The New Hardware and the Role of HPC at Texas A&M

by

Spiros Vellas
Associate Director
The Scene in 2013

- Eos + Lonestar (~48 TFLOPS; ~38m core-hrs/year avail)
 - Commodity x86 & interconnect technologies;
- ~700 users; mostly from typical research disciplines: engineering; physics; chemistry; geoscience; …
- 8 + 1 analysts & office admin;
- Teague & Wehner machine rooms … maxed out
The Scene in 2014

- 4 IBM Systems:
 - 1 2048-node Blue Gene Q cluster; IBM technology;
 - 1 858-node x86 cluster; commodity x86 and interconnect parts;
 - 1 23-node p7+ system; IBM technology;
 - 1 49-node p7+ system; IBM technology;
 - 795 TFLOPS Aggregate Peak Performance … a 16-fold increase
 - 3+ (?) Different programming environments

- ~ 700 users + N (??) users from front-line research areas;
- wider spectrum of computational areas; e.g., genomics
- 8 + 1 analysts & office admin;
- Teague & Wehner machine rooms … maxed out but undergoing power and cooling upgrades
The Scene in 1989
(Supercomputing Facility established)

• 1 Cray YMP2, a 333 MFLOPS system;
 – (OS) UNICOS, Cray Programming Environment
• ~ 60 users;
• Main computational areas: Quantum Chemistry; CFD, ABAQUS;
• 3 + 2 analysts & office admins, respectively;
• 1 Director (1/4-time);
• College of Engineering Initiative; funded mostly by a bond issue
Our Users (~700) as of 4/24/2014

Engineering: 431 (62%)
Science: 127 (18%)
Geoscience: 79 (11%)
Agriculture: 38 (5%)
Misc.: 25 (4%)
Ada: An IBM x86 Cluster

Ten racks of NeXtScale Compute nodes. The middle rack is a Mellanox SX6536 IB Core Switch, a major part of the InfiniBand fabric connecting all of the nodes. The total number of racks comprising Ada is 16.
Ada: 792 (Regular) Compute Nodes

<table>
<thead>
<tr>
<th>Component</th>
<th>Technology</th>
<th>Count or size/Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor</td>
<td>10-core (IvyBridge) Intel Xeon E5-2670 v2 2.5 GHz; 22 nm fabrication</td>
<td>2 / 400 GFLOPS/node</td>
</tr>
<tr>
<td>L3 cache</td>
<td>25 MB per processor</td>
<td>25 MB per processor</td>
</tr>
<tr>
<td>Memory</td>
<td>4 8-byte channels of DDR3-1866 MHz per processor</td>
<td>64 GB / 2 x 59.7 GB/s per node</td>
</tr>
<tr>
<td>Local disk</td>
<td>900 GB 2.5” SAS 10K rpm</td>
<td>1 / 6 Gbps</td>
</tr>
<tr>
<td>Proc2proc communication</td>
<td>20-bit Intel Quick Path Interconnect (QPI) link</td>
<td>2 paths / 8.0 GT/s p2p 32 GB/s full-duplex</td>
</tr>
<tr>
<td>Inter-node communication</td>
<td>Mellanox ConnectX-3 Dual-port FDR14 Host Channel Adapter (HCA)</td>
<td>2 / 56 Gb/s per HCA full-duplex</td>
</tr>
<tr>
<td>Global disk</td>
<td>Via GPFS Storage Server (GSS)</td>
<td>4 PB / 9.6 GB/s per node</td>
</tr>
</tbody>
</table>
Ada: 66 Other/Special Compute Nodes

- 20 iDataPlex Nvidia 2 x K20 GPU Nodes
 - 256G Memory, 20 Cores 2.5GHz
- 10 iDataPlex Nvidia 1 x K20 GPU Nodes
 - 64G Memory, 20 Cores 2.5GHz
- 9 iDataPlex Intel 2x Phi Accelerator Nodes
 - 64G Memory, 20 Cores 2.5GHz
- 6 iDataPlex 256GB Medium-Large Memory Nodes
 - 256G Memory, 20 Cores 2.5GHz
- 13 x3850 x5 1TB X-Large Memory Nodes
 - 1024GB Memory, 40 Cores 2.27GHz
- 2 x3850 x5 2TB XX-Large Memory Nodes
 - 2048GB Memory, 80 Cores 2.27GHz
- 6 Login Nodes
 - 256G Memory, 20 Cores 2.5GHz; 1-2 GPUs; 2 Phi; 4 900GB 10K rpm SAS disk drives
Ada: The FDR10 Infiniband Fabric

The Teague InfiniBand fabric connects to all System x compute nodes and storage nodes for MPI and storage traffic.

Compute nodes connect to leaf switches, which uplink to the spine at a 2:1 blocking ratio.

GSS nodes (see below) connect directly to the core with 4x node links each, for 160Gb/s aggregate per GSS node.

SUR grant DCS3700 storage (see farther below) nodes also connect directly to the core with 1x node link each.

Node Link
Switch Uplink

This figure is courtesy of B. Finley
Ada: Shared Fast Mass Storage 1

1 GSS Model 26 Block

4 x GPFS Storage Server Model 26 (GSS26)

- 4 PB total storage (raw) organized by GPFS
- ~48 GB/s aggregate throughput
- 8 x86 storage servers (2/block) to power data transfers between the GSS26 and the Ada & p7+ nodes (see core switch diagram)
- 32 (4 links per storage server) direct IB FDR10 connections to the InfiniBand Core Switch
- 16 10GbE connections (2/storage server) to the Ethernet Core Switch in Teague
- P7+ nodes (in wehner) access GSS26 via 2 40GbE connections between Wehner and Teague machine rooms
Ada: Shared Slower Mass Storage

IBM System Storage DS3512 Express (Teague machine room)

- 1.08 PB total storage (raw) organized by GPFS; 6 DCS3700 disk enclosures
- ~3 GB/s aggregate throughput
- 2 x86 storage nodes to power data transfers
- 2 10GbE connections to the Ethernet Core Switch in Teague
- Attached to Ada (and the p7+’s) via 10GbE connections

An IBM Shared University Research Grant (SUR Grant) in support of: (1) Plant & Animal Genomics; (2) Health Surveillance; (3) Genomic Signal Processing; (4) Gulf Climate & Environmental Systems Integration; (5) Oil & Gas
Archival & Backup Storage

IBM System Storage TS3500 Tape Library (in Teague machine room)

- 10 PB total storage (raw) organized by GPFS
- ~1 GB/s aggregate throughput
- 2 x86 storage nodes for powering data transfers
- 1 10GbE connections to the Ethernet Core Switch in Teague
- Attached to Ada and the p7+’s via 10GbE
- Major user: Geoscience
Crick: 23-node POWER7+ Cluster

Big Data Analytics Cluster w Storage-rich Nodes

IBM 7R2 Node Characteristics

- 16-core (2 8-core Power7+ processors) 4.2GHz; 537GFLOPS; 32 nm fabrication
- 256 GB memory; 34GB/s (?) per processor socket; Shared (on-chip) L3 80MB processor
- 10GbE port (link to Wehner Core 10G/40G)
- 4 x 600GB 10K rpm SAS (local disk)
- EXP24S + 24 x 600GB (14.4TB) 10K rpm SAS drives
- REDHAT ENTERPRISE LNX FOR PWR; GPFS Client
- Special Software: IBM InfoSphere BigInsights, Data Explorer Resource; Query Routing for InfoSphere Data Explorer; etc
- Target Areas: Big Data Analytics; Genomic Analysis, Breeding Simulation, mining historical data; Map Reduce; etc
<table>
<thead>
<tr>
<th>Special HPC Codes & Applications</th>
<th>IBM 7R2 Node Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-core (2 8-core Power7+ processors) 4.2GHz; 537GFLOPS; 32 nm fabrication</td>
<td></td>
</tr>
<tr>
<td>256 GB memory; 34GB/s (??) per processor socket; L3 80MB/processor</td>
<td></td>
</tr>
<tr>
<td>10GbE port (link to Wehner Core 10G/40G switch)</td>
<td></td>
</tr>
<tr>
<td>4 x 600GB 10K rpm SAS (local disk)</td>
<td></td>
</tr>
<tr>
<td>REDHAT ENTERPRISE LINUX FOR PWR; GPFS Client; IBM Compilers, ESSL, LSF (batch)</td>
<td></td>
</tr>
<tr>
<td>Target areas: applications & codes requiring fast memory and fast cpus</td>
<td></td>
</tr>
</tbody>
</table>
Neumann: The 2048-node Blue Gene Q (BG/Q) Cluster

1 (of 2) BG/Q Rack

32768-core, 419 TFLOPS, Massively Parallel, interconnected in 5D Torus topology

Node: 16 compute 1.6 GHz PowerA2 cores; 1 core for system calls; 1 core for spare 16 GB of DDR3 memory 204.8 GFLOPS (1.6 GHz * 8 Flop/s * 16)

1 I/O drawer per rack: 8 I/O nodes with 1 QDR IB link (via the torus interconnect) for every 2 compute nodes. Smallest job is 128-way

Shared Mass Storage 2: 2 PB of GSS26 connects to the I/O drawers via 16 IB connections thru 2 QDR/FDR10 IB switches

4 Front End Nodes: 4-core 3.6 GHz POWER7+ processor, 32 GB RAM, 2 600 GB SAS Drives

OS: Compute Node Kernel (CNK) runs on all compute nodes; a lightweight kernel, similar to Linux, supporting a large subset of its system calls

LoadLeveler (batch); IBM XL and GNU compilers; Engineering & Scientific Library (ESSL)
Texas A&M Data Center - 16 Racks System x86 - 4 Racks Storage - 1 Rack Tape - InfiniBand (FDR10)

Wehner Data Center - 5 Racks System p7's - 10G Ethernet

IBM Data Center - 2 Racks BlueGene/Q - 2 Racks Storage - InfiniBand (QDR)

College Station, Texas

This figure is courtesy of B. Finley
Teague Ethernet
1G Ethernet for the Main OS and Out of Band Management

Each GSS node connects to the Core with 2x 10GbE links in an LACP bond.

Each compute node connects to its rack switch with a single 1GbE link.

Teague Ethernet Core connects to the Wehner Ethernet Core via 2x 40GbE links (40GbE in purple).

Teague Core 10G/40G

Rack 1

1G Ethernet for the Main OS and Out of Band Management

This figure is courtesy of B. Finley
Wehner Ethernet (10GbE)
10G Ethernet for the Main OS and Data Network

Each node connects to its rack Ether switch with a single 10 GbE link. This provides a 2.5:1 blocking ratio in Wehner.

Wehner Ethernet Core connects to the Teague Ethernet Core via 2x 40GbE links (40GbE in purple).

This figure is courtesy of B. Finley.
2 Unifying Agents: GPFS & LSF

- Courant & Crick: 2 P7+ Clusters LSF (batch)
- Neumann: BG/Q cluster; Loadleveler (batch)
- Ada: x86 Cluster; LSF

GPFS File space:
- Tape: 10PB
- DS3512 Express: 1PB
- GSS26: 4PB + 2PB (?)

Dashed lines indicate location uncertainty.
A Challenge to A&M & IBM: Unifying 4 Clusters

Highly Desirable
- Ability of parallel jobs in one cluster to spawn processes in another;
- A common job submission interface
- Will generate a variety of possibilities for leveraging the best features of each system
- More powerful I/O (?)

Requirements
- Install BG/Q in Teague machine room;
- Remove and/or replace/modify Loadleveler

- Neumann: BG/Q cluster; Loadleveler (batch)
- Courant & Crick: 2 P7+ Clusters LSF (batch)
- GPFS File space
 - Tape 10PB
 - DS3512 Express 1PB
 - GSS26 4PB + 2PB (?)
- Ada: x86 Cluster; LSF
Fundamental Objective of the HPC Project

Integration of HPC into Research & Teaching
Parties in the HPC Project

Users
- Students
- Researchers adopting HPC
- Misc Others

HPC Infrastructure
- Skilled Analysts
- Hardware Technologies
- Software Technologies
- Machine Room capacity
Skilled Analysts: Vital to deliver the promise of HPC

We need analysts with strong backgrounds in
• HPC cluster management;
• HPC architectures & related technologies;
• Code optimization & parallelization;
• Scientific (& remote) visualization;
• Big data analytics;
• Web technologies;
• Scientific disciplines: bioinformatics & genomics; weather modeling; molecular dynamics; PDF’s; etc

No analysts on the staff with these skills
Facility’s 9-member Staff by Activity

• 2 analysts, mostly for system management & hardware technologies;
• 3 analysts mostly for code optimization, parallelization & general user consulting;
• 1 analyst mostly for user accounting & general user consulting;
• 1 analyst for total management & strategic directions, hardware technologies, code optimization & parallelization;
• 1 office admin
• 1 analyst Vacancy
Needed: More Multi-discipline Analysts to Redeem the Promise of HPC

• Who possess HPC skills as well as at least modest backgrounds in
 – Bioinformatics & Genomics;
 – Big Data Analytics;
 – Scientific (and remote) Visualization;
 – Web Technologies;
 – Applied Mathematics;
 – Physical Science: engineering; physics; chemistry; geoscience
Production Mode Timelines

• **Ada**: power & cooling upgrades just completed; installation & configuration ~80% complete; expected on-line by end of May;

• **Courant & Crick (p7+’s)**: power & cooling upgrades underway in Wehner machine room; rack installation in initial phase; expected on-line by end of June;

• **Neumann (BG/Q)**: installation location not determined yet