May 25, 2022

Mario Michael Krell

13

WORKSHOP GOALS

« Explore and execute code
for TensorFlow1,
TensorFlow2 and PyTorch

 First insights into how to
visualize and optimize IPU
code

* |ldea of difference of IPU
and other hardware and
how it might benefit your
research

Disclaimer: This is my
first coding lab and
Graphcore's first large-
scale workshop. Bear
with us.

THE TEAM

Mario
Alex
Lisa
Brian

Richard

AGENDA

Introduction to Graphcore, IPU, and Poplar

« Hands-on: ssh into the POD, enable the SDK, clone tutorials, binary caching, run example

TensorFlow1

« Hands-on: Port a basic model, add infeeds, loop on device, profile a sharded/pipelined model

TensorFlow2

« Hands-on: Port a Keras script, leverage loop on device, replicate and run data-parallel, pipeline

PyTorch

« Hands-on: PopTorch example, DatalLoader, options to optimize performance

Research directions on the IPU

GRAPHCORE OVERVIEW

GRAPHCORE ENABLING MACHINE INTELLIGENCE

Founded in 2016

Technology: Intelligence Processor Unit (IPU)

Team: 650+ globally

Offices: UK, US, China, Norway, Poland

Raised >$710M

SEQUOIAZ (e)aomco SOFINA B Microsoft

©/7 DAL © BoscH &I Merian

’R$£§Q80 L esprit -' Foundation

Amadeus
C apital Partners

- Py R ¥ o8

GRAPHCORE IPU LETS INNOVATORS CF
BREAKTHFROLIGHS IN MACHINE INTELLIGENCE

IPU ARCHITECTURE OVERVIEW

convl - 7x7 conv2 - 1x1 conv2 - 1x1 conv2 - 3x3 v2 - 1x1 v3 - 1x1
[4 in, 64 out] [64 in, 64 out] [256 in, 64 out] [64 in, 64 out] [64 256 t] [256 128 out]
s % S

FEPRESENTS A
COMPLETELY NEW COMPUTE WORKLOAD

conv3 - 1x1
[512 in, 128 out]

Masswe parallelism
Sparsity in data structures
Low precision compute

Model parameter re-use :

Statlc graph struoture

LEGALCY PROCESSOFR ARCHITECTURES
HAVE BEEN REPUFRPOQOSED FOR ML

R e

CPU GPU
Apps and Web/ Graphics and HPC/
Scalar Vector

10

A NEW PROCESSOF IS KEQUIRED FOF THE FUTLUFEE

e

IPU

Artificial Intelligence/
Graph

CPU GPU IPU

. SIMD/SIMT architecture.
. Designed for)
contiguous data

e

r—_—_—_—_—_

[- |
I8~ '

|
[B. |H
- |

l

|

Off-chip Model and Data spread across off-chip

Memory memory and small on-chip cache and shared mem.

B 1x 5x - 32x 320x

@ @ Processor @ Memory Generalised comparisons & illustrative diagrams

‘_______
EEE I I S S - -

I NN I IS I S S - - __________J

Deep Trench Capacitor

o
Il
(7))
(7))
L
il
Il
i
a
=
—
Il
o

Enables increase in operational performance

Efficient power delivery

Wafer-On-Wafer

(2}
3
>
o0
1S
Q
K]
o]
n
|
1
1
1
|
1
1
|
1
|
1
1
|
1
1
1
|
1
1
|
1
|
1
1
.

0.
pemmmmmmeee-
I
|
I
|
]
|
! —

H
a >
n O 0
co Qo
o O
e o
= Q
5% w.nlv
8y 079
Q¢ >
cx 09
>0 2=
58 2%
<n OO

IPU-Links™

Higher operating frequency
and enhanced overall

performance

10x IPU-Links,

320GB/s chip to chip bandwidth

IPU-Tiles™

cC
©
£t
z >
25
Cm
o O
0=
msm
23
S|
29

S
- &
cc
he
c C
QO ®©
Qs
)
T =
£R
83
S a
- =

IPU-Exchange™

g
O]
9
c
@©

<
Q
X

Y

]

a

©
]
=

®

L

m

[

-

-

c
A
)
b=
©
o
c

9
=
]

9
c
5
S
S
o}
o
>
c
©
o)

£

2
Q

e,

2
c
(¢}

P

IPU-Core™

1472 independent IPU-Core™

PCle

8832 independent program threads

executing in parallel

PCl Gen4 x16

64 GB/s bidirectional bandwidth to host

In-Processor-Memory™

900MB In-Processor-Memory™ per IPU

15

65.4TB/s memory bandwidth per IPU

BOW-2000 |[PLU MACHINE

Up to 256 GB IPU Streaming Memory

Al Compute 2.8 Tbps IPU-Fabric™

3.6 GB In-Processor-Memory @ Same 1U blade form factor

GRAPHCOFRE SOFTWARE MATURITY

NLP/TRANSFORMERS o am®

FRONTENDS jupyter INFERENCE DEPLOYMENT
N TOOLKIT

IMAGE CLASSIFICATION/CNNS

JUPYTER NOTEBOOKS

OBJECT DETECTION

1F O @ONNX HALO @

Keras /33 PaddiePaddle

FRAMEWORKS
LARGE MODELS

MLPERF

XLA POPART+ POPDIST

CONDITIONAL SPARSITY

POPVISION TOOLS

FW BACKENDS
GNNS

PARTITIONER POPIR POPIT
ML APPLICATIONS

POPLIBS GCL POPLAR
TUTORIALS

POPLAR® SYSTEM MONITORING

CODE EXAMPLES GRAPH ENGINE GRAPH COMPILER PROMETHEUS

GRAFANA

DOCUMENTATION

VIDEOS GC DEVICE ACCESS LAYER JOB DEPLOYMENT

NATIVE IPU CODERS PROGRAM DRIVERS

APPS PORTFOLIO

DEVELOPER ECOSYSTEM POPLAR® SDK SYSTEM SOFTWARE

® GRAPHCORE

6

IPUOF DRIVER PCle DRIVER @ K8S SLURM

18

Reinforcement Learning

POPVISION TOOLS
NEW

Images from text

https://www.graphcore.ai/resources/model-garden

BENCHMARK CODE

We publish performance benchmarks for some models on our website:

https://www.graphcore.ai/performance-results

The command lines needed to reproduce these performance
benchmarks should be in a README in the GitHub repo.

27

https://www.graphcore.ai/performance-results

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

INTRO

GETTING STARTED

COMMAND LINE TOOLS

POPLAR SDK

« Access updates through Graphcore support portal:
https://downloads.graphcore.ai/

« Unpack SDK tar and source the shell scripts to update several environment
variables on your evaluation machine:

$ cd poplar_sdk-[os]-|[ver]
$ source poplar-[os]-|[ver]/enable.sh
$ source popart-[os]-[ver]/enable.sh

where [0s] is the host OS (Ubuntu), [ver] is the current software version number.

You need to source the POpART enable script if you are using POpART or PopTorch.

NOTE: each of these scripts must be sourced every time the Bash shell is reset. If
you attempt to run any Poplar software without having first enabled these scripts
you'll get an error like:

fatal error: 'poplar/Engine.hpp' file not found

13

29

https://downloads.graphcore.ai/

SAMPLE START UP COMMANDS

Consider adding these to ~/.profile
/opt/gc/poplar_sdk—-ubuntu_18_04-2.5.1+1001-64add8f33d/poplar-ubuntu_18_04-2.5.0+4748-
€94d646535/enable. sh
/opt/gc/poplar_sdk—-ubuntu_18_04-2.5.1+1001-64add8f33d/popart-ubuntu_18_04-2.5.1+4748-
€94d646535/enable. sh

mkdir —p /localdata/$USER/tmp
export TF_POPLAR_FLAGS=—-executable_cache_path=/1localdata/$USER/tmp

export POPTORCH_CACHE_DIR=/localdata/$USER/tmp

export POPLAR_LOG_LEVEL=INFO
export POPLIBS_LOG_LEVEL=INFO

13

30

INSTALL TF2 WHEEL AND RUN AN EXAMPLE

Create and activate a Python virtual env

virtualenv venv_tf2 -p python3.6

source ~/venv_tf2/bin/activate

Install AMD TF2 wheel for IPU

pip install /opt/gc/poplar_sdk—-ubuntu_18_04-2.5.1+1001-64add8f33d/tensorflow-
2.5.2+9c2.5.1+193132+4673d3afb3b+amd_znverl-cp36-cp36m-1inux_x86_64.whl

Clone repo, install regs, run example

git clone https://github.com/graphcore/tutorials.git
cd tutorials/simple_applications/tensorflow2/mnist/
pip install -r requirements.txt

python mnist.py

Sample output:
Epoch 4/4
2000/2000 [==============================] - 1s 320us/step - loss: 0.2542

13

HANDOUT

pit.ly/tamu220525

http://www.bit.ly/tamu220525

GRAPHCORE COMMAND LINE TOOLS

gc-info Determines what IPU cards are present in the system.

gc-inventory Lists device IDs, physical parameters and firmware version numbers.

gc-reset Resets an IPU device after reboot. Note that each IPU must be reset after the host machine is rebooted.
gc-exchangetest Allows you to test the internal exchange fabric in an IPU.

gc-memorytest Tests all the memory in an IPU, reporting any tiles that fail.

gc-links Displays the status and connectivity of each of the IPU-Links that connect the C2 IPU-Processor cards
together. See also IPU-Link channel mapping.

gc-powertest Tests power consumption and temperature of the C2 IPU-Processor cards.
gc-hosttraffictest Allows you to test the data transfer between the host machine and the IPUs (in both directions).
gc-iputraffictest Allows you to test the data transfer between IPUS.

gc-docker Allows you to use IPU devices in Docker containers.

@ https://documents.graphcore.ai/

35

https://documents.graphcore.ai/

TENSORFLOW ON THE IPU

« Graphcore supplies its own branch of TensorFlow that
supports the IPU.

 TensorFlow 1.15 and TensorFlow 2.4 are supported.

 There are 2 main differences in the Graphcore
implementation of TensorFlow:

(1) Some machine-learning ops are optimised for the IPU
hardware. For example, our custom dropout op is
designed to use less memory by not storing the dropout
mask between forward and backward passes.

(2) It provides extra IPU-specific functions, such as those for
selecting and configuring IPUs.

37

PYTORCH ON THE IPU

« PopTorch is a set of extensions for PyTorch to enable
PyTorch models to run directly on Graphcore IPU

hardware.

PyTorch + GRAFHCORE

« PopTorch supports both inference and training. To run a
model on the IPU, you wrap your existing PyTorch model in
either a PopTorch inference wrapper or a PopTorch
training wrapper.

38

POPART - POPLAR ADVANCED RUNTIME

* POopART enables you to import models using the Open
Neural Network Exchange (ONNX) and run them using the
Poplar tools.

* POpART has three main features:
1) It can import ONNX graphs into a runtime environment.

2) It provides a simple interface for constructing ONNX
graphs without needing a third party framework.

3) It runs imported graphs in inference, evaluation or
training modes, by building a Poplar engine, connecting
data feeds and scheduling the execution of the Engine.

39

s ./z.”
O ,«w.gd A
N [

, ‘.../.,, 6»? wi

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

MULTI-IPU CONSTRUCTS

FRAMEWORKS

USEFUL ENV VARIABLES
POPVISION

DOCS AND TUTORIALS

PROGRAMMING ON IPU

DEVELOPER RESOURCES

GRAPHCORE Home About» Products» Industries» Developer» Blog Careers» -

BUILD NEXT GENEFRATION MACHINE
INTELLIGENCE WITH FOPLAR®

I I |
Learn more about the Graphcore Poplar® SDK and get started
programming IPU systems.

h ./ I Open Source Poplar® Comprehensive ML Easy Deployment with

g rap CO re . al deve ODer Libraries & APIs Frameworks Support Docker
Access to PopLibs™, PopART™, TensorFlow & Support for common frameworks & IRs: Pre-built Docker containers with Poplar SDK,
PyTorch APIs to enable community-driven TensorFlow 1& 2, PyTorch, ONNX, HALO, Keras Tools and Frameworks images to get up and
collaboration and innovation. & Hugging Face. PaddlePaddle coming soon. running fast.

« Graphcore developer portal
launched in May 2020 Trmorow OPyTorch € ONNX HALO [Keras (@) s rwne

N P u bI iC h u b for d eve I O pe rS to Choose framework: PyTorch TensorFlow ONNX HALO

a C C e SS . Introducing the PyTorch API for the IPU. [El Read the Guide
.
. With PopTorch™ - a simple Python wrapper for PyTorch programs, developers can [E] Watch the Video
° Softwa re docu I ' Ientatlon easily run models directly on Graphcore IPUs with a few lines of extra code. P
€ Start the Tutorial
. Learn how to build performant PyTorch applications for training and inference
° HOW'tO V|deOS with our latest user guide, tutorials, and code examples. O Get the Code

To find out more about our announcement, read our guest blog with PyTorch.

« Code tutorial walkthroughs
» Performance Benchmarks
« Community support

GETTING STARTED
« Developer news

FEATURED DOCUMENTATION

Get up and running fast on the IPU with our

° Lea rn a bOUt the Popla r® SDK a nd comprehensive software documentation.
h OW tO ea Si Iy r U n M L m Od e I S O n IPU Programmer's Guide Poplar SDK Overview Po;?(liar and PoplLibs User
IPU systems

&

Targeting the IPU from
TensorFlow 2

PopVision Analyser User
Guide

PyTorch for the IPU: User
Guide

NEW
Graph Recompilation &

Executable Switching in
TensorFlow

PopART User Guide

NEW
Getting Started with IPU-POD

Systems

graphcore.ai/developer

® © ® () Graphcore - GitHub x e

& github.com/graphcore * B a
COPEN SOURCE
Graphcore
a itories 6 @ g 2 people ['] Projects

github.com/graphcore E T e

GitHub is home to over 50 million developers working together. Join them to grow your own
teams, permissit and on projects.

« As part of our ethos to put power in D
the hands of Al developers,
Graphcore open sourced in July
2 O 2 O examples Top languages

Example code and applications for machine learning on Graphcore IPUs @®C++ @ Python

machine-learning deep-learning graphcore

@ Python 25 16 0 8 Updated 3 days ago
v Y O Qo 18 uw ys ag People N

« PoplLibs™, POpART, PyTorch & e
TensorFIOW for IPU fu”y Open demos members. You must be a member to see

i . who' rt of this organi n.
Demonstrators and experimental applications for ML using Graphcore IPUs 0'S 8 pertof this orgenizatios

source and available on GitHub oci Bur ¥1 w2 Q0 N0 updess dmsano
. . poplibs TR, P,
e Our code is public and open for O S D
code contributions from the wider
ML developer community banearow \

Graphcore port of TensorFlow for the IPU
®C++ Mapache-20 ¥2 w19 0 110 Updatedon8 Jul

popart WA AN

®c++ ¥2 9 (0 110 Updatedon8ul

poprithms

®c++ Y1 9 ©Oo0 110 updatedon8Jul

http://github.com/graphcore

VIDECQ + GITHUB TUTORIALS

A comprehensive set of online developer training materials and educational content

® TUTORIALS

Learn how to create and run programs using Poplar and
PopLibs with our hands-on programming tutorials.

valuating Eatch Sizes o Programs and Variables Using PopLibs
Profiling Output Basic Machine Learning
Example
Matrix-Vector Multiplication Simple PyTorch for the IPU
Optimisation

he IFU: NLF

THE POPLAR GRAPH

Tutorial 1: programs and variables

Copy the file tutl_variables/start_here/tutl.cpp to your working directory and open it in an editor. The file contains the outline of a
C++ program including some Poplar kibrary headers and a namespace.

Graphs, variables and programs

All Poplar programs require a Graph object to construct the computation graph. Graphs are always created for a specific target (where the
target is a description of the hardware being targeted, such as an IPU). To obtain the target we need to choose a device.

p The tutorials use a simulated target by default, so will run on any machine even if it has no Graphcore hardware attached. On systems with
Getting started with Fop ; Y) accelerator hardware, the header file poplar/DeviceManager.hpp contains API calls to enumerate and return Device objects for the
[attached hardware

Simulated devices are created with the IPuModel class, which models the functionality of an IPU on the host. The createDevice function
creates a new virtual device to work with. Once we have this device we can create a Graph object to target it.

* Add the following code to the body of main

reate the IPU Model device

IPUModel ipuModel;

Device device = ipuModel.createDevice();

Target target = device.getTarget();
Create the Graph object

Graph graph(target);

Any program running on an IPU needs data to work on. These are defined as variables in the graph.

Getting started wi Funning TensorFlow on the IFU + Add the following code to create the first variable in the program
h

Writing Vertex Code

Matrix-Vector Multiplication

Tutorial 5: a basic machine
learning example

This tutorial contains a complete training program that
performs a logistic regression on the MNIST data set, using
gradient descent. The files for the demo are in tut5_ml .
There are no coding steps in the tutorial. The task is to
understand the code, build it and run it. You can build the
code using the supplied makefile.

Before you can run the code you will need to run the
get_mnist.sh script to download the MNIST data.

The program accepts an optional command line argument
to make it use the IPU hardware instead of a simulated IPU.

As you would expect, training is significantly faster on the
IPU hardware.

Copyright (c) 2018 Graphcore Ltd. All rights reserved.

& graphcore.ai/resources v B a
] GRAPHCORE Home About» Products» Industries» Developer» Blog Careers»
FESOLUFECES CENTEE [t
RESOURCES
graphcore.ai/resources
RESEARCH WHITE — HOW-TO
PAFERS E(If)\ PAPERS [= VIDEOS E
i NeW reSOurceS hUb made See more > I_‘ See more > See more >
available in September 2020
WEEINARS SOFTWARE
DOCUMENTS <>
« Central source of research E I
. . See more > See more >
papers, white papers, videos,
on-demand webinars and
documentation e _— e — - ..
GRAPHCORE Home Abouts Productss Industriess Oovelopers Biog Carvors [[RBSISIRN GRAPHCORE #ome Aouts Procuctss induswiess Developers log Careers |[ERERISIN
. Product resources for ML s R
Engineers & IT / Infrastructure N R .
Managers now available e eieisn o
o
GRAFHCORE

https://graphcore.ai/resources

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

USEFUL ENV VARIABLES

USEFUL ENV VARIABLES

LOGGING

Logging messages can be generated when your program runs. This is controlled by the environment
variables described below. For more detailed information see the docs:
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

POPLAR_LOG_LEVEL: Enable logging for Poplar

POPLAR_LOG _DEST: Specify the destination for Poplar logging (“stdout”, “stderr” or a file name)

“OFE" No logging information. The default.

“ERR” Only error conditions will be reported.

WARN” Warnings when, for example, the software cannot achieve what was requested (for example, if the convolution planner can’t keep to the
memory budget, or Poplar has determined that the model won't fit in memory but the debug.allowOutOfMemory option is enabled).

“INFO” Very high level information, such as PopLibs function calls.

“DEBUG” Useful per-graph information.

“TRACE” The most verbose level. All useful per-tile information.

https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/env-vars.html

SYNTHETIC-DATA

TF_POPLAR_FLAGS="--use_synthetic_data --synthetic_data_initializer=random"

Used for measuring the IPU-only throughput and disregards any host/CPU activity.

50

USING POPVISION (MORE ON THIS LATER)

POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true", "autoReport.directory":"./tommyFlowers"}’

« The PopVision Graph Analyser uses report files generated during compilation and execution
by the Poplar SDK.

« These files can be created using POPLAR_ENGINE_OPTIONS.

* |n order to capture the reports needed for the PopVision Graph Analyser you only need to
set POPLAR_ENGINE_OPTIONS='{"autoReport.all":"true"}' before you run a program. By
default this will enable instrumentation and capture all the required reports to the current

working directory.

51

A NOTE ON COMPILE TIME AND
EXECUTABLE CACHING

« Our compiler technology consumes input from the high-level frameworks e.g.
PyTorch, and generates a massively parallel computational graph. This graph is
then compiled down to target the IPUs MIMD architecture.

* |t can take a long time to compile a large fused graph into an executable suitable
for the IPU. E.g. ~20 mins for BERT-L pre-training on IPU-POD16.

« Reducing compile time is something we are focused on this year.

* To prevent the need for compiling every time a new process is started, you can
enable an executable cache: more on the next slide.

52

EXECUTABLE CACHE

If you often run the same models you might want to enable executable caching to
save time:

POPTORCH:

* You can do this by either setting the POPTORCH_CACHE_DIR environment
variable or by calling poptorch.Options.enableExecutableCaching.

TENSORFLOW:

* You can use the flag --executable_cache_path to specify a directory where
compiled files will be placed. Fused XLA/HLO graphs are hashed with a 64-bit
hash and stored in this directory.

Warning

The cache directory might grow large quickly. Poplar doesn’t evict old models from the
cache and, depending on the number and size of your models and the number of IPUs
used, the executables might be quite large.

It is the your responsibility to delete the unwanted cache files.

53

https://docs.sourcevertex.net/files/poptorch-poptorch-user-guide-latest/reference.html

PRECOMPILATION

« PopTorch and TensorFlow support precompilation: This means you can compile
your model on a machine which doesn’t have an IPU and export the executable
to a file. You can then reload and execute it on a different machine which does
have an IPU.

More details in the documentation.

54

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

TFI FOR IPU

TENSORFLOW PROGRAMS ON THE IPU

Minimum code to run on IPU

Configure the IPU Compile graph to XLA

Single or multiple IPUs. Graph Fix input and output tensors.
optimization and profiling options. Compiles static graph to Poplar
executable.

Now, run it fast

o & .
< .
~ 9 | g
<
x a
-
B —

- ‘" fﬁg ::;‘
— R

Optimise data flow

Minimise host IO by looping on IPU.

Use Datasets, infeeds & outfeeds.

57

MINIMUM CODE CHANGES TO RUN ON IPU

1. Configure IPU system
2. Functionalize your model to be placed on IPU
3. Compile on IPU

58

MINIMUM CODE CHANGES TO RUN ON IPU

1. Configure IPU system
from tensorflow.python import ipu
ipu configuration = ipu.config.IPUConfig()

ipu configuration.auto select ipus =1

ipu configuration.configure ipu system()

59

MINIMUM CODE CHANGES TO RUN ON IPU

2. Functionalize your model to be placed on IPU

Do basic addition with tensors
ol = pa + pb

02 = pa + pcC

simple_graph_output = ol + 02

l

def basic _graph(pa, pb, pc):
Do basic addition with tensors
ol = pa + pb
02 = pa + pcC
simple_graph output = ol + 02
return simple_graph_output

60

MINIMUM CODE CHANGES TO RUN ON IPU

3. Compile on IPU

from tensorflow.python.ipu.scopes import ipu scope

with ipu_scope("/device:IPU:0"):
xla result = ipu.ipu_compiler.compile(basic_graph, [pa, pb. pc])

61

TENSORFLOW PROGRAMS ON THE IPU

Optimise data flow

Minimise host IO by looping on IPU.
Use Datasets, infeeds & outfeeds.

62

WHY DO WE NEED TRAINING LOOPS?

« Communication between the host and IPU is slow compared to

execution on-device, so we see this overhead if calling the
hardware for each batch.

« By placing the training operations inside a loop, they can be
executed multiple times without returning control to the host.

63

WHY DO WE NEED DATA FEEDS?

« When a training operation is placed into a loop, the inputs to
that training operation need to provide a stream of values.

« Standard TensorFlow Python feed dictionaries cannot provide
data in this form, so when training in a loop, data must be fed
from a TensorFlow DataSet.

64

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

TOOLS

POPVISION™

POPVISION GRAPH
ANALYSER

* You can use the PopVision Graph
Analyser tool to debug IPU
programs and generate reports on
compilation and execution of the
program.

 This tool can be downloaded from
the Graphcore customer support
portal: https://downloads.graphco

re.al/.

e There is a built-in help system
within the tool for any questions
you might have about producing
and analysing reports.

66

https://downloads.graphcore.ai/

Several new features including:
* A new file format for the graph and

PopVision Graph Analyser et
VZ.Z : file size reduction

Enhanced PopLibs debug information

Liveness Report

The debug information shown for a
variable now displays enhanced

. information. For each variable that has
Getting started with PopVision™ B e debug information, you can now see the
— PopLibs API that created it, its arguments
and its outputs.

Intro to the PopVision™ Graph Analyser

Enhanced debug information has been
added to program steps. Program steps
show Poplar and PopLibs debug
information such as which PopLibs API
created that program step, its arguments
and its outputs.

Check out the integrated help or visit our developer

Getting started video available on the developers portal portal for more information 5

PopVision System Analyser

Show the execution of the software
on the host processor enabling users
to identify bottlenecks in execution
between CPU & IPU(s).

Provide profile insights as you scale
models to multiple CPUs / IPUs.

poplar::core:APUTarget:-run
Duration: 35.833 secs
Channel: Poplar

The PopVision System Analyser allows
developers to understand the execution
of programs running on the host
processor which control the IPU(s). The
System Analyser shows the interaction
between the host and the IPU(s) so that
developers can understand where the
bottlenecks are in the execution of their
applications.

The PopVision System Analyser
visualises the information collected by
the PopVision Trace Instrumentation
Library which is part of the Poplar SDK.

Visit our developer portal for more information and the
latest documentation:

https://www.graphcore.ai/developer

BULK SYNCHRONOUS
PARALLEL (BSP)

BSP software bridging model - massively parallel
computing with no concurrency hazards

3 phases: compute, sync, exchange

Easy to program - no live-locks or dead-locks

Widely-used in parallel computing - Google, FB, ...

First use of BSP inside a parallel processor

. compute phase

exchange phase

IPU

IPU

sync

time——

inter-chip sync
sync sync (1 tile abstains)
| | |
host I/O
'\\\/ |
N\
N
N\e
_f/ A host I/0 |
| A |
sync Inter- sync sync
chip
sync

B
o
°
Q
3]
9]
o
B
o
°
Q
3]
c
i
=
-
(7]
-l

TF2/KERAS ON IPU

KERAS ON IPU

« |PU optimized Keras Model and Sequential
are available for the IPU. These have the
following features:

* On-device training loop for reduction of
communication overhead.

* Gradient accumulation for simulating
larger batch sizes.

* Automatic data-parallelisation of the
model when placed on a multi-IPU device.

as tf import tensorflow as tf
as.layers import x from tensorflow.keras.layers import x
-~ + from tensorflow.python import ipu IF)LJ
+ cfg = ipu.config.IPUConfig()
+ cfg.auto_select_ipus = 1
+ cfg.configure_ipu_system()
~ +with ipu.ipu_strategy.IPUStrategy().scope():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifar10.load_data() (x_train, y_train), (x_test, y_test) = tf.keras.datasets.cifarl0.load_data()
x_train = x_train.astype('float32') / 255.0 x_train = x_train.astype('float32') / 255.0
y_train = tf.keras.utils.to_categorical(y_train, 10) y_train = tf.keras.utils.to_categorical(y_train, 10)
ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_remainde ds_train = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(64, drop_rema
model = tf.keras.Sequential([model = tf.keras.Sequential([
Conv2D(32, (3, 3), padding='same', input_shape=x_train.shape[1:]), Conv2D(32, (3, 3), padding='same', input_shape=x_train.shapel[1:1),
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Conv2D(64, (3, 3), padding='same'), = Conv2D(64, (3, 3), padding='same'), —
Activation('relu'), Activation('relu'),
Conv2D(32, (3, 3)), Conv2D(32, (3, 3)),
Activation('relu'), Activation('relu'),
MaxPooling2D(pool_size=(2, 2)), MaxPooling2D(pool_size=(2, 2)),
Dropout(0.25), Dropout(0.25),
Flatten(), Flatten(),
Dense(512), Dense(512),
Activation('relu'), Activation('relu'),
Dropout(0.5), Dropout(0.5),
Dense(10), Dense(10),
Activation('softmax') Activation('softmax')
1) 1)
model.compile(loss="'categorical_crossentropy’, model.compile(loss="'categorical_crossentropy',
optimizer=tf.optimizers.SGD(learning_rate=0.016), optimizer=tf.optimizers.SGD(learning_rate=0.016),
metrics=['accuracy']) metrics=['accuracy'])

model.fit(ds_train, epochs=40) model.fit(ds_train, epochs=40)

@ gpu_cnn_keras.py ¢ ipu_cnn_keras.py tf_keras i I AN [R

D alext — ubuntu@ip-172-31-6-210: ~/gpu2ipu_tf, @ © @ 5 alext — alext@IPU4D70: ~/gpu2ipu_tf/keras — ssh -i ~/.ssh/gc_rsa alext@
(tensorflow2_p36) ubuntu@ip-172-31-6-210:~/gpu2ipu_tf/keras$ (gc_virtualenv_TF2) alext@IPU4D70:~/gpu2ipu_tf/keras$
$ python3 gpu_keras_cnn.pyD $ python3 ipu_keras_cnn.pyl

GPU

(tensorflow2_p36) ubuntu@ip-172-31-6-210:~/gpu2ipu_tf/keras$

$ python3 gpu_keras_cnn.py
Train for 1560 steps
Epoch 1/40

1560/1560 [

Epoch 2/40

1560/1560 [

Epoch 3/40

1560/1560 [
Epoch 4/40
75/1560 [>.ieeeeeeeeneeeeenenneeonnnnns

8s bms/stey

2.168!

5s 3ms/step — loss: 1.880

5s 3ms/step — loss: 1.652

ETA: 5s — loss:

1.5328 - |

[JON |

$ python3 i
2020-05-12

r package:

2020-05-12

2020-05-12

Epoch 1/40

2020-05-12

most once

1560/1560 [
Epoch 2/40

1560/1560 [
Epoch 3/40

1560/1560 [
Epoch 4/40

1560/1560 [
Epoch 5/40

1560/1560 [
Epoch 6/40

1560/1560 [
Epoch 7/40

1560/1560 [
Epoch 8/40

1560/1560 [
Epoch 9/40

1560/1560 [
Epoch 10/40
1560/1560 [
Epoch 11/490
1560/1560 [
Epoch 12/40
1560/1560 [
Epoch 13/40
1560/1560 [
Epoch 14/40
1560/1560 [
Epoch 15/40
1560/1560 [
Epoch 16/40
1560/1560 [
Epoch 17/40

pu_keras_cnn.py
16:40:32.449285:
fé6b6aes4cel)
16:40:34.523582:
16:40:35.357131:

16:40:35.898895:
for the lifetime

alext — alext@IPU4D70: ~/gpuZ2ipu_tf/keras — ssh -i ~/.ssh/gc_rsa alext@
I tensorflow/compiler/plugin/poplar/driver/poplar_pla

ils/cpu_utils.cc
lriver/poplar_exe

I tensorflow/core/platform/prc
I tensorflow/compiler/plugin/g

I tensorflow/compiler/jit/xla_compilation_cache.cc:25¢
of the process.

] 2s 2ms/step — loss: 0.0500 - accurac)

] — 1s 593us/step — loss: 0.0408 — accur:
] - 1s 592us/step — loss: 0.0357 — accur:
] - 1s 597us/step — loss: 0.0325 — accur:
] - 1s 600us/step — loss: 0.0299 — accur:
] - 1s 600us/step — loss: 0.0278 - accur:
] — 1s 599us/step — loss: 0.0258 — accur:
] - 1s 598us/step — loss: 0.0241 — accur:
] - 1s 600Qus/step — loss: 0.0224 — accur:
] - 1s 600Qus/step — loss: 0.0208 — accur:
] - 1s 601lus/step — loss: 0.0193 - accur:
] - 1s 608us/step — loss: 0.0178 — accur:
] - 1s 601lus/step — loss: 0.0164 — accur:
] - 1s 60lus/step — loss: 0.0150 — accur:
] - 1s 598us/step — loss: 0.0136 — accur:
] - 1s 601us/step — loss: 0.0122 - accur:

KERAS TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

79

https://github.com/graphcore/tutorials/tree/master/tutorials/tensorflow2/keras

INTRO TO POPTORCH

GRAFHCORE

WHAT IS POPTORCH?

PopTorch

O PyTorch

. POPART

main.py

°

Poplar
compute
‘graph.

o
L
—
o
=
O
@)
L
o
<
o
O

GRAPH RUN TIME

81

WHAT IS POPTORCH?

PopTorch is a set of extensions for PyTorch to enable PyTorch models to run on
Graphcore's IPU hardware.

PopTorch supports both inference and training. To run a model on the IPU you wrap your
existing PyTorch model in either a PopTorch inference wrapper or a PopTorch training
wrapper.

You can provide further annotations to partition the model across multiple IPUs. Using the
user-provided annotations, PopTorch will use PopART to parallelise the model over the
given number of IPUs.

Additional parallelism can be expressed via a replication factor which enables you to
data-parallelise the model over more IPUs.

Under the hood PopTorch uses TorchScript, an intermediate representation (IR) of a
PyTorch model, using the torch.jit.trace API. To learn more about TorchScript and JIT, you
can go through PyTorch’s tutorial: . ,
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html

Not all PyTorch operations have been implemented by the backend yet and you can find
the list of supported operations here: https://docs.graphcore.ai/projects/poptorch-user-
quide/en/latest/supported_ops.html

82

https://docs.graphcore.ai/projects/popart-user-guide/en/latest/intro.html
https://pytorch.org/docs/stable/jit.html
https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html
https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/supported_ops.html

PYTORCH FOFR IPU

O PyTorch

Examples available from
https://github.com/graphcore/examples

Define a model within
PyTorch

Create an IPU execution
wrapper around the model
and run as normal

PopTorch uses
the torch.jit.trace API to
trace the model to PyTorch IR

Compile the graph in POopART
and then run on one or more
IPUs

83

https://github.com/graphcore/examples

GETTING STARTED: TRAINING A MODEL

TRAINING A MODEL

1. Import packages

PopTorch is a separate package from PyTorch, and must be imported.

2. Load dataset using torchvision.datasets and poptorch.DatalLoader

In order to make data loading easier and more efficient, PopTorch offers an extension of
torch.utils.data.DatalLoader class:

poptorch.DatalLoader class is specialised for the way the underlying POpART
framework handles batching of data.

3. Define model and loss function using torch API
The only difference here from pure PyTorch is the loss computation, which has to be part
of the forward function. This is to ensure the loss is computed on the IPU and not on the

CPU, and to give us as much flexibility as possible when designing more complex loss
functions.

18

85

TRAINING A MODEL

4. Prepare training

Instantiate compilation and execution options, these are used by PopTorch’s wrappers
such as poptorch.DatalLoader and poptorch.trainingModel.

5. Train the model

Define the optimizer using PyTorch’s API.

Use poptorch.trainingModel wrapper, to wrap your PyTorch model. This wrapper will
trigger the compilation of our model, using TorchScript, and manage its translation to a
program the IPU can run. Then run your training loop.

86

if __name__ == '__main__':

—_—r Al = LUILII-IIId)\\pICUJ.LLJ.UIIb, E N
provide labels only for samples, where prediction is available (during the training, nof
ions.size()[0]:]

P T h ch.eq(ind, labels)).item() / labels.size 0
ylorc GPU

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')

parser.add_argument('—-batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('—-test-batch-size', type=int, default=8, help='batch size for testinc
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (de"
parser.add_argument('—1r', type=float, default=0.05, help='learning rate (default: 0.05)'

args = parser.parse_args()

training_data = torch.utils.data.DatalLoader(m
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, 1
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = torch.utils.data.Dataloader(I
torchvision.datasets.MNIST('mnist_data/', train=False, download=True,

model = Network()
training_model = TrainingModelWithLoss(model)
optimizer=optim.SGD(model.parameters(), lr=args.lr)

Run training
for _ in range(args.epochs):
for data, labels in training_data:
preds, losses = training_model(data, labels)
optimizer.zero_grad() I
losses.backward()
optimizer.step()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

—_r Al = LUILII-IIIG}\\pICuLLLJ.UII), L/
provide labels only for samples, where prediction is available (during the training, noi
labels = labels[-predictions.size()[0]:]

accuracy = torch.sum(torch.eq(ind, labels)).item() / labels.si 100.0
return accuracy IF)lJ
if __name__ == '__main__':

parser = argparse.ArgumentParser(description="MNIST training in PopTorch')
parser.add_argument('--batch-size', type=int, default=8, help='batch size for training (de
parser.add_argument('--test-batch-size', type=int, default=8, help='batch size for testin
parser.add_argument('--epochs', type=int, default=10, help='number of epochs to train (def
parser.add_argument('--1r', type=float, default=0.05, help='learning rate (default: 0.05)'
parser.add_argument('--device-iterations', type=int, default=50, help='device iterations |
args = parser.parse_args()

opts = poptorch.Options().deviceIterations(args.device_iterations)

training_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=True, download=True, tran:
batch_size=args.batch_size, shuffle=True, drop_last=True)

test_data = poptorch.DatalLoader(opts,
torchvision.datasets.MNIST('mnist_data/', train=False, download=True, trar

model = Network() -
training_model = TrainingModelWithLoss(model) —
optimizer=optim.SGD(model.parameters(), lr=args.lr)

training_model = poptorch.trainingModel(training_model, opts, optimizer=optimizer)
inference_model = poptorch.inferenceModel(model) =

Run training
for _ in range(args.epochs): -
for data, labels in training_data:
preds, losses = training_model(data, labels) —

Detach the training model so that the same IPU could be used for validation L—
training_model.detachFromDevice()

Run validation
sum_acc = 0.0
with torch.no_grad():
for data, labels in test_data:
output = inference_model(data)
sum_acc += accuracy(output, labels)
print("Accuracy on test set: {:0.2f}%".format(sum_acc / len(test_data)))

POPTORCH TUTORIAL

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tutl basics

88

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

POPTORCH.OPTIONS

« The compilation and execution on the IPU can be controlled using poptorch.0Options

« Full list of options available here: https://docs.graphcore.ai/projects/poptorch-user-
guide/en/latest/overview.html#options

« Some examples:
(i) deviceIterations
This option specifies the number of batches that is prepared by the host (CPU) for
the IPU. The higher this number, the less the IPU has to interact with the CPU, for
example to request and wait for data, so that the IPU can loop faster. However,
the user will have to wait for the IPU to go over all the iterations before getting
the results back. The maximum is the total number of batches in your dataset,
and the default value is 1.

(ii) replicationFactor
This is the number of replicas of a model. We use replicas as an implementation
of data parallelism. To achieve the same behavior in pure PyTorch, you'd wrap
@ your model with torch.nn.DataParallel, but with PopTorch, this is an option. 8

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/overview.html

INFERENCE

« Torun inference, you use poptorch.inferenceModel class, which has a similar
APl to poptorch.trainingModel except that it doesn't need an optimizer.

« See tutorial example here:
https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tutl_basics#r

unning-our-model-for-inference-on-an-ipu

90

https://github.com/graphcore/tutorials/tree/master/tutorials/pytorch/tut1_basics

MORE INFO

» PyTorch for the IPU: User Guide
https://docs.graphcore.ai/projects/poptorch-
user-guide/en/latest/

« GitHub tutorial
https://github.com/graphcore/examples/tree/

master/tutorials/pytorch/tutl_basics

 Code examples on GitHub
https://github.com/graphcore/examples/tree/

master/code_examples/pytorch/mnist

« Video tutorial on our developer page
https://www.graphcore.ai/developer

18

Getting started with PyTorch for the IPU

Running a basic model for training and inference

GRAPHCORE

91

https://docs.graphcore.ai/projects/poptorch-user-guide/en/latest/
https://github.com/graphcore/examples/tree/master/tutorials/pytorch/tut1_basics
https://github.com/graphcore/examples/tree/master/code_examples/pytorch/mnist
https://www.graphcore.ai/developer

ANY QUESTIONS, REQUESTS, BUGS...

https://www.graphcore.ai/support

ENGINEERING
SUPPORT

Go To Tickets =

https://www.graphcore.ai/support

THANK YOU

Mario Michael Krell
mariok@graphcore.ai

