
CONFIDENTAL - ONLY SHARED UNDER NDACONFIDENTAL - ONLY SHARED UNDER NDA

1

GRAPHCORE
OVERVIEW AND
ONBOARDING
TRAINING
FOR TAMU

May 25, 2022
Mario Michael Krell

2

WORKSHOP GOALS

• Explore and execute code
for TensorFlow1,
TensorFlow2 and PyTorch

• First insights into how to
visualize and optimize IPU
code

• Idea of difference of IPU
and other hardware and
how it might benefit your
research

Disclaimer: This is my
first coding lab and
Graphcore's first large-
scale workshop. Bear
with us.

3

THE TEAM

Mario

Alex

Lisa

Brian

Richard

4

AGENDA

• Introduction to Graphcore, IPU, and Poplar
• Hands-on: ssh into the POD, enable the SDK, clone tutorials, binary caching, run example

• TensorFlow1
• Hands-on: Port a basic model, add infeeds, loop on device, profile a sharded/pipelined model

• TensorFlow2
• Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

• PyTorch
• Hands-on: PopTorch example, DataLoader, options to optimize performance

• Research directions on the IPU

5

GRAPHCORE OVERVIEW

• Founded in 2016

• Technology: Intelligence Processor Unit (IPU)

• Team: 650+ globally

• Offices: UK, US, China, Norway, Poland

• Raised >$710M

GRAPHCORE ENABLING MACHINE INTELLIGENCE

GRAPHCORE IPU LETS INNOVATORS CREATE THE NEXT
BREAKTHROUGHS IN MACHINE INTELLIGENCE

8

IPU ARCHITECTURE OVERVIEW

9

MACHINE INTELLIGENCE REPRESENTS A
COMPLETELY NEW COMPUTE WORKLOAD

Massive parallelism
Sparsity in data structures
Low precision compute
Model parameter re-use
Static graph structure

LEGACY PROCESSOR ARCHITECTURES
HAVE BEEN REPURPOSED FOR ML

IPU

10

Apps and Web/
Scalar

Graphics and HPC/
Vector

Artificial Intelligence/
Graph

IPU

11

Apps and Web/
Scalar

Graphics and HPC/
Vector

Artificial Intelligence/
Graph

A NEW PROCESSOR IS REQUIRED FOR THE FUTURE

MASSIVE PARALLELISM WITH
ULTRAFAST MEMORY ACCESS

Memory
Access

1x 5x – 32x 320x

Model and Data spread across off-chip
and small on-chip cache and shared mem.

Model & Data in tightly coupled
large locally distributed SRAM

Parallelism
SIMD/SIMT architecture.

Designed for dense
contiguous data

Massively parallel MIMD.
Ideal for ML workloads

Designed for
scalar processes

CPU GPU IPU

Processor Memory

Off-chip
memory

Generalised comparisons & illustrative diagrams

15
Graphcore Confidential

BOW IPU PROCESSOR

BOW-2000 IPU MACHINE
4 x Bow 3D Wafer-on-Wafer IPUs

1.4 PetaFLOPS AI Compute

3.6 GB In-Processor-Memory @ 260TB/s

Up to 256 GB IPU Streaming Memory

2.8 Tbps IPU-Fabric™

Same 1U blade form factor

GRAPHCORE Ideal for both Training & Inference

18

POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE MATURITY

HALOONNX

GRAPHCORE

19

GROWING MODEL GARDEN

MODEL
GARDEN

INFERENCE MODELS

GRAPHCORE
19

POPVISION TOOLS

COMPUTER VISION

IMAGE
CLASSIFICATION

OBJECT
DETECTION

NLP SPEECH

STT (ASR) TTS

GNN

PROBABILISTIC

OTHER

BERT-Large

BERT-Base

GroupBERT

ViT

EfficientNet-B0

EfficientNet-B4

ResNet50 v1.5

ResNeXt-101

YOLO v4

YOLO v3

DIN

DIEN

DeepVoice3

MCMC

Sales Forecast

ET0

RNN-T

Faster RCNN

OBJECT
SEGMENTATION

Unet (Industrial)

Unet (Medical)

FastSpeech2Conformer

Mini DALL-E
Images from text

TGN

MPNN

MobileNet v2

MobileNet v3

GPT2

REINFORCEMENT

RL
Reinforcement Learning

GENERATIVE

Autoencoder

VAE

https://www.graphcore.ai/resources/model-garden

27

BENCHMARK CODE

• We publish performance benchmarks for some models on our website:

https://www.graphcore.ai/performance-results

• The command lines needed to reproduce these performance
benchmarks should be in a README in the GitHub repo.

https://www.graphcore.ai/performance-results

LSTM Encoder Decoder

28

INTRO:

GETTING STARTED

COMMAND LINE TOOLS

29

POPLAR SDK

• Access updates through Graphcore support portal:
https://downloads.graphcore.ai/

• Unpack SDK tar and source the shell scripts to update several environment
variables on your evaluation machine:

where [os] is the host OS (Ubuntu), [ver] is the current software version number.

You need to source the PopART enable script if you are using PopART or PopTorch.

NOTE: each of these scripts must be sourced every time the Bash shell is reset. If
you attempt to run any Poplar software without having first enabled these scripts
you’ll get an error like:

https://downloads.graphcore.ai/

30

SAMPLE START UP COMMANDS

Consider adding these to ~/.profile

source /opt/gc/poplar_sdk-ubuntu_18_04-2.5.1+1001-64add8f33d/poplar-ubuntu_18_04-2.5.0+4748-

e94d646535/enable.sh

source /opt/gc/poplar_sdk-ubuntu_18_04-2.5.1+1001-64add8f33d/popart-ubuntu_18_04-2.5.1+4748-

e94d646535/enable.sh

mkdir -p /localdata/$USER/tmp

export TF_POPLAR_FLAGS=--executable_cache_path=/localdata/$USER/tmp

export POPTORCH_CACHE_DIR=/localdata/$USER/tmp

export POPLAR_LOG_LEVEL=INFO

export POPLIBS_LOG_LEVEL=INFO

31

INSTALL TF2 WHEEL AND RUN AN EXAMPLE

Create and activate a Python virtual env

virtualenv venv_tf2 -p python3.6

source ~/venv_tf2/bin/activate

Install AMD TF2 wheel for IPU

pip install /opt/gc/poplar_sdk-ubuntu_18_04-2.5.1+1001-64add8f33d/tensorflow-

2.5.2+gc2.5.1+193132+4673d3afb3b+amd_znver1-cp36-cp36m-linux_x86_64.whl

Clone repo, install reqs, run example

git clone https://github.com/graphcore/tutorials.git

cd tutorials/simple_applications/tensorflow2/mnist/

pip install -r requirements.txt

python mnist.py

Sample output:

Epoch 4/4

2000/2000 [==============================] - 1s 320us/step - loss: 0.2542

32

HANDOUT

bit.ly/tamu220525

http://www.bit.ly/tamu220525

35

GRAPHCORE COMMAND LINE TOOLS

See: https://documents.graphcore.ai/

https://documents.graphcore.ai/

TENSORFLOW ON THE IPU

• Graphcore supplies its own branch of TensorFlow that
supports the IPU.

• TensorFlow 1.15 and TensorFlow 2.4 are supported.

• There are 2 main differences in the Graphcore
implementation of TensorFlow:

(1) Some machine-learning ops are optimised for the IPU
hardware. For example, our custom dropout op is
designed to use less memory by not storing the dropout
mask between forward and backward passes.

(2) It provides extra IPU-specific functions, such as those for
selecting and configuring IPUs.

37

PYTORCH ON THE IPU

• PopTorch is a set of extensions for PyTorch to enable
PyTorch models to run directly on Graphcore IPU
hardware.

• PopTorch supports both inference and training. To run a
model on the IPU, you wrap your existing PyTorch model in
either a PopTorch inference wrapper or a PopTorch
training wrapper.

38

POPART – POPLAR ADVANCED RUNTIME

• PopART enables you to import models using the Open
Neural Network Exchange (ONNX) and run them using the
Poplar tools.

• PopART has three main features:

1) It can import ONNX graphs into a runtime environment.

2) It provides a simple interface for constructing ONNX
graphs without needing a third party framework.

3) It runs imported graphs in inference, evaluation or
training modes, by building a Poplar engine, connecting
data feeds and scheduling the execution of the Engine.

39

LSTM Encoder Decoder

42

PROGRAMMING ON IPU

DOCS AND TUTORIALS

USEFUL ENV VARIABLES

MULTI-IPU CONSTRUCTS

FRAMEWORKS

POPVISION

CONFIDENTIALCONFIDENTIAL

CONFIDENTIALCONFIDENTIAL

DEVELOPER RESOURCES

43

44

DEVELOPER PORTAL

• Graphcore developer portal
launched in May 2020

• Public hub for developers to
access:
• Software documentation
• How-to videos
• Code tutorial walkthroughs
• Performance Benchmarks
• Community support
• Developer news

• Learn about the Poplar® SDK and
how to easily run ML models on
IPU systems

graphcore.ai/developer

graphcore.ai/developer

45

• As part of our ethos to put power in
the hands of AI developers,
Graphcore open sourced in July
2020

• PopLibs™, PopART, PyTorch &
TensorFlow for IPU fully open
source and available on GitHub

• Our code is public and open for
code contributions from the wider
ML developer community

github.com/graphcore

OPEN SOURCE

http://github.com/graphcore

46

VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content

47

RESOURCES CENTRE

• New resources hub made
available in September 2020

• Central source of research
papers, white papers, videos,
on-demand webinars and
documentation

• Product resources for ML
Engineers & IT / Infrastructure
Managers now available

graphcore.ai/resources

https://graphcore.ai/resources

LSTM Encoder Decoder

48

USEFUL ENV VARIABLES

49

USEFUL ENV VARIABLES

LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG_DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFF” No logging information. The default.

“ERR” Only error conditions will be reported.

“WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won’t fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

SYNTHETIC-DATA

50

TF_POPLAR_FLAGS= "--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

USING POPVISION (MORE ON THIS LATER)

51

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./tommyFlowers"}’

• The PopVision Graph Analyser uses report files generated during compilation and execution

by the Poplar SDK.

• These files can be created using POPLAR_ENGINE_OPTIONS.

• In order to capture the reports needed for the PopVision Graph Analyser you only need to

set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By

default this will enable instrumentation and capture all the required reports to the current

working directory.

A NOTE ON COMPILE TIME AND
EXECUTABLE CACHING
• Our compiler technology consumes input from the high-level frameworks e.g.

PyTorch, and generates a massively parallel computational graph. This graph is
then compiled down to target the IPUs MIMD architecture.

• It can take a long time to compile a large fused graph into an executable suitable
for the IPU. E.g. ~20 mins for BERT-L pre-training on IPU-POD16.

• Reducing compile time is something we are focused on this year.

• To prevent the need for compiling every time a new process is started, you can
enable an executable cache: more on the next slide.

52

EXECUTABLE CACHE
If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

• You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

• You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

E.g. TF_POPLAR_FLAGS='--executable_cache_path=/tmp/cachedir'

53

Warning
The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.
It is the your responsibility to delete the unwanted cache files.

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

PRECOMPILATION

• PopTorch and TensorFlow support precompilation: This means you can compile
your model on a machine which doesn’t have an IPU and export the executable
to a file. You can then reload and execute it on a different machine which does
have an IPU.

More details in the documentation.

54

LSTM Encoder Decoder

56

TF1 FOR IPU

TENSORFLOW PROGRAMS ON THE IPU

Configure the IPU
Single or multiple IPUs. Graph

optimization and profiling options.

Optimise data flow
Minimise host IO by looping on IPU.
Use Datasets, infeeds & outfeeds.

Compile graph to XLA
Fix input and output tensors.

Compiles static graph to Poplar
executable.

57

Minimum code to run on IPU Now, run it fast

MINIMUM CODE CHANGES TO RUN ON IPU

58

1. Configure IPU system
2. Functionalize your model to be placed on IPU
3. Compile on IPU

MINIMUM CODE CHANGES TO RUN ON IPU

59

1. Configure IPU system

from tensorflow.python import ipu

Create a default configuration
ipu_configuration = ipu.config.IPUConfig()

Select an IPU automatically
ipu_configuration.auto_select_ipus = 1

Apply the configuration
ipu_configuration.configure_ipu_system()

MINIMUM CODE CHANGES TO RUN ON IPU

60

2. Functionalize your model to be placed on IPU

MINIMUM CODE CHANGES TO RUN ON IPU

61

3. Compile on IPU

from tensorflow.python.ipu.scopes import ipu_scope

TENSORFLOW PROGRAMS ON THE IPU

Optimise data flow
Minimise host IO by looping on IPU.
Use Datasets, infeeds & outfeeds.

62

63

WHY DO WE NEED TRAINING LOOPS?

• Communication between the host and IPU is slow compared to
execution on-device, so we see this overhead if calling the
hardware for each batch.

• By placing the training operations inside a loop, they can be
executed multiple times without returning control to the host.

64

WHY DO WE NEED DATA FEEDS?

• When a training operation is placed into a loop, the inputs to
that training operation need to provide a stream of values.

• Standard TensorFlow Python feed dictionaries cannot provide
data in this form, so when training in a loop, data must be fed
from a TensorFlow DataSet.

LSTM Encoder Decoder

65

POPVISION™ TOOLS

GRAPHCORE CONFIDENTIAL

POPVISION GRAPH
ANALYSER

• You can use the PopVision Graph
Analyser tool to debug IPU
programs and generate reports on
compilation and execution of the
program.

• This tool can be downloaded from
the Graphcore customer support
portal: https://downloads.graphco
re.ai/.

• There is a built-in help system
within the tool for any questions
you might have about producing
and analysing reports.

66

https://downloads.graphcore.ai/

67

68

host I/O

host I/O

in
te

r-
ch

ip
 s

yn
c

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

sy
nc

 (1
 ti

le
 a

bs
ta

in
s)

in
te

r-
ch

ip
 s

yn
c

compute phase

exchange phase

BULK SYNCHRONOUS
PARALLEL (BSP)

BSP software bridging model – massively parallel
computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program – no live-locks or dead-locks

Widely-used in parallel computing – Google, FB, …

First use of BSP inside a parallel processor

IPU
2

IPU
1

sync
|

inter-chip
sync

|

sync
(1 tile abstains)

|
host I/O

|
sync

|
sync

|
sync

host I/O
|

syncinter-
chip
sync

time

LSTM Encoder Decoder

74

TF2/KERAS ON IPU

LSTM Encoder Decoder

75

KERAS ON IPU

• IPU optimized Keras Model and Sequential
are available for the IPU. These have the
following features:

* On-device training loop for reduction of
communication overhead.
* Gradient accumulation for simulating
larger batch sizes.
* Automatic data-parallelisation of the
model when placed on a multi-IPU device.

GPU IPUKeras

GPU IPU

CONFIDENTIAL – FOR TENCENT UNDER NDA, DEC. 2018 78

GPU IPU

79

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

KERAS TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

INTRO TO POPTORCH

WHAT IS POPTORCH?

81

PopART

G
RA

PH
 C

O
M

PI
LE

R

G
RA

PH
 R

U
N

 T
IM

E

Poplar
compute

graph

PopTorch

main.py

82

WHAT IS POPTORCH?
• PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on

Graphcore's IPU hardware.

• PopTorch supports both inference and training. To run a model on the IPU you wrap your
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training
wrapper.

• You can provide further annotations to partition the model across multiple IPUs. Using the
user-provided annotations, PopTorch will use PopART to parallelise the model over the
given number of IPUs.

• Additional parallelism can be expressed via a replication factor which enables you to
data-parallelise the model over more IPUs.

• Under the hood PopTorch uses TorchScript, an intermediate representation (IR) of a
PyTorch model, using the torch.jit.trace API. To learn more about TorchScript and JIT, you
can go through PyTorch’s tutorial:
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

• Not all PyTorch operations have been implemented by the backend yet and you can find
the list of supported operations here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/supported_ops.html

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html

PYTORCH FOR IPU

Examples available from
https://github.com/graphcore/examples

83

Define a model within
PyTorch

Create an IPU execution
wrapper around the model

and run as normal

PopTorch uses
the torch.jit.trace API to

trace the model to PyTorch IR

Compile the graph in PopART
and then run on one or more

IPUs

https://github.com/graphcore/examples

GETTING STARTED: TRAINING A MODEL

84

85

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DataLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DataLoader class:
poptorch.DataLoader class is specialised for the way the underlying PopART
framework handles batching of data.

3. Define model and loss function using torch API

The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the
CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

TRAINING A MODEL

86

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DataLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

TRAINING A MODEL

GPU IPUPyTorch

88

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH.OPTIONS

89

• The compilation and execution on the IPU can be controlled using poptorch.Options

• Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

• Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for
the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

(ii) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
your model with torch.nn.DataParallel, but with PopTorch, this is an option.

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

INFERENCE

90

• To run inference, you use poptorch.inferenceModel class, which has a similar
API to poptorch.trainingModel except that it doesn't need an optimizer.

• See tutorial example here:
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics#r
unning-our-model-for-inference-on-an-ipu

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

MORE INFO

91

• PyTorch for the IPU: User Guide
https://docs.graphcore.ai/projects/poptorch-
user-guide/en/latest/

• GitHub tutorial
https://github.com/graphcore/examples/tree/
master/tutorials/pytorch/tut1_basics

• Code examples on GitHub
https://github.com/graphcore/examples/tree/
master/code_examples/pytorch/mnist

• Video tutorial on our developer page
https://www.graphcore.ai/developer

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://www.graphcore.ai/developer

103

ANY QUESTIONS, REQUESTS, BUGS…

https://www.graphcore.ai/support

https://www.graphcore.ai/support

THANK YOU

CONFIDENTIAL

Mario Michael Krell
mariok@graphcore.ai

104

