i<niter;i++){

global_index = ipos + ntotal_threads*i;
 gpu_array[global_index] = sqrt((float) global_index)*sqrt((float) global_index);
}

Launching the kernel
kernel<<<gridsize,blocksize>>>(gpu_array, SIZE);

Synchronizing the Device
cudaDeviceSynchronize();

Copy from device to host
cudaMemcpy(cpu_array, gpu_array,SIZE*sizeof(float), cudaMemcpyDeviceToHost);

Every threads calculates multiple results
Simple example:
128 elements (SIZE) and 32 threads

Every thread calculates 4 results
niter = 4 (i-loop)

Thread (pos) Elements
0 0, 32, 64, 96
1 1, 33, 65, 97
…
31 31, 63, 95, 127

index = (32 x i) + pos

array[index] = <actual calculation>

The job
a.out 320000000 1 64 # 1 x 64 threads # 1 SM 64 threads
a.out 320000000 2 64 # 2 x 64 threads # 2 SMs 128 threads
a.out 320000000 4 64 # 4 x 64 threads # 4 SMs 256 threads

Lab: CPU & 1st GPU experiment

Differences
• CPU hides latency by prefetching data à

the code should move in order through
array

• GPU hides latency by using very large
number of threads à no specific order
required

1

2

34

Similarities CPU vs GPU code
• Vector lanes = threads
• Lane #0: element 0, 15, 31, etc.
• Cuda-core #0: 0, 31, 63, etc.

Scaling is pretty linear
• 1 SM w/ 64 threads
• 2 SM w/ 128 threads
• 4 SM w/ 256 threads
The linear scaling will end when memory
bandwidth is exhausted, which will happen
before you employ all 144 SMs.

The situation is similar for parallel CPU code

3

Lab: CPU & 2nd GPU experimentCodes
array_gpu.cu

Analysis
• Below 32 threads

• CUDA-cores of a warp are left idle
• Linear speedup 1 to 32 threads

• Above 32 threads
• Multiple warps compete for resources
• More parallelism helps
• Scaling quite good

• Compile and run the GPU experiment
• cd GPU_Experiment_2
• make –f Makefile_gpu
• sbatch runjob_EXP2.sh

1

2

3

Experiment (on your own)

Write a new job that uses 2048 threads
What will happen? 35

• Inspect the job file
The job
a.out 320000000 1 1 # 1 x 1 threads # 1 SM, partial warp
a.out 320000000 1 2 # 1 x 2 threads
a.out 320000000 1 4 # 1 x 4 threads
…
a.out 320000000 1 32 # 1 x 32 threads # 1 SM, 1 warp
a.out 320000000 1 64 # 1 x 64 threads # 1 SM, 2 warps
…

Nvidia Hardware
• A100 GPU allow for

– Up to 1024 threads in one block
– One SM can host up to 2048 threads

• The experiment with 1 block and 2048
threads fails

36

This concludes the lab

37

Stencil Update
Homework example that I give to my students

A common operation in scientific computing is digital convolution, by which each element in a
multi-dimensional grid is replaced by a weighted sum of its neighbors. This has applications in
graphics, in which such operations are done to both blur and sharpen images, and in numerical
simulations, in which this may be a single step in a Poisson solver.
Write serial code for CPUs either in Fortran90 or in C. In the next homework you will port
the code to the GPU and will compare timings on the CPU and the GPU.
Outline:
Define two 2D arrays (x, y) in your code. Initialize one array (x) with random numbers between
0 and 1. Derive the elements of the second array (y) from the first array by smoothing over the
elements of the first array, using the constants a, b and c:

y(i,j) = a · (x(i-1,j-1) + x(i-1,j+1) + x(i+1,j-1) + x(i+1,j+1)) +
 b · (x(i-1,j+0) + x(i+1,j+0) + x(i+0,j-1) + x(i+0,j+1)) +
 c · x(i+0,j+0)

Count the elements that are smaller than a threshold t in both arrays and print the number for
both arrays.

38

Serial Code: Stencil Update

• I’ll show the whole source code for a serial CPU version on the
slides, so that you’ll be able to look at the complete code later
on.

• I’ll focus on the “smoothing” routine, which we will port to the
GPU using CUDA

39

Data Layout
• Arrays x and y with (n+2) times (n+2) elements

• Inner elements (n by n) are going to be modified

• Ghost-layers, used in x and y direction, are not updated

• Provided boundaries “eliminates” the need for if statements in the
code

40

Data Allocation
• Allocation on the heap:

– More flexible

– Stack size is limited

• Allocation in 1 step (for C programmers: no array of pointers pointing
to non-consecutively stored rows or columns)

!*** Number of array elements in one direction
 integer :: n = 2**14
!*** Smoothing constants
 real :: a = 0.05, &
 b = 0.1, &
 c = 0.4
!*** Threshold
 real :: t = 0.1
!*** Input and output array
 real, dimension(:,:), allocatable :: x, y

!*** Allocate input array
 allocate(x(0:n+1,0:n+1), stat=istat)
 allocate(y(0:n+1,0:n+1), stat=istat)

int n,nbx,nby;
 float a,b,c,
 t,
 *x, *y;
 Timer timer;

/* n - number of elements in one direction */
 n = 1 << 14; /* 2^14 == 16384 */

/* a,b,c - smoothing constants */
 a = 0.05;
 b = 0.1;
 c = 0.4;

/* t - threshold */
 t = 0.1;

/* allocate x */
 x = new float[(n+2)*(n+2)];

/* allocate y */
 y = new float[(n+2)*(n+2)]; 41

Calls to Initialize, Smooth, Count
• All are subroutine / void function calls

• All information through subprogram parameters

• No global variables!

!*** Initialize array x
call initialize(x, n)

!*** Derive second array from first array
call smooth(y, x, n, a, b, c)

!*** Count elements in first array
call count(x, n, t, nbx)

!*** Count elements in second array
call count(y, n, t, nby)

/* initialize x */
initialize(x, n);

/* smooth x into y */
smooth(y, x, n, a, b, c);

/* count elements in first array */
count(x, n, t, nbx);

/* count elements in second array */
count(y, n, t, nby);

42

Initialization and Smoothing
• In C: Index calculation “by hand”
• xi,j = x[(n-1)*i + j]

• Fortran: random_number is an elemental function

!*** Initialize with random numbers
subroutine initialize(x, n)
real, dimension(0:n+1,0:n+1) :: x
call random_number(x)
end subroutine

!*** Smooth data
subroutine smooth(y, x, n, a, b, c)
real, dimension(0:n+1,0:n+1) :: x, y
do j=1, n
 do i=1, n
 y(i,j) = a * (x(i-1,j-1) + x(i-1,j+1) + &
 x(i+1,j-1) + x(i+1,j+1)) + &
 b * (x(i-0,j-1) + x(i-0,j+1) + &
 x(i-1,j-0) + x(i+1,j+0)) + &
 c * x(i,j)
 enddo
enddo

end subroutine

void initialize(float* x, int n)
{
 int n2 = n+2;
 for (int i=0; i<n2; ++i)
 for (int j=0; j<n2; ++j)
 x[i*n2 + j] = random() / (float) RAND_MAX;
}
void smooth(float* y, float* x, int n,
 float a, float b, float c)
{
 int n2 = n+2;
 for (int i=1; i<=n; ++i)
 for (int j=1; j<=n; ++j)
 y[i*n2 + j] = a * (x[(i-1)*n2 + (j-1)] +
 x[(i-1)*n2 + (j+1)] +
 x[(i+1)*n2 + (j-1)] +
 x[(i+1)*n2 + (j+1)])
 + b * (x[i*n2+(j-1)] +
 x[i*n2+(j+1)] +
 x[(i-1)*n2 + j] +
 x[(i+1)*n2 + j])
 + c * x[i*n2 + j];
}

The function/subroutine smooth
will become a kernel later!

43

Counting

• Count could have been a function!

• Return value is communicated through an argument

!*** Count elements below threshold
subroutine count(x, n, t, nbx)

real, dimension(0:n+1,0:n+1) :: x

nbx = 0

do j=1, n
 do i=1, n
 if (x(i,j) < t) then
 nbx = nbx + 1
 endif
 enddo
enddo

end subroutine

void count(float* x, int n, float t, int &nbx)
{
 nbx = 0;
 int n2 = n+2;
 for (int i=1; i <= n; ++i)
 for (int j=1; j <= n; ++j)
 if (x[i*n2 + j] < t)
 ++nbx;
}

44

Sample Output

The output of your code may look like this:
Summary

Number of elements in a row/column :: 16386
Number of inner elements in a row/column :: 16384
Total number of elements :: 268500996
Total number of inner elements :: 268435456
Memory (GB) used per array :: 1.00024
Threshold :: 0.10
Smoothing constants (a, b, c) :: 0.05 0.10 0.40
Number of elements below threshold (X) :: 26847453
Fraction of elements below threshold :: 1.00015E-01
Number of elements below threshold (Y) :: 2950
Fraction of elements below threshold :: 1.09896E-05

Action :: time/s Time resolution = 1.0E-04

CPU: Alloc-X :: 0.000
CPU: Alloc-Y :: 0.000
CPU: Init-X :: 3.904
CPU: Smooth :: 1.434
CPU: Count-X :: 0.397
CPU: Count-Y :: 0.384

45

Formatted Output (Fortran)

!*** Print number of elements below threshold
write (0,*)
write (0,'(a)') 'Summary’
write (0,'(a)') '-------’
write (0,'(a,i14)') 'Number of elements in a row/column :: ', n+2
write (0,'(a,i14)') 'Number of inner elements in a row/column :: ', n
write (0,'(a,i14)') 'Total number of elements :: ', (n+2)**2
write (0,'(a,i14)') 'Total number of inner elements :: ', n**2
write (0,'(a,f14.5)') 'Memory (GB) used per array :: ', real((n+2))**2 * 4. / (1024.**3)
write (0,'(a,f14.2)') 'Threshold :: ', t
write (0,'(a,3(f4.2,1x))') 'Smoothing constants (a, b, c) :: ', a, b, c
write (0,'(a,i14)') 'Number of elements below threshold (X) :: ', nbx
write (0,'(a,es14.5)') 'Fraction of elements below threshold :: ', real(nbx) / n**2
write (0,'(a,i14)') 'Number of elements below threshold (Y) :: ', nby
write (0,'(a,es14.5)') 'Fraction of elements below threshold :: ', real(nby) / n**2

46

Formatted Output (C++ & C)
std::cout << std::endl;
std::cout << "Summary" << std::endl;
std::cout << "-------" << std::endl;
std::cout << "Number of elements in a row/column :: " << n+2 << std::endl;
std::cout << "Number of inner elements in a row/column :: " << n << std::endl;
std::cout << "Total number of elements :: " << (n+2)*(n+2) << std::endl;
std::cout << "Total number of inner elements :: " << n*n << std::endl;
std::cout << "Memory (GB) used per array :: " << (n+2)*(n+2)*sizeof(float) / (float)(1024*1024*1024) << std::endl;;
std::cout << "Threshold :: " << t << std::endl;
std::cout << "Smoothing constants (a, b, c) :: " << a << " " << b << " " << c << std::endl;
std::cout << "Number of elements below threshold (X) :: " << nbx << std::endl;
std::cout << "Fraction of elements below threshold :: " << nbx / (float)(n*n) << std::endl;
std::cout << "Number of elements below threshold (Y) :: " << nby << std::endl;
std::cout << "Fraction of elements below threshold :: " << nby / (float)(n*n) << std::endl;

printf("\n");
printf("Summary\n");
printf("-------\n");
printf("Number of elements in a row/column :: %d\n", n+2);
printf("Number of inner elements in a row/column :: %d\n", n);
printf("Total number of elements :: %d\n", (n+2)*(n+2));
printf("Total number of inner elements :: %d\n", n*n);
printf("Memory (GB) used per array :: %g\n", (n+2)*(n+2)*sizeof(float) / (float)(1024*1024*1024));
printf("Threshold :: %g\n", t);
printf("Smoothing constants (a, b, c) :: %g %g %g\n", a,b,c);
printf("Number of elements below threshold (X) :: %d\n", nbx);
printf("Fraction of elements below threshold :: %g\n", nbx / (float)(n*n));
printf("Number of elements below threshold (Y) :: %d\n", nby);
printf("Fraction of elements below threshold :: %g\n", nby / (float)(n*n));

47

Timing
• We will be using timers left and right

• You can use a simple timer

• Our implementation uses a timer object.

• What is an object?

• How to declare an object?

• How to call an object?

!*** Timing information
class(cls_timer) :: timer

!*** Count elements in second array
call timer%start('CPU: Count-Y')
call count(y, n, t, nby)
call timer%stop

/* timer of class Timer */
Timer timer;

 /* count elements in second array */
timer.start("CPU: Count-Y");
count(y, n, t, nby);
timer.stop();

48

Timing
• An object is a structure (class)

– That contains data (instance variables)

– That has ”procedures” attached (methods)

– The data is hidden and can only be accessed through the methods

– A method may have arguments

• Name-of-object: delimiter method
– Fortran: timer%start

– C: timer.start

!*** Timing information
class(cls_timer) :: timer

!*** Count elements in second array
call timer%start('CPU: Count-Y')
call count(y, n, t, nby)
call timer%stop

/* timer of class Timer */
Timer timer;

 /* count elements in second array */
timer.start("CPU: Count-Y");
count(y, n, t, nby);
timer.stop();

49

Timing
• A class contains private data and public methods

type, public :: cls_timer

private
integer :: n = 0
integer(8), dimension(2,m) :: it
integer(8) :: itr
character(len=16), dimension(m) :: c

contains

procedure, public :: reset
procedure, public :: start
procedure, public :: stop
procedure, public :: print

endtype cls_timer

contains

subroutine reset(this)

class(cls_timer) :: this
this%n = 0
this%it = -1
this%c = 'undef'

end subroutine

…

class Timer
{
public:
 Timer(): n(0) { }
 void start(std::string label)
 {
 if (n < 20)
 { labels[n] = label; times[2*n] = clock(); }
 else { std::cerr << "No more timers, " << label
 << " will not be timed." << std::endl; }
 }

 void stop() { times[2*n+1] = clock(); n++;}
 void reset() { n=0; }
 void print();
private:
 std::string labels[20];
 float times[40];
 int n;
};
…

50

Most important method: Printing

void Timer::print()
{
 std::cout << std::endl;
 std::cout << "Action :: time/s Time resolution = " << 1.f/(float)CLOCKS_PER_SEC << std::endl;
 std::cout << "------" << std::endl;
 for (int i=0; i < n; ++i)
 std::cout << labels[i] << " :: " << (times[2*i+1] - times[2*i+0])/(float)CLOCKS_PER_SEC << std::endl;
}

subroutine print(this)

 class(cls_timer) :: this

 write (0,*)
 write (0,'(a,es7.1)') 'Action :: time/s Time resolution = ', 1./real(this%itr)
 write (0,'(a)') '------'
 do i=1, this%n
 write (0,'(a16,a, f7.3)') this%c(i), ' :: ', &
 (real(this%it(2,i) - this%it(1,i))) / real(this%itr)
 enddo

end subroutine

51

Invoke printing by
• Invoking the method print

• If you need another (probably nested) timer: create another object

/* Print timings */
timer.print();

!*** Print timings
 call timer%print

!*** Timing information
class(cls_timer) :: timer, timer2

!*** Count elements in second array
call timer2%start('CPU: Count-XY')
 call timer%start('CPU: Count-X')
 call count(x, n, t, nbx)
 call timer%stop
 call timer%start('CPU: Count-Y')
 call count(y, n, t, nby)
 call timer%stop
call timer2%stop

/* timer of class Timer */
Timer timer timer2;

 /* count elements in second array */
timer2.start("CPU: Count-XY");
 timer.start("CPU: Count-X");
 Count(x, n, t, nbx);
 timer.stop();
 timer.start("CPU: Count-Y");
 count(y, n, t, nby);
 timer.stop();
timer2.stop();

52

Header files; Modules
• Fortran: Subroutines/Functions/Class are declared in Modules

– Modules become available by use association

– This implies also an order of compilation: Modules first, then code that uses the
module

• C/C++: Header files are used to communicate the interface

/* Header files needed for HW0
 I/O
 timer
 strings */
#include <iostream>
#include <sys/time.h>
#include <string>

! Example for a module
Module my_mod
Contains
Subroutine do_this(x, y, z)
…
End subroutine
End module

Program main
Use my_mod
Call do_this(a,b,c)
End program

53

Converting the Serial Code to
CUDA Code

54

Why a Stencil Update and not a Matrix-
Matrix-Multiply

• Matrix-Matrix-Multiply (MMM) is a very simple example
– Matrices are divided up into tiles
– Operations on a tile require only data of that tile (no boundary needed)
– Most books cover MMM
– You will almost never code a MMM (or any Linear Algebra routine) yourself, but

rather use a library

• The setup of a Stencil update is more complex
– A stencil update needs the boundaries around a tile
– The operation is simpler, though

55

Pseudo Code

Loop until work is done
1. Setup data on CPU
2. Transfer input data to GPU
3. Perform work on GPU (3 different schemes)

1. using “Main Memory”
2. using “Shared Memory”
3. Different ways to setup threads

4. Transfer results back from GPU
EndLoop

Simple execution scheme: CPU, Transfer, GPU, …

Efficient Kernel Execution on GPU

56

Pseudo Code

Loop until work is done. Parts (1) (2) (3) (4)(…)
1. Setup(1)
2. Transfer-in(1) Setup(2)
3. GPU-work(1) Transfer-in(2)
4. Transfer-out(1) GPU-work(2)
5. Transfer-out(2)
EndLoop

Interleaved execution scheme: CPU, Transfer, GPU, …

Efficient Kernel Execution on GPU
Efficient Data Transfer

57

Pseudo Code

Loop until work is done
1. Setup(1) CPU-work(3)
2. Transfer-in(1) Setup(2) CPU-work(3)
3. GPU-work(1) Transfer-in(2) CPU-work(3)
4. Transfer-out(1) GPU-work(2) CPU-work(3)
5. Transfer-out(2) CPU-work(3)

EndLoop

Interleaved execution scheme with CPU: CPU, Transfer, GPU, …

Efficient Kernel Execution on GPU
Efficient Data Transfer
Simultaneous use of the GPU and CPU

58

Data Allocation: Fortran
• Declaration with special attribute: device

• Allocation with normal allocate
float *x_d, *y_d;

 /* allocate device input array x_d */
 timer.start("GPU: Alloc-X_D ");
 cudaMalloc((void**) &x_d, (n+2)*(n+2)*sizeof(float));
 timer.stop();

 /* allocate device output array y_d */
 timer.start("GPU: Alloc-Y_D ");
 cudaMalloc((void**) &y_d, (n+2)*(n+2)*sizeof(float));
 timer.stop();

real, dimension(:,:), allocatable, device :: d_x, &
 d_y

!*** Allocate input array on device
 call timer%start('GPU: Alloc-D_X')
 allocate(d_x(0:n+1,0:n+1), stat=istat)
 call timer%stop
 if (istat /= 0) then
 write (*,*) 'Allocation of d_x failed'
 stop 'Fatal ERROR in Main Program HW2'
 endif

!*** Allocate output array on device
 call timer%start('GPU: Alloc-D_Y')
 allocate(d_y(0:n+1,0:n+1), stat=istat)
 call timer%stop
 if (istat /= 0) then
 write (*,*) 'Allocation of d_y failed'
 stop 'Fatal ERROR in Main Program HW2'
 endif

59

Data Allocation: C
• Allocation with special malloc call: cudaMalloc()

real, dimension(:,:), allocatable, device :: d_x, &
 d_y

!*** Allocate input array on device
 call timer%start('GPU: Alloc-D_X')
 allocate(d_x(0:n+1,0:n+1), stat=istat)
 call timer%stop
 if (istat /= 0) then
 write (*,*) 'Allocation of d_x failed'
 stop 'Fatal ERROR in Main Program HW2'
 endif

!*** Allocate output array on device
 call timer%start('GPU: Alloc-D_Y')
 allocate(d_y(0:n+1,0:n+1), stat=istat)
 call timer%stop
 if (istat /= 0) then
 write (*,*) 'Allocation of d_y failed'
 stop 'Fatal ERROR in Main Program HW2'
 endif

float *x_d, *y_d;

 /* allocate device input array x_d */
 timer.start("GPU: Alloc-X_D ");
 cudaMalloc((void**) &x_d, (n+2)*(n+2)*sizeof(float));
 timer.stop();

 /* allocate device output array y_d */
 timer.start("GPU: Alloc-Y_D ");
 cudaMalloc((void**) &y_d, (n+2)*(n+2)*sizeof(float));
 timer.stop();

60

Why Tiling?

• A GPU has multiple Streaming Multiprocessors (SMs), which are
similar to the multiple cores of a CPU

• To use more than 1 SM, the problem must be divided up
• Each SM will work on one (or more) tiles

61

Data Copy and Kernel Launch (F90)
• Block size: 16x16
• Assumption: Grid (n) is divisible by 16
• Coding for arbitrary adds a bit of complexity

/* copy x_h to x_d on GPU */
 timer.start("GPU: Copy-in ");
 cudaMemcpy(x_d, x, (n+2)*(n+2)*sizeof(float), cudaMemcpyHostToDevice);
 timer.stop();

 /* launch smooth() on GPU */
 int nBlocks = 16;
 dim3 blockSize(nBlocks, nBlocks);
 dim3 gridSize(n/nBlocks, n/nBlocks);
 timer.start("GPU: Smooth ");
 smooth_gpu<<<gridSize,blockSize>>>(y_d, x_d, n, a, b, c);
 cudaDeviceSynchronize();
 timer.stop();

 /* copy y_d to y_h on CPU */
 timer.start("GPU: Copy-out ");
 cudaMemcpy(y_h, y_d, (n+2)*(n+2)*sizeof(float), cudaMemcpyDeviceToHost);
 timer.stop();

!*** Copy first array to GPU
 call timer%start('GPU: Copy-in')
 d_x = x
 call timer%stop

!*** Kernel launch
 nblock = 16
 blocksize = dim3(nblock, nblock, 1)
 gridsize = dim3(n/nblock, n/nblock, 1)
 call timer%start('GPU: Smooth')
 call smooth_gpu<<<gridsize,blocksize>>>(d_y, d_x, n, a, b, c)
 ierr = cudaThreadSynchronize()
 call timer%stop

!*** Copy result back from GPU
 call timer%start('GPU: Copy-out')
 yd = d_y
 call timer%stop

62

Data Copy and Kernel Launch (C)
• Block size: 16x16
• Assumption: Grid (n) is divisible by 16
• Coding for arbitrary grid sizes adds a bit of complexity

!*** Copy first array to GPU
 call timer%start('GPU: Copy-in')
 d_x = x
 call timer%stop

!*** Kernel launch
 nblock = 16
 blocksize = dim3(nblock, nblock, 1)
 gridsize = dim3(n/nblock, n/nblock, 1)
 call timer%start('GPU: Smooth')
 call smooth_gpu<<<gridsize,blocksize>>>(d_y, d_x, n, a, b, c)
 ierr = cudaThreadSynchronize()
 call timer%stop

!*** Copy result back from GPU
 call timer%start('GPU: Copy-out')
 yd = d_y
 call timer%stop

/* copy x_h to x_d on GPU */
 timer.start("GPU: Copy-in ");
 cudaMemcpy(x_d, x, (n+2)*(n+2)*sizeof(float), cudaMemcpyHostToDevice);
 timer.stop();

 /* launch smooth() on GPU */
 int nBlocks = 16;
 dim3 blockSize(nBlocks, nBlocks);
 dim3 gridSize(n/nBlocks, n/nBlocks);
 timer.start("GPU: Smooth ");
 smooth_gpu<<<gridSize,blockSize>>>(y_d, x_d, n, a, b, c);
 cudaDeviceSynchronize();
 timer.stop();

 /* copy y_d to y_h on CPU */
 timer.start("GPU: Copy-out ");
 cudaMemcpy(y_h, y_d, (n+2)*(n+2)*sizeof(float), cudaMemcpyDeviceToHost);
 timer.stop();

63

Fortran Kernel
• Kernel operates on the data stored in the main (GPU) memory
• Indices i and j are calculated from blockdim and blockidx
• Fortran example shown with full module environment

__global__ void smooth_gpu(float* y, float* x, int n, float a, float b, float c)
{

int n2 = n+2, i, j;

i = blockDim.x * blockIdx.x + threadIdx.x + 1; // add one to start from index 1
j = blockDim.y * blockIdx.y + threadIdx.y + 1;

y[i*n2 + j] = a * (x[(i-1)*n2 + (j-1)] + x[(i-1)*n2 + (j+1)] +
x[(i+1)*n2 + (j-1)] + x[(i+1)*n2 + (j+1)])

+ b * (x[i*n2+(j-1)] + x[i*n2+(j+1)] +
x[(i-1)*n2 + j] + x[(i+1)*n2 + j])

+ c * x[i*n2 +j];
}

module mod_gpu
!*** Use CUDA module
 use, intrinsic :: cudafor

 contains
!*** Smooth data
 attributes(global) subroutine smooth_gpu(d_y, d_x, n, a, b, c)

 real, dimension(0:n+1,0:n+1) :: d_x, d_y
 real, value :: a, b, c
 integer, value :: n
 integer :: i, j

 i = blockdim%x * (blockidx%x - 1) + threadidx%x
 j = blockdim%y * (blockidx%y - 1) + threadidx%y

 d_y(i,j) = a * (d_x(i-1,j-1) + d_x(i-1,j+1) + d_x(i+1,j-1) + d_x(i+1,j+1)) + &
 b * (d_x(i-0,j-1) + d_x(i-0,j+1) + d_x(i-1,j-0) + d_x(i+1,j+0)) + &
 c * d_x(i,j)

 end subroutine
end module mod_gpu

64

C Kernel
• Kernel operates on the data in the main (GPU) memory

• Indices i and j are calculated from blockdim and blockidx

module mod_gpu
!*** Use CUDA module
 use, intrinsic :: cudafor

 contains
!*** Smooth data
 attributes(global) subroutine smooth_gpu(d_y, d_x, n, a, b, c)

 real, dimension(0:n+1,0:n+1) :: d_x, d_y
 real, value :: a, b, c
 integer, value :: n
 integer :: i, j

 i = blockdim%x * (blockidx%x - 1) + threadidx%x
 j = blockdim%y * (blockidx%y - 1) + threadidx%y

 d_y(i,j) = a * (d_x(i-1,j-1) + d_x(i-1,j+1) + d_x(i+1,j-1) + d_x(i+1,j+1)) + &
 b * (d_x(i-0,j-1) + d_x(i-0,j+1) + d_x(i-1,j-0) + d_x(i+1,j+0)) + &
 c * d_x(i,j)

 end subroutine
end module mod_gpu

__global__ void smooth_gpu(float* y, float* x, int n, float a, float b, float c)
{

int n2 = n+2, i, j;

i = blockDim.x * blockIdx.x + threadIdx.x + 1; // add one to start from index 1
j = blockDim.y * blockIdx.y + threadIdx.y + 1;

y[i*n2 + j] = a * (x[(i-1)*n2 + (j-1)] + x[(i-1)*n2 + (j+1)] +
x[(i+1)*n2 + (j-1)] + x[(i+1)*n2 + (j+1)])

+ b * (x[i*n2+(j-1)] + x[i*n2+(j+1)] +
x[(i-1)*n2 + j] + x[(i+1)*n2 + j])

+ c * x[i*n2 +j];
}

65

Using “Shared Memory”
• If data is re-used a huge performance gain can be achieved by

copying sections of the data into the (small) shared memory of
the SM

• In the example every element is used 9 times to calculate the
average

• In other words, each cell can be the northern, southern,
eastern, or western, or diagonal’ neighbor of an element

• I will show how allocate shared memory, and how to copy
(inside the kernel), data from main GPU memory to the shared
memory

• Note: In a Matrix-Matrix-Multiply every element is used n times
(loosely speaking)

66

Using “Shared Memory”
• I will employ 3 different strategies

1. Simple, but very slow: Only one thread is copying the data

2. Fast (16x16 threads):
1. Most threads copy one element

2. Some threads are copying more than one element

3. All threads are calculating one result

3. Fast (18x18) threads:
1. All threads are copying exactly one element

2. Not all threads are calculating a result

– Remember: A tile contains 16x16 elements, but the data covers an 18x18
patch (Boundary condition)

• 16x16 elements are calculated from
18x18 elements

67

Shared Memory: Fortran Kernel (sh1)
• Only the first thread copies data to shared memory
• Synchronization prevents threads from moving ahead
• Shared memory holds 18x18 elements

attributes(global) subroutine smooth_gpu_sh1(d_y, d_x, n, a, b, c)
 integer, value :: n
 integer :: i, j
 real, dimension(0:n+1,0:n+1) :: d_x, d_y
 real, dimension(0:17,0:17), shared :: xb
 real, value :: a, b, c
 k = blockdim%x * (blockidx%x - 1) + threadidx%x
 l = blockdim%y * (blockidx%y - 1) + threadidx%y
 i = threadidx%x
 j = threadidx%y
!*** Data copy
 if (i == 1 .and. j == 1) then
 do n2=0, blockdim%y+1
 do n1=0, blockdim%x+1
 xb(n1,n2) = d_x(k+n1-1,l+n2-1)
 enddo
 enddo
 endif
!*** Synchronize
 call syncthreads()
!*** Action
 d_y(k,l) = a * (xb(i-1,j-1) + xb(i-1,j+1) + xb(i+1,j-1) + xb(i+1,j+1)) + &
 b * (xb(i-0,j-1) + xb(i-0,j+1) + xb(i-1,j-0) + xb(i+1,j+0)) + &
 c * xb(i,j)
end subroutine

68

Shared Memory: C Kernel (sh1)
• Only the first thread copies data to shared memory
• Synchronization prevents threads from moving ahead
• Shared memory holds 18x18 elements

__global__ void smooth_gpu_sh1(float* y, float* x, int n, float a, float b, float c)
{
 int n2 = n+2, i, j, k, l, block=18;
 __shared__ float xb[18*18];

 k = blockDim.x * blockIdx.x + threadIdx.x + 1; // add one to start from index 1
 l = blockDim.y * blockIdx.y + threadIdx.y + 1;
 i = threadIdx.x + 1;
 j = threadIdx.y + 1;

 /* copy data into shared buffer */
 if (i == 1 & j==1)
 {
 for (int ii=0; ii <= (blockDim.x+1); ++ii)
 for (int jj=0; jj <= (blockDim.y+1); ++jj)
 xb[ii*block + jj] = x[(k+ii-1)*n2 + (l+jj-1)];
 }
 __syncthreads();

 y[l*n2 + k] = a * (xb[(j-1)*block+(i-1)] + xb[(j-1)*block+(i+1)] +
 xb[(j+1)*block+(i-1)] + xb[(j+1)*block + (i+1)])\
 + b * (xb[j*block + (i-1)] + xb[j*block + (i+1)] +
 xb[(j-1)*block + i] + xb[(j+1)*block + i])
 + c * xb[j*block + i];
}

69

Shared Memory: Calling the Kernel (sh1)
• Block size: 16x16

• Assumption: Grid (n) is divisible by 16

{
nBlocks = 16;
blockSize = dim3(nBlocks, nBlocks);
gridSize = dim3(n/nBlocks), n/nBlocks));
smooth_gpu_sh1<<<gridSize,blockSize>>>(y_d, x_d, n, a, b, c);

}

!*** Block size: A tile must be 16x16!
 nblock = 16
 blocksize = dim3(nblock, nblock, 1)
 gridsize = dim3(n/nblock, n/nblock, 1)

 call smooth_gpu_sh1<<<gridsize,blocksize>>>(d_y, d_x, n, a, b, c)

70

Shared Memory: F90 Kernel (sh16)
attributes(global) subroutine smooth_gpu_sh16(d_y, d_x, n, a, b, c)
integer, value :: n
 integer :: i, j
 real, dimension(0:n+1,0:n+1) :: d_x, d_y
 real, dimension(0:17,0:17), shared :: xb
 real, value :: a, b, c
 k = blockdim%x * (blockidx%x - 1) + threadidx%x
 l = blockdim%y * (blockidx%y - 1) + threadidx%y
 i = threadidx%x
 j = threadidx%y
!*** Copy inner part: 16x16 elements
 xb(i,j) = d_x(k,l)
!*** Copy boundaries
!*** : x + corners
 if (i == 1) then
 xb(i-1,j) = d_x(k-1,l)
 if (j == 1) then
 xb(i-1,j-1) = d_x(k-1,l-1)
 xb(i-1,j+1) = d_x(k-1,l+1)
 else if (j == blockdim%y) then
 xb(i-1,j+1) = d_x(k-1,l+1)
 endif

else if (i == blockdim%x) then
 xb(i+1,j) = d_x(k+1,l)
 if (j == 1) then
 xb(i+1,j-1) = d_x(k+1,l-1)
 xb(i+1,j+1) = d_x(k+1,l+1)
 else if (j == blockdim%y) then
 xb(i+1,j+1) = d_x(k+1,l+1)
 endif
 endif
!*** : y
 if (j == 1) then
 xb(i,j-1) = d_x(k,l-1)
 else if (j == blockdim%y) then
 xb(i,j+1) = d_x(k,l+1)
 endif

!*** Synchronize
 call syncthreads()

!*** Action
 d_y(k,l) = a * (xb(i-1,j-1) + xb(i-1,j+1) + etc.

 end subroutine

Each thread copies one element

Threads close to boundary copy boundary

Threads close to the corner copy corner

71

Shared Memory: C Kernel (sh16)
__global__ void smooth_gpu_sh16(float* y, float* x, int n, float a, float b, float c)
{
 int n2 = n+2, i, j, k, l, block=18;
 __shared__ float xb[18*18];
 k = blockDim.x * blockIdx.x + threadIdx.x + 1; // add one to start from index 1
 l = blockDim.y * blockIdx.y + threadIdx.y + 1;
 i = threadIdx.x + 1;
 j = threadIdx.y + 1;
/* copy inner part: block x block elements */
 xb[j*block + i] = x[l*n2 + k];
/* copy boundaries */
/* x and corners */
if (i == 1)
 {
xb[j*block + (i-1)] = x[l*n2 + (k-1)];
if (j == 1)
 {
xb[(j-1)*block + (i-1)] = x[(l-1)*n2 + (k-1)];
xb[(j+1)*block + (i-1)] = x[(l+1)*n2 + (k-1)];
 }
else if (j == blockDim.y)
 {
xb[(j+1)*block + (i-1)] = x[(l+1)*n2 + (k-1)];
 }
 }

else if (i == blockDim.x)
 {
xb[j*block + (i+1)] = x[l*n2 + (k+1)];
if (j == 1)
 {
xb[(j-1)*block + (i+1)] = x[(l-1)*n2 + (k+1)];
xb[(j+1)*block + (i+1)] = x[(l+1)*n2 + (k+1)];
 }
else if (j == blockDim.y)
 {
xb[(j+1)*block + (i+1)] = x[(l+1)*n2 + (k+1)];
 }
 }
/* y */
if (j == 1)
xb[(j-1)*block + i] = x[(l-1)*n2 + k];
else if (j == blockDim.y)
xb[(j+1)*block + i] = x[(l+1)*n2 + k];
__syncthreads();
y[l*n2 + k] = a * (xb[(j-1)*18 + (i-1)] + etc.
}

Each thread copies one element

Threads close to boundary copy boundary

Threads close to the corner copy corner 72

Shared Memory: Calling the Kernel (sh16)
• Block size: 16x16

• Assumption: Grid (n) is divisible by 16

{
nBlocks = 16;
blockSize = dim3(nBlocks, nBlocks);
gridSize = dim3((int)ceilf(n/(float)nBlocks), (int)ceilf(n/(float)nBlocks));
smooth_gpu_sh16<<<gridSize,blockSize>>>(y_d, x_d, n, a, b, c);

}

!*** Block size: A tile must be 16x16!
 nblock = 16
 blocksize = dim3(nblock, nblock, 1)
 gridsize = dim3(n/nblock, n/nblock, 1)

 if (ckernel == 'global') then
 call timer%start('GPU: Smooth')
 call smooth_gpu16<<<gridsize,blocksize>>>(d_y, d_x, n, a, b, c)

73

Calling the first three kernels

1. No shared memory (16x16 threads)

2. Shared memory (16x16 threads)
– One thread copies data (sh1)

– All threads are copying data; some multiple elements

• To call these three kernels the same block/grid
structure is used
– Blocksize : 16x16

– Grid divided in tiles of 16x16 elements

74

Shared Memory: Calling the Kernel (sh18)
• Now, we would like to have 18x18 threads

– Each thread will copy exactly one data element

– Not all threads are joining the computation

• Tile is still 16x16

{
nBlocks = 18;
blockSize = dim3(nBlocks, nBlocks);
gridSize = dim3(n/16, n/16);
smooth_gpu_sh18<<<gridSize,blockSize>>>(y_d, x_d, n, a, b, c);

}

!*** Block size: A tile must be 16x16, but the thread block holds 18x18 threads
 nblock = 18
 blocksize = dim3(nblock, nblock, 1)
 gridsize = dim3(n/16, n/16, 1)

 call timer%start('GPU: Smooth')
 call smooth_gpu_sh18<<<gridsize,blocksize>>>(d_y, d_x, n, a, b, c)
 ierr = cudaThreadSynchronize()
 call timer%stop

75

Shared Memory: Fortran Kernel (sh18)

• Each thread
copies exactly one
element

• Only the first 256
threads calculate

attributes(global) subroutine smooth_gpu_sh18(d_y, d_x, n, a, b, c)
 integer, value :: n
 integer :: i, j
 real, dimension(0:n+1,0:n+1) :: d_x, d_y
 real, dimension(0:17,0:17), shared :: xb
 real, value :: a, b, c

 k = 16 * (blockidx%x - 1) + threadidx%x - 1
 l = 16 * (blockidx%y - 1) + threadidx%y - 1
 i = threadidx%x
 j = threadidx%y
!*** Copy tile from GPU memory to shared memory
 xb(i-1,j-1) = d_x(k,l)
!*** Synchronize
 call syncthreads()
!*** Linear thread index
 lind = blockdim%x * (threadidx%y - 1) + threadidx%x
!*** Select first 256 threads
 if (lind <= 256) then
 j = (lind-1) / 16 + 1
 i = lind - (j-1) * 16
 k = 16 * (blockidx%x - 1) + i
 l = 16 * (blockidx%y - 1) + j
!*** Action
 d_y(k,l) = a * (xb(i-1,j-1) + etc.
 endif
end subroutine

76

Shared Memory: C Kernel (sh18)

__global__ void smooth_gpu_sh18(float* y, float* x, int n, float
a, float b, float c)
{
 int n2 = n+2, i, j, k, l, lind;
 __shared__ float xb[18*18];

 k = 16 * blockIdx.x + threadIdx.x;
 l = 16 * blockIdx.y + threadIdx.y;
 i = threadIdx.x + 1;
 j = threadIdx.y + 1;

 /* copy tile to shared memory */
 xb[threadIdx.y*18 + threadIdx.x] = x[l*n2 + k];

 __syncthreads();

 /* compute linear thread index */
 lind = blockDim.x * threadIdx.y + threadIdx.x + 1;

 if (lind <= 256)
 {
 i = (lind-1) / 16 + 1;
 j = lind - (i-1) * 16;
 k = 16 * blockIdx.x + i;
 l = 16 * blockIdx.y + j;

 y[l*n2 + k] = a * (xb[(j-1)*18 + (etc.
}

• Each thread
copies exactly one
element

• Only the first 256
threads calculate

77

• Which kernel is the fastest?

• Obviously, using only 1 thread for the copy is slow
– I added this one only for educational purposes

– Any code that uses only 1 thread on an SM is slow

• But for the other 2 kernels it is not obvious, which one is faster
– Analysis of the occupancy: registers, shared memory, etc.

– Trial and error

Performance

78

• With an efficient kernel at hand, we can now tackle the second step

• To overlap communication with computation, we need
– Break the problem into several pieces (4 in the example)

• This requires to go from a 2d array to a 3d array
– 2d for the data, the last dimension (set to 4) is for the 4 pieces

• We can use the kernels that we have written, but we need to
– Call the kernels for one 2d slab of the 3d array

– Setup the data streams

Overlapping communication and
computation

79

This topic will become much less important in the future
• Nvidia’s new architecture (Grace-Hopper) integrates CPU and GPU into one device
• Host can see GPU memory
• GPU can see host memory
Other vendors (AMD, later Intel) are doing the same

Grace-Hopper is coming to TACC
Vista will be our new Nvidia system

Grace-Hopper
architecture

CPU: Grace (ARM architecture)
 72 cores
GPU: Hopper (based on H100)
 144 SMs

CPU memory: LPDDR5
GPU memory: HBM3

NVLINK between Grace and Hopper

One address space
• CPU can access HBM memory
• GPU can access DDR memory
• Bandwidth decreased and latency increased for ‘cross’ access

80
No immediate need to transfer data explicitly between host and ‘device’

• Inner elements (nxn) are going to be modified

• “2D” array (square) ➞ “3D” array (rectangles x “number of streams”)

• Example with 4 streams: ns = n/4; Inner elements: nxns or nsxn

• All rectangles need their own “boundaries”

Partitioning of the Problem

81

Not relevant for new architectures
with unified shared memory

• CUDA allows you to execute multiple “streams” simultaneously in
your code

• Parts of a stream are: (that we are interested in)
– Asynchronous data transfer operations (default is synchronous)

– Asynchronous kernel execution (default is asynchronous)

• How would this be executed if 4 streams are used?

• All 12 “operations” would be initiated at once

• GPU scheduler would decide in what order to execute

• The dependences inside a stream is maintained

Streams

“Pseudo code”

Loop over #-of streams: istream
 Asynchronous Copy xs{istream} to d_xs{istream}
 Kernel call for istream: smooth_gpu_sh1_p “Calculate d_ys from d_xs”
 Asynchronous Copy d_ys{istream} to ys{istream}
End Loop

Wait

82

Not relevant for new architectures
with unified shared memory

• Integer array that holds stream identifier

• Call to cudaStreamCreate creates a stream and returns an identifier,
which is an integer number

Stream Creation

Fortran

integer, dimension(4) :: id_stream

do istream=1, 4
 istat = cudaStreamCreate(id_stream(istream))
enddo

C/C++

int id_stream[4];

for (int istream=0; istream<4; ++i)
 cudaStreamCreate(id_stream[istream]);

83

Not relevant for new architectures
with unified shared memory

• Very similar the synchronous copy, but stream identifier is added

Asynchronous copy

“istat = “ cudaMemcpyAsync(destination, source, “size”, direction, id_stream(istream))

Notes Fortran:
Call returns an integer
Size is the number of elements
Direction is optional

Notes C/C++:
Function has no return value
Size is in bytes
Direction is not optional

84

Not relevant for new architectures
with unified shared memory

• Very similar to the normal Kernel launch

• 2 parameters added

• Size for shared memory transactions

• Stream ID

Kernel Invocation with Stream Reference

“call“ kernel<<<gridsize, blocksize, 0, id_stream(istream)>>>()

Notes Fortran:
Subroutine call

Notes C/C++:
Function call

85

Not relevant for new architectures
with unified shared memory

• Events work like “Barriers”

• An event is recorded when the code “passes” the barrier

• A barrier can be passed when all streams have finished operating
 (stream number = 0)

• A barrier can be passed when a particular stream has finished
(stream number >0)

• Events are of the type cudaEvent

• Syntax: “istat = “ cudaEventRecord(Event, stream-number)

Events

Declaration: An event is of a special type

Fortran:
type(cudaEvent) :: startEvent, stop Event

C/C++:
cudaEvent startEvent, stopEvent;

Example

“istat =“ cudaEventRecord(startEvent, 0)
“Start Timer”

“Do something with streams”

“Code will wait at the barrier until all
 stream operations are finished”
“istat =“ cudaEventRecord(stopEvent, 0)
“Stop timer”

86

Not relevant for new architectures
with unified shared memory

• Different scheduling ordering

• Scheme 1: One loop with Copy-Kernel-Copy

• Scheme 2: Three loops; Loop bodies are: Copy, Kernel, or Copy

Hardware and Scheduling

“Pseudo code: Scheme 1”

Loop over #-of streams: istream
 Asynchronous Copy xs{istream} to d_xs{istream}
 Kernel call for istream: smooth_gpu_sh1_p “Calculate d_ys from d_xs”
 Asynchronous Copy d_ys{istream} to ys{istream}
End Loop

“Pseudo code: Scheme 2”

Loop over #-of streams: istream
 Asynchronous Copy xs{istream} to d_xs{istream}
End Loop
Loop over #-of streams: istream
 Kernel call for istream: smooth_gpu_sh1_p “Calculate d_ys from d_xs”
End Loop
Loop over #-of streams: istream
 Asynchronous Copy d_ys{istream} to ys{istream}
End Loop

87

Not relevant for new architectures
with unified shared memory

• GPUs have multiple copy engines
– In this example, one is used to copy data in, one to copy data out

Loop over all ‘blocks’ (This is how your stream is organized in the code)

 Copy-in

 Compute

 Copy-out

End loop

Lonestar

Engine With multiple copy engines

Copy-in
Kernel
Copy-out

Engine If there was only one copy engine (old hardware)

Copy-in
Kernel
Copy-out

4 different blocks of work
1 2 3 4

88

Not relevant for new architectures
with unified shared memory

Using Host and GPU together

• Simple expansion of the “overlap” concept

• Think of dividing the domain into 5 pieces
– 4 would be executed on the GPU (w/ overlap)

– The 5th piece is executed on the host

• Challenges
– Load-balancing

– For static problems
• Determine the relative speeds

• Adjust the tile sizes accordingly

• In real applications this will may not be applicable

89

Multiple nodes (MPI)

• One node with a GPU is already a cluster
– Multiple memories, multiple address spaces

• Easiest way to expand to a cluster
– Use MPI to divide the work among the nodes and GPUs

– Potentially use CUDA to divide work assigned to a node between the host
CPU(s) and the GPU(s)

– A process on the host communicates with
• MPI processes communicate with other MPI tasks

• ‘Processes’ / kernels on the GPU communicate with kernels on other GPUs
– Direct communication, host not involved

• MPI is the outer frame-work

• CUDA kernels are on the inside
– CUDA kernels may contain MPI calls

• Comparable to: MPI/OpenMP — Outside/Inside
90

Summary

• Writing efficient code for GPUs requires
– An efficient kernel that uses (if applicable) shared memory (or

texture/constant)

– Efficient data transfer that overlaps with computations

– Uses the cores of the CPU while also asynchronously executing
on the GPU; applies to HPC clusters that have powerful hosts
(most clusters available in XSEDE)

• Translation of host code to CUDA
– Use a grid of blocks to keep all SMs busy; an SM executes one or

more blocks

– Use the blocks to keep all CUDA cores in an SM busy; execution
in lockstep, like the Vector lanes of a CPU core

– Attention to detail is required

91

Thank You

92

