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WORKSHOP GOALS

• Explore and execute code 
for TensorFlow1, 
TensorFlow2 and PyTorch

• First insights into how to 
visualize and optimize IPU 
code

• Idea of difference of IPU 
and other hardware and 
how it might benefit your 
research

Disclaimer: This is my 
first coding lab and 
Graphcore's first large-
scale workshop. Bear 
with us.
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AGENDA

• Introduction to Graphcore, IPU, and Poplar
• Hands-on: ssh into the POD, enable the SDK, clone tutorials, binary caching, run example

• TensorFlow1
• Hands-on: Port a basic model, add infeeds, loop on device, profile a sharded/pipelined model

• TensorFlow2
• Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

• PyTorch
• Hands-on: PopTorch example, DataLoader, options to optimize performance

• Research directions on the IPU
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GRAPHCORE OVERVIEW



• Founded in 2016

• Technology: Intelligence Processor Unit (IPU)

• Team: 650+ globally

• Offices: UK, US, China, Norway, Poland

• Raised >$710M

GRAPHCORE ENABLING MACHINE INTELLIGENCE



GRAPHCORE IPU LETS INNOVATORS CREATE THE NEXT 
BREAKTHROUGHS IN MACHINE INTELLIGENCE



8

IPU ARCHITECTURE OVERVIEW
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MACHINE INTELLIGENCE  REPRESENTS  A 
COMPLETELY NEW COMPUTE WORKLOAD

Massive parallelism
Sparsity in data structures
Low precision compute
Model parameter re-use 
Static graph structure 



LEGACY PROCESSOR ARCHITECTURES 
HAVE BEEN REPURPOSED FOR ML

IPU
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Apps and Web/
Scalar

Graphics and HPC/
Vector

Artificial Intelligence/
Graph



IPU
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Apps and Web/
Scalar

Graphics and HPC/
Vector

Artificial Intelligence/
Graph

A NEW PROCESSOR IS REQUIRED FOR THE FUTURE



MASSIVE PARALLELISM WITH 
ULTRAFAST MEMORY ACCESS

Memory
Access

1x 5x – 32x 320x

Model and Data spread across off-chip 
and small on-chip cache and shared mem.

Model & Data in tightly coupled 
large locally distributed SRAM

Parallelism
SIMD/SIMT architecture. 

Designed for dense 
contiguous data

Massively parallel MIMD.
Ideal for ML workloads

Designed for 
scalar processes

CPU GPU IPU

Processor Memory

Off-chip 
memory

Generalised comparisons & illustrative diagrams 
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BOW IPU PROCESSOR



BOW-2000 IPU MACHINE
4 x Bow 3D Wafer-on-Wafer IPUs

1.4 PetaFLOPS AI Compute

3.6 GB In-Processor-Memory @ 260TB/s

Up to 256 GB IPU Streaming Memory

2.8 Tbps IPU-Fabric™

Same 1U blade form factor

GRAPHCORE Ideal for both Training & Inference
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POPLAR® SDK

POPVISION TOOLS

DEVELOPER ECOSYSTEM  

TUTORIALS

CODE EXAMPLES

VIDEOS

NATIVE IPU CODERS PROGRAM

GRAPH ENGINE

GC DEVICE ACCESS LAYER

PCIe DRIVERIPUOF DRIVER

GRAPH COMPILER

POPLIBS GCL POPLAR

POPLAR®

DRIVERS

FW BACKENDS

FRAMEWORKS

GRAPH ANALYZER

SYSTEM ANALYZER

PARTITIONER POPIR POPIT

INFERENCE DEPLOYMENT 
TOOLKIT

FRONTENDS

DEBUGGER

DEVELOPMENT ENVIRONMENT

APPS PORTFOLIO

DOCUMENTATION

ML APPLICATIONS

IMAGE CLASSIFICATION/CNNS

OBJECT DETECTION

LARGE MODELS

MLPERF

CONDITIONAL SPARSITY

GNNS

NLP/TRANSFORMERS

JUPYTER NOTEBOOKS

SYSTEM SOFTWARE

POPLAR

V-IPU

SYSTEM MONITORING

JOB DEPLOYMENT

K8S SLURM

PROMETHEUS
GRAFANA

XLA POPART+ POPDIST

GRAPHCORE SOFTWARE MATURITY

HALOONNX

GRAPHCORE



19

GROWING MODEL GARDEN

MODEL 
GARDEN

INFERENCE MODELS

GRAPHCORE
19

POPVISION TOOLS

COMPUTER VISION

IMAGE 
CLASSIFICATION

OBJECT
DETECTION

NLP SPEECH

STT (ASR) TTS

GNN

PROBABILISTIC

OTHER

BERT-Large

BERT-Base

GroupBERT

ViT

EfficientNet-B0

EfficientNet-B4

ResNet50 v1.5

ResNeXt-101

YOLO v4

YOLO v3

DIN

DIEN

DeepVoice3

MCMC

Sales Forecast

ET0

RNN-T

Faster RCNN

OBJECT
SEGMENTATION

Unet (Industrial)

Unet (Medical)

FastSpeech2Conformer

Mini DALL-E
Images from text

TGN

MPNN

MobileNet v2

MobileNet v3

GPT2

REINFORCEMENT

RL
Reinforcement Learning

GENERATIVE

Autoencoder

VAE

https://www.graphcore.ai/resources/model-garden
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BENCHMARK CODE

• We publish performance benchmarks for some models on our website:

https://www.graphcore.ai/performance-results

• The command lines needed to reproduce these performance 
benchmarks should be in a README in the GitHub repo. 

https://www.graphcore.ai/performance-results


LSTM Encoder Decoder
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INTRO:

GETTING STARTED

COMMAND LINE TOOLS
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POPLAR SDK

• Access updates through Graphcore support portal: 
https://downloads.graphcore.ai/

• Unpack SDK tar and source the shell scripts to update several environment 
variables on your evaluation machine:

where [os] is the host OS (Ubuntu), [ver] is the current software version number.

You need to source the PopART enable script if you are using PopART or PopTorch.

NOTE: each of these scripts must be sourced every time the Bash shell is reset. If 
you attempt to run any Poplar software without having first enabled these scripts
you’ll get an error like:

https://downloads.graphcore.ai/
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SAMPLE START UP COMMANDS

# Consider adding these to ~/.profile

source /opt/gc/poplar_sdk-ubuntu_18_04-2.5.1+1001-64add8f33d/poplar-ubuntu_18_04-2.5.0+4748-

e94d646535/enable.sh

source /opt/gc/poplar_sdk-ubuntu_18_04-2.5.1+1001-64add8f33d/popart-ubuntu_18_04-2.5.1+4748-

e94d646535/enable.sh

mkdir -p /localdata/$USER/tmp

export TF_POPLAR_FLAGS=--executable_cache_path=/localdata/$USER/tmp

export POPTORCH_CACHE_DIR=/localdata/$USER/tmp

export POPLAR_LOG_LEVEL=INFO

export POPLIBS_LOG_LEVEL=INFO
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INSTALL TF2 WHEEL AND RUN AN EXAMPLE

# Create and activate a Python virtual env

virtualenv venv_tf2 -p python3.6

source ~/venv_tf2/bin/activate

# Install AMD TF2 wheel for IPU

pip install /opt/gc/poplar_sdk-ubuntu_18_04-2.5.1+1001-64add8f33d/tensorflow-

2.5.2+gc2.5.1+193132+4673d3afb3b+amd_znver1-cp36-cp36m-linux_x86_64.whl

# Clone repo, install reqs, run example

git clone https://github.com/graphcore/tutorials.git

cd tutorials/simple_applications/tensorflow2/mnist/

pip install -r requirements.txt

python mnist.py

# Sample output:

# Epoch 4/4

# 2000/2000 [==============================] - 1s 320us/step - loss: 0.2542
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HANDOUT

bit.ly/tamu220525

http://www.bit.ly/tamu220525
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GRAPHCORE COMMAND LINE TOOLS

See: https://documents.graphcore.ai/

https://documents.graphcore.ai/


TENSORFLOW ON THE IPU

• Graphcore supplies its own branch of TensorFlow that 
supports the IPU.

• TensorFlow 1.15 and TensorFlow 2.4 are supported.

• There are 2 main differences in the Graphcore
implementation of TensorFlow:

(1) Some machine-learning ops are optimised for the IPU 
hardware. For example, our custom dropout op is 
designed to use less memory by not storing the dropout 
mask between forward and backward passes.

(2) It provides extra IPU-specific functions, such as those for 
selecting and configuring IPUs.
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PYTORCH ON THE IPU

• PopTorch is a set of extensions for PyTorch to enable 
PyTorch models to run directly on Graphcore IPU 
hardware.

• PopTorch supports both inference and training. To run a 
model on the IPU, you wrap your existing PyTorch model in 
either a PopTorch inference wrapper or a PopTorch
training wrapper.

38



POPART – POPLAR ADVANCED RUNTIME

• PopART enables you to import models using the Open 
Neural Network Exchange (ONNX) and run them using the 
Poplar tools.

• PopART has three main features:

1) It can import ONNX graphs into a runtime environment.

2) It provides a simple interface for constructing ONNX 
graphs without needing a third party framework.

3) It runs imported graphs in inference, evaluation or 
training modes, by building a Poplar engine, connecting 
data feeds and scheduling the execution of the Engine.

39



LSTM Encoder Decoder
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PROGRAMMING ON IPU

DOCS AND TUTORIALS

USEFUL ENV VARIABLES

MULTI-IPU CONSTRUCTS

FRAMEWORKS

POPVISION
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DEVELOPER RESOURCES
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DEVELOPER PORTAL

• Graphcore developer portal 
launched in May 2020

• Public hub for developers to 
access:
• Software documentation
• How-to videos
• Code tutorial walkthroughs
• Performance Benchmarks
• Community support
• Developer news

• Learn about the Poplar® SDK and 
how to easily run ML models on 
IPU systems

graphcore.ai/developer

graphcore.ai/developer
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• As part of our ethos to put power in 
the hands of AI developers, 
Graphcore open sourced in July 
2020

• PopLibs™, PopART, PyTorch & 
TensorFlow for IPU fully open 
source and available on GitHub

• Our code is public and open for 
code contributions from the wider 
ML developer community

github.com/graphcore

OPEN SOURCE

http://github.com/graphcore
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VIDEO + GITHUB TUTORIALS

Getting started with PyTorch for the IPU Evaluating Batch Sizes on IPUs

Bulk Synchronous Parallel Execution Running PyTorch on the IPU: NLP

Getting started with PopVision Fundamental of Poplar

Getting started with PopART Running TensorFlow on the IPU

A comprehensive set of online developer training materials and educational content
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RESOURCES CENTRE

• New resources hub made 
available in September 2020

• Central source of research 
papers, white papers, videos, 
on-demand webinars and 
documentation

• Product resources for ML 
Engineers & IT / Infrastructure 
Managers now available

graphcore.ai/resources

https://graphcore.ai/resources


LSTM Encoder Decoder
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USEFUL ENV VARIABLES
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USEFUL ENV VARIABLES

LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment 
variables described below. For more detailed information see the docs: 
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG_DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFF” No logging information. The default.

“ERR” Only error conditions will be reported.

“WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the 
memory budget, or Poplar has determined that the model won’t fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html


SYNTHETIC-DATA
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TF_POPLAR_FLAGS= "--use_synthetic_data --synthetic_data_initializer=random" 

Used for measuring the IPU-only throughput and disregards any host/CPU activity.



USING POPVISION (MORE ON THIS LATER)
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POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./tommyFlowers"}’

• The PopVision Graph Analyser uses report files generated during compilation and execution 

by the Poplar SDK.

• These files can be created using POPLAR_ENGINE_OPTIONS.

• In order to capture the reports needed for the PopVision Graph Analyser you only need to 

set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By 

default this will enable instrumentation and capture all the required reports to the current 

working directory.



A NOTE ON COMPILE TIME AND 
EXECUTABLE CACHING
• Our compiler technology consumes input from the high-level frameworks e.g.

PyTorch, and generates a massively parallel computational graph. This graph is 
then compiled down to target the IPUs MIMD architecture. 

• It can take a long time to compile a large fused graph into an executable suitable 
for the IPU. E.g. ~20 mins for BERT-L pre-training on IPU-POD16.

• Reducing compile time is something we are focused on this year. 

• To prevent the need for compiling every time a new process is started, you can 
enable an executable cache: more on the next slide. 
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EXECUTABLE CACHE
If you often run the same models you might want to enable executable caching to 
save time:

POPTORCH:

• You can do this by either setting the POPTORCH_CACHE_DIR environment 
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

• You can use the flag --executable_cache_path to specify a directory where 
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit 
hash and stored in this directory. 

E.g. TF_POPLAR_FLAGS='--executable_cache_path=/tmp/cachedir' 

53

Warning
The cache directory might grow large quickly. Poplar doesn’t evict old models from the 
cache and, depending on the number and size of your models and the number of IPUs 
used, the executables might be quite large. 
It is the your responsibility to delete the unwanted cache files.

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html


PRECOMPILATION

• PopTorch and TensorFlow support precompilation: This means you can compile 
your model on a machine which doesn’t have an IPU and export the executable 
to a file. You can then reload and execute it on a different machine which does 
have an IPU.

More details in the documentation. 

54



LSTM Encoder Decoder
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TF1 FOR IPU



TENSORFLOW PROGRAMS ON THE IPU

Configure the IPU
Single or multiple IPUs. Graph 

optimization and profiling options.

Optimise data flow
Minimise host IO by looping on IPU. 
Use Datasets, infeeds & outfeeds.

Compile graph to XLA
Fix input and output tensors. 

Compiles static graph to Poplar 
executable.

57

Minimum code to run on IPU Now, run it fast



MINIMUM CODE CHANGES TO RUN ON IPU
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1. Configure IPU system
2. Functionalize your model to be placed on IPU
3. Compile on IPU



MINIMUM CODE CHANGES TO RUN ON IPU
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1. Configure IPU system

from tensorflow.python import ipu

# Create a default configuration
ipu_configuration = ipu.config.IPUConfig()

# Select an IPU automatically
ipu_configuration.auto_select_ipus = 1

# Apply the configuration
ipu_configuration.configure_ipu_system()



MINIMUM CODE CHANGES TO RUN ON IPU
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2. Functionalize your model to be placed on IPU



MINIMUM CODE CHANGES TO RUN ON IPU
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3. Compile on IPU

from tensorflow.python.ipu.scopes import ipu_scope



TENSORFLOW PROGRAMS ON THE IPU

Optimise data flow
Minimise host IO by looping on IPU. 
Use Datasets, infeeds & outfeeds.

62
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WHY DO WE NEED TRAINING LOOPS?

• Communication between the host and IPU is slow compared to 
execution on-device, so we see this overhead if calling the 
hardware for each batch. 

• By placing the training operations inside a loop, they can be 
executed multiple times without returning control to the host. 
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WHY DO WE NEED DATA FEEDS?

• When a training operation is placed into a loop, the inputs to 
that training operation need to provide a stream of values. 

• Standard TensorFlow Python feed dictionaries cannot provide 
data in this form, so when training in a loop, data must be fed 
from a TensorFlow DataSet.



LSTM Encoder Decoder
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POPVISION™ TOOLS



GRAPHCORE CONFIDENTIAL

POPVISION GRAPH 
ANALYSER

• You can use the PopVision Graph 
Analyser tool to debug IPU 
programs and generate reports on 
compilation and execution of the 
program. 

• This tool can be downloaded from 
the Graphcore customer support 
portal: https://downloads.graphco
re.ai/.

• There is a built-in help system 
within the tool for any questions 
you might have about producing
and analysing reports.
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https://downloads.graphcore.ai/
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BULK SYNCHRONOUS 
PARALLEL (BSP)

BSP software bridging model – massively parallel 
computing with no concurrency hazards

3 phases:  compute, sync, exchange

Easy to program – no live-locks or dead-locks

Widely-used in parallel computing – Google, FB, …

First use of BSP inside a parallel processor
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TF2/KERAS ON IPU



LSTM Encoder Decoder
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KERAS ON IPU

• IPU optimized Keras Model and Sequential 
are available for the IPU. These have the 
following features:

* On-device training loop for reduction of 
communication overhead.
* Gradient accumulation for simulating 
larger batch sizes.
* Automatic data-parallelisation of the 
model when placed on a multi-IPU device.



GPU IPUKeras



GPU IPU
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GPU IPU
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https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

KERAS TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras


INTRO TO POPTORCH



WHAT IS POPTORCH?
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PopART
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main.py
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WHAT IS POPTORCH?
• PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on 

Graphcore's IPU hardware.

• PopTorch supports both inference and training. To run a model on the IPU you wrap your 
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training 
wrapper. 

• You can provide further annotations to partition the model across multiple IPUs. Using the 
user-provided annotations, PopTorch will use PopART to parallelise the model over the 
given number of IPUs. 

• Additional parallelism can be expressed via a replication factor which enables you to 
data-parallelise the model over more IPUs.

• Under the hood PopTorch uses TorchScript, an intermediate representation (IR) of a 
PyTorch model, using the torch.jit.trace API. To learn more about TorchScript and JIT, you 
can go through PyTorch’s tutorial: 
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

• Not all PyTorch operations have been implemented by the backend yet and you can find 
the list of supported operations here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/supported_ops.html

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html


PYTORCH FOR IPU

Examples available from 
https://github.com/graphcore/examples

83

Define a model within 
PyTorch

Create an IPU execution 
wrapper around the model 

and run as normal

PopTorch uses 
the torch.jit.trace API to 

trace the model to PyTorch IR

Compile the graph in PopART 
and then run on one or more 

IPUs

https://github.com/graphcore/examples


GETTING STARTED: TRAINING A MODEL
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1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2.   Load dataset using torchvision.datasets and poptorch.DataLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of 
torch.utils.data.DataLoader class:
poptorch.DataLoader class is specialised for the way the underlying PopART
framework handles batching of data.

3.   Define model and loss function using torch API

The only difference here from pure PyTorch is the loss computation, which has to be part 
of the forward function. This is to ensure the loss is computed on the IPU and not on the 
CPU, and to give us as much flexibility as possible when designing more complex loss 
functions.

TRAINING A MODEL
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4.   Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers 
such as poptorch.DataLoader and poptorch.trainingModel.

5.   Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will 
trigger the compilation of our model, using TorchScript, and manage its translation to a 
program the IPU can run. Then run your training loop. 

TRAINING A MODEL



GPU IPUPyTorch
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https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics


POPTORCH.OPTIONS
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• The compilation and execution on the IPU can be controlled using poptorch.Options

• Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

• Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for 
the IPU. The higher this number, the less the IPU has to interact with the CPU, for 
example to request and wait for data, so that the IPU can loop faster. However, 
the user will have to wait for the IPU to go over all the iterations before getting 
the results back. The maximum is the total number of batches in your dataset, 
and the default value is 1.

(ii) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation 
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap 
your model with torch.nn.DataParallel, but with PopTorch, this is an option. 

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html


INFERENCE
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• To run inference, you use poptorch.inferenceModel class, which has a similar 
API to poptorch.trainingModel except that it doesn't need an optimizer.

• See tutorial example here: 
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics#r
unning-our-model-for-inference-on-an-ipu

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics


MORE INFO
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• PyTorch for the IPU: User Guide
https://docs.graphcore.ai/projects/poptorch-
user-guide/en/latest/

• GitHub tutorial
https://github.com/graphcore/examples/tree/
master/tutorials/pytorch/tut1_basics

• Code examples on GitHub
https://github.com/graphcore/examples/tree/
master/code_examples/pytorch/mnist

• Video tutorial on our developer page
https://www.graphcore.ai/developer

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://www.graphcore.ai/developer
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ANY QUESTIONS, REQUESTS, BUGS…

https://www.graphcore.ai/support

https://www.graphcore.ai/support


THANK YOU

CONFIDENTIAL

Mario Michael Krell
mariok@graphcore.ai

104


