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Atmospheric Models

An Atmospheric Model: The computer code implementation
of a mathematical algorithm to model the spatiotemporal
evolution of the atmospheric state

Illustration: (Left) Atmospheric state at time t , (Right) Model prediction of the
atmospheric state for time t
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Specific purposes of atmospheric modeling considered
in this talk:

Weather prediction
Climate Simulations

Weather prediction has always been a big data problem
requiring new technologies and novel ideas to use them.
For example, he first official U.S. weather forecast was
issued on February 19, 1871, which was made possible by

the availability of a new technology called the telegraph
(patented in 1837 and first used to send a message in 1844
by Samuel Morse)
the organization of a network of observing stations, and
the development of a coding system to transmit the
observations by telegraph
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Physics-Based (Numerical) Atmospheric Modeling:
Part I

The vision of physics- (fluid dynamics-) based weather prediction:
(Cleveland Abbe, 1901), and (Vilhelm Bjerknes, 1904)
First numerical algorithm to solve the physics-based model: Lewis Fry
Richardson (1922): Weather Prediction by Numerical Process, Cambridge
University Press.

From P. Lynch, 2006; Artist: Francois Schuiten: “After so much hard reasoning,
may one play with a fantasy...”: in Richardson’s “forecast factory”, 64,000 human
computing units work to keep up with the speed of the real atmosphere
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Physics-Based (Numerical) Atmospheric Modeling:
Part II

First successful implementation of a numerical
atmospheric model on a digital computer
(ENIAC-Electronic Numerical Integrator and Computer):
(Charney et al. 1950)
Operational numerical weather prediction started in
Sweden in December 1954 (on a Binary Electronic
Sequence Calculator (BESK) computer)
Operational numerical weather prediction in the U.S.
started on May 6, 1955 on an IBM-701 Defense Calculator
(speed: 1 Kflops)

Szunyogh ML for Atmospheric Modeling

https://onlinelibrary.wiley.com/doi/10.1111/j.2153-3490.1950.tb00336.x


Introduction and a Brief History of Atmospheric (Earth System) Modeling
Research Carried Out with the Help of TAMU HPRC Resources

The Use of ML in Atmospheric Modeling

ML-based Model Components were first considered in
the 1990s (e.g., Krasnopolsky et al., 2005)

ML is used (i) to parameterize processes unresolved by the model
physics, or to (ii) emulate computationally expensive components of
the model physics
Training data can be produced by “higher-resolution” model simulations or
based on observations

ML-only Models started to appear in the literature in the
last few years (e.g., Pathak et al. 2022)

Typically trained on reanalysis data: observational analyses available for
decades with 1-6 h temporal resolution
Observational analyses are obtained by data assimilation: filtering tens
of millions of observations per day with the dynamics of a state-of-the-art
numerical model

Our Hybrid Approach (described next)
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Collaborators

Troy Arcomano (TAMU Ph.D. student)
Mitchell Tsokatos (TAMU MS student)
Edward Ott (UMD Distinguished University Professor)
Brian Hunt (UMD Professor)
Alexander Wikner (UMD Ph.D. student)
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Our Approach: Combined Hybrid-Parallel Prediction
(CHyPP)

All results are for a prototype hybrid model (Arcomano et al., 2022) that
implements CHyPP (Wikner et al., 2020) on a low resolution atmospheric
general circulation model called SPEEDY (Molteni and Kucharski, Verison 41)

ML component is based on Reservoir Computing(e.g., Lukosevicius and
Jaeger 2009)

Source of high scalability: all ML calculations are done for local subdomains of
flexible size (e.g., blue rectangle) in parallel
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2021MS002712
https://doi.org/10.1063/5.0005541
http://users.ictp.it/~kucharsk/speedy_description/km_ver41_appendixA.pdf
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.cosrev.2009.03.005
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Flow Chart of the Hybrid Model

r(t + ∆t) = tanh [Ar(t) + Buh(t)], (1)

A: a weighted adjacency matrix of a low-degree, directed, random graph

u(t + ∆t) = Wr̃(t + ∆t), (2)

r̃(t): a (possibly nonlinear) function of r(t); W is a matrix of parameters to be determined by training
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Forecast Experiments

Training Data: ERA5 (a 5th generation reanalysis data
set) from 1 January, 1990 to 26 June, 2011
“Time Step": 6 h
Forecasts: 100 21-day forecasts equally spaced in time
between 27 June, 2011 and 28 July, 2012
Forecast Verification Data: ERA5 reanalyses
Benchmark Forecasts:

SPEEDY
ML-only (Arcomano et al. 2020)
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Example for Verification Results: NH Midlatitudes
Temperature
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The hybrid forecasts are more accurate than either the
numerical forecasts or the ML forecasts
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Climate Simulation Experiment: Biases

Training: 19 years of ERA5 data (January 1981-December 1999)
Simulation: 11-year free run with hybrid model (first year is
discarded)
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Climate Simulation Experiment: Atmospheric
Variability
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Climate Simulation Experiment: Comparison to a
State-of-the-Art Earth System Model
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Concluding Remarks

While most applications of ML to atmospheric modeling
are still in the research phase, it is obvious that ML
techniques will soon play a big role in atmospheric
modeling.
ML has the potential to lead to major changes in the roles
of the different members of the weather and climate
enterprise.
Results from our research suggests that a hybrid
approach can produce models that can perform well in
both weather prediction and climate-related
applications.

All paper citations in this presentation are hyperlinks. Clicking on a citation will bring up
the full paper in your browser.
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