

# Bayesian Computing and the Incorporation of Prior Knowledge in Translational-Genomic Modeling

#### **Edward R. Dougherty**

#### Department of Electrical and Computer Engineering Center for Bioinformatics and Genomic Systems Engineering Texas A&M University

http://gsp.tamu.edu



<u>on tamu od</u>

σ

## **Medicine at the Right Level**

- Source of disease (ex: cancer) molecular scale
  - Genes and proteins

#### Organs

05/14/14h C /1 //1/



http://gsp.tamu.edu



#### **Complex Diseases**

- Most diseases do not result from a single gene product.
- Complex diseases require complex personalized mathematical analysis.



http://gsp.tamu.edu

ttp://gcp.tamu.od



#### **Patient-Specific Treatment**

• Specificity means much higher success rate.





## **Translational Genomics**

- Genomics is the study of genes as they interact in a system that governs cell behavior.
- Goals of translational genomics:
  - Screen for key genes and gene families that explain specific cellular phenotypes (disease).
  - Use genomic signals to classify disease on a molecular level.
  - Mathematically model dynamical system behavior to derive therapeutic strategies to alter undesirable behavior.

<u>05/14/145/17/1/</u>

http://gsp.tamu.edu

http://gsp.tamu.od5



## **Central Dogma of Molecular Biology**





#### **Gene Regulation**





tomii or

## **Genomic Classification of Disease**

- Abundance of RNA is measured for each gene (gene-expression microarray, RNA-Seq).
- A rule is used to train a classifier from the data.

| BF | CA | BRCA |              |                                 |
|----|----|------|--------------|---------------------------------|
|    |    |      | 6.02         | inter leukin enhancer binding ( |
|    |    |      | 5.79         | cyclin-dependent kinase 4       |
|    |    |      | 5.76         | D123 gene product               |
|    |    |      | 5.20         | phosphofructokinase, platelet   |
|    |    |      | 5.04         | protein phosphatase 1, cataly   |
|    |    |      | 4.80         | mutS (E. coli) homolog 2 (col   |
|    |    |      | 4.55         | ESTs                            |
|    |    |      | 4.54         | keratin 8                       |
|    |    |      | 4.49         | phosphodiesterase l/nucleoti    |
|    |    |      | 4.37         | glutathione peroxidase 4 (pho   |
|    |    |      | 4.33         | minichromosome maintenance      |
|    |    |      | 4.31         | tumor protein p53-binding pr    |
|    |    |      | 4.24         | phosphofructokinase, platelet   |
|    |    |      | 4.15         | phytanoyl-CoA hydroxylase I     |
|    |    |      | 4.10         | polymyositis/soleroderma au     |
|    |    |      | 4.09         | chromobox homolog 3 (Droso      |
|    |    |      | 3.97         | Major histocompatibility com    |
|    |    |      | 3.97         | DKFZP564M2423 protein           |
|    |    |      | 3.82<br>3.79 |                                 |
|    |    |      | 3.62         | proliferating cell nuclear ant  |
|    |    |      | 3.53         | cold shock domain protein A     |
|    |    |      | 3.33<br>3.42 | butyrate response factor 1 (    |
|    |    |      | 3.42<br>3.30 | UDP-galactose transporter n     |
|    |    |      |              | SELENOPHOSPHATE SYNTHET         |
|    |    |      | 3.24         | cyclin D1 (PRAD1 : parathyro    |
|    |    |      | 3.22         | v-yes-1 Yamaguchi sancoma       |
|    |    |      | 3.22         | v-erb-b2 avian erythroblast     |



## **Classification of Hereditary Breast Cancer**

- Classifier discriminates types of breast cancer using two-gene signature.
- If treatment for BRCA1 and BRCA2 differ, then early detection is critical.





n tamu dd

 $\overline{\phantom{a}}$ 

# **Glioma Application**

- Data from four types of glioma: OL, GM, AO, AA
- Find small gene sets to separate each type from others.
- Small sample: 25 patients.





#### **3-Gene Glioma Classification**

 3-gene linear discrimination for anaplastic oligodendroglioma from others.



05/11/1/1

http://gsp.tamu.offu



# **A Huge Challenge**

 Janet Woodcock (Director, Center for Drug Evaluation and Research, FDA): [As much as 75 percent of published biomarker associations are not replicable] "This poses a huge challenge for industry in biomarker identification and diagnostics development."



n tamu áld



tomu

## **Small Samples Don't Work**

- There are tens of thousands of genes and a small number of replicates, usually less than 100 Big data can be very small data.
- If the sample is large (many replicates), then the data can be split into training (classifier design) and testing (error estimation).
- Small data sets cannot be split because there would be insufficient data for both training and testing.
- Vain hope train and test on the same data.
  - *This results in poor error estimation not reproducible.*



tomu de

# **Bayesian Classification**

- Integrate prior (existing) biological with new data to design a classifier and estimate the error.
  - If one had full knowledge of the system, one would derive the optimal classifier need no data.
  - Partial knowledge constraints the space of classifiers, thereby allowing more efficient use of the data.

#### • Obstacles:

- *Mathematically much more difficult.*
- Computationally much more difficult: involves highdimensional Markov-chain-Monte-Carlo computational integrations and complex optimizations to incorporate prior knowledge.

05/1//1/

Genomic Signal Processing Laboratory

# **Growth Factor (GF) Signaling Pathways**

Growth Factors

05/11/1/11



- Biochemical pathways constrain the feature-label distribution.
- Key problem: Transform
   pathways into
   usable prior
   knowledge.

httn•//acn tamu alau

σ



### **OBC for Gaussian Model**

- Polynomial Optimal Bayesian Classifier (red line)
  - Dotted lines are level curves for the densities corresponding to the average means and covariance matrix.
  - Black solid line is linear
    classifier corresponding to the
    optimal classifier for the
    average mean and covariance
    matrix.



tomu old



## **Control of Gene Networks**

- The therapeutic problem is to model a gene regulatory network and then find an optimal treatment strategy.
  - Consider an external control variable and a cost function depending on desired outcome.
  - Minimize the cost function by a sequence of control actions over time – control policy (drugs).
  - Design optimal treatment regime to drive the system away from undesirable states.
- Problem 1: Infer network from data.
- Problem 2: Mathematically derive optimal controller.

<u>05/1////</u>

http://gsp.tamu.ok/u



#### A p53 Network

- Consider the DNA double strand break repair pathways involving the tumor suppressor gene p53.
- p53 is a master guardian gene tightly controlling various activities like cell cycle progression, senescence and apoptosis.
- Mutation in p53 is observed in 30% 50% of common human cancers.
- We consider 4 genes: ATM, p53, Mdm2, Wip1.





## **Mutated Mammalian Cell Cycle PBN**

- If CycD and Rb are simultaneously down-regulated, then the cell cycles in the absence of any growth factor.
- Intervention tries to stop simultaneous down regulation.

|               | Product | Predictors                                                                                                                                                                                                                     |
|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rb K E2F K    | CycD    | Input                                                                                                                                                                                                                          |
|               | Rb      | $(\overline{CycD} \land \overline{CycE} \land \overline{CycA} \land \overline{CycB})$                                                                                                                                          |
|               | E2F     | $(\overline{\text{Rb}} \land \overline{\text{CycA}} \land \overline{\text{CycB}})$                                                                                                                                             |
| (CycD) (Cdh1) | CycE    | $(E2F \land \overline{Rb})$                                                                                                                                                                                                    |
| CycA Cdc20    | CycA    | $\frac{(E2F \land \overline{Rb} \land \overline{Cdc20} \land (\overline{Cdh1 \land Ubc})) \lor (CycA \land \overline{Rb} \land \overline{Cdc20} \land (\overline{Cdh1 \land Ubc}))}{Cdc20 \land (\overline{Cdh1 \land Ubc}))}$ |
| CycB          | Cdc20   | CycB                                                                                                                                                                                                                           |
|               | Cdh1    | $(\overline{\text{CycA}} \land \overline{\text{CycB}}) \lor (\text{Cdc20})$                                                                                                                                                    |
| UbcH10        | Ubc     | $(\overline{Cdh1}) \lor (Cdh1 \land Ubc \land (Cdc20 \lor CycA \lor CycB))$                                                                                                                                                    |
|               | CycB    | $(\overline{Cdc20}\wedge\overline{Cdh1})$                                                                                                                                                                                      |

tomu d



<u>നന tam</u>u നീ

 $\overline{\phantom{a}}$ 

#### WNT5A Network

- Up-regulated WNT5A associated with increased metastasis.
- Cost function penalizes WNT5A being up-regulated.
- Optimal control policy with Pirin as control gene.





#### **Sample Trajectory**





/acn tamu off

#### Shift of Steady-State Distribution



• Optimal (infinite horizon) control with pirin has shifted the steady-state distribution to states with WNT5A down-regulated: (a) with control; (b) without control.



## **Bayesian Control**

- Network models are uncertaint owing to insufficient data and natural regulatory variability among cells.
- Bayesian control: design a control policy that has best average performance across an uncertainty class of networks.
- Computational issues:
  - Assuming a given network, a common design method is dynamic programming, which suffers from the "curse of dimensionality."
  - Bayesian control is much more computational owing to a huge search space and difficult optimizations – much research is necessary.

05/1//1/

http://gsp.tamu.offi