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Medicine at the Right Level

* Source of disease (ex: cancer) — molecular scale
— Genes and proteins

Molecules
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Complex Diseases

MOSt dlSEHSES flO not US Deaths from Heart Disease &
result from a single Cancer
gene product.
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Patient-Specific Treatment

* Specificity means much higher success rate.
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Translational Genomics

* Genomics is the study of genes as they interact in a
system that governs cell behavior.

* Goals of translational genomics:

— Screen for key genes and gene families that explain specific
cellular phenotypes (disease).

— Use genomic signals to classify disease on a molecular
level.

— Mathematically model dynamical system behavior to derive
therapeutic strategies to alter undesirable behavior.
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Central Dogma of Molecular Blology
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Gene Regulation
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Genomic Classification of Disease

* Abundance of RNA is
measured for each
gene (gene-expression
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Classification of Hereditary Breast Cancer

* Classifier discriminates
types of breast cancer S
using two-gene e W
signature.

If treatment for
BRCA1 and BRCA2
differ, then early
detection is critical. Keratin &
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Glioma Application

* Data from four types of glioma: OL, GM, AO, AA

* Find small gene sets to separate each type from
others.

* Small sample: 25 patients.
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3-Gene Glioma Classification

* 3-gene linear
discrimination for
anaplastic
oligodendroglioma

from others.

Beta-PPT
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A Huge Challenge

* Janet Woodcock (Director, Center for
Drug Evaluation and Research, FDA):
[As much as 75 percent of published
biomarker associations are not
replicable] “This poses a huge challenge
for industry in biomarker identification
and diagnostics development.”
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Small Samples Don’t Work

There are tens of thousands of genes and a small
number of replicates, usually less than 100 — Big
data can be very small data.

If the sample is large (many replicates), then the
data can be split into training (classifier design)
and testing (error estimation).

Small data sets cannot be split because there would
be insufficient data for both training and testing.

Vain hope train and test on the same data.

— This results in poor error estimation — not reproducible.
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Bayesian Classification

* Integrate prior (existing) biological with new data to
design a classifier and estimate the error.

— If one had full knowledge of the system, one would derive the
optimal classifier need no data.

— Partial knowledge constraints the space of classifiers, thereby
allowing more efficient use of the data.

* Obstacles:
— Mathematically much more difficult.

— Computationally much more difficult: involves high-
dimensional Markov-chain-Monte-Carlo computational
integrations and complex optimizations to incorporate prior
knowledge.
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Growth Factor (GF) Signaling Pathways

 Biochemical
pathways
constrain the
feature-label
distribution.

Key problem:
Transform
pathways into
usable prior
knowledge.
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OBC for Gaussian Model

* Polynomial Optimal
Bayesian Classifier (red
line)
— Dotted lines are level curves
for the densities corresponding
to the average means and ) —

covariance matrix. — linear (plug-in)

-d
-2 -1 0

— Black solid line is linear
classifier corresponding to the
optimal classifier for the
average mean and covariance
matrix.
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Control of Gene Networks

* The therapeutic problem is to model a gene regulatory
network and then find an optimal treatment strategy.

— Consider an external control variable and a cost function
depending on desired outcome.

— Minimize the cost function by a sequence of control actions
over time — control policy (drugs).

— Design optimal treatment regime to drive the system away
from undesirable states.

* Problem 1: Infer network from data.
* Problem 2: Mathematically derive optimal controller.
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A p53 Network

Consider the DNA double strand break repair

pathways involving the tumor suppressor gene
po3.

p53 is a master guardian gene tightly controlling
various activities like cell cycle progression,
senescence and apoptosis.

Mutation in p53 is observed in 30% - 50% of
common human cancers.

We consider 4 genes: ATM, p53, Mdm2, Wipl.
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Mutated Mammalian Cell Cycle PBN

* If CycD and Rb are simultaneously down-regulated, then
the cell cycles in the absence of any growth factor.

* Intervention tries to stop simultaneous down regulation.

CycA

Cdc20

Product  predictors

CycD
Rb
E2F
CycE
CycA

Cdc20
Cdhl
Ubc
CycB

Input

(CycD ~ CycE A CycA A CycB)

(Rb A CycA » CycB)

(E2F ~ Rb)

(E2F A Rb A Cdc20 » (Cdhl A Ubc)) v (CycA A Rb A

Cdc20 » (Cdhl ~ Ubc))

CycB

(CycA » CycB) v (Cdc20)

(Cdhl) v (Cdhl A Ubc A (Cdc20 v CycA v CycB))
(Cdc20 » Cdhl)
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WNTS5A Network

* Up-regulated
WNT5A associated
with increased
metastasis.

Cost function
penalizes WNT5A
being up-regulated.

Optimal control
policy with Pirin as
control gene.
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Sample Trajectory
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Shift of Steady-State Distribution
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Optimal (infinite horizon) control with pirin has shifted the
steady-state distribution to states with WNT5A down-
regulated: (a) with control; (b) without control.
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Bayesian Control

* Network models are uncertaint owing to insufficient
data and natural regulatory variability among cells.

Bayesian control: design a control policy that has
best average performance across an uncertainty
class of networks.

* Computational issues:

— Assuming a given network, a common design method is
dynamic programming, which suffers from the “curse of
dimensionality.”

— Bayesian control is much more computational owing to a
huge search space and difficult optimizations — much
research is necessary.
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