Texas A&M
Supercomputing
Facility

Boosting Productivitywith Advanced User Services

Raffaele Montuoro

Advanced User Services: Mission

Enhance and support computational sciences within Texas A&M University

Advanced User Services: Details

- Performance Analysis of computer codes
- Code Optimization
- Code Parallelization: OpenMP & MPI
- Consulting for code development on SC systems
- Code Porting on the SC systems
- Tune up of common scientific applications
- Benchmarking
- Design and configuration of small computer clusters

Advanced User Services: Young, but Tall

Advanced User Services: A Closer Look

 SODA: A Simple Ocean Data Assimilation Model

Dr. Benjamin Giese, Dept. of Oceanography

MST: Material Simulation Tool

Dr. Tahir Cagin, Dept. of Chemical Engineering

Illumina Genome Analysis Pipeline

Dr. James Sacchettini, Dept. of Biochemistry and Biophysics

SODA: Simple Ocean Data Assimilation

B. Giese

Material Simulation Tool

T. Cagin

SC staff

J. Sacchettini T. loerger

Bio- and Chemi- Informatics: Studies on *M. tuberculosis* Drug Action & Resistance

Whole genome sequencing can be used to define the mechanism of drug action and resistance.

J. Sacchettini T. loerger

How Solexa sequencing works

Single-ended sequencing:

- 1) Fragment gDNA select 200-300 base fragments
- 2) Spread and attach fragments to a lane on a chip, amplify
- 3) Press go

4) Just align your short reads, allowing gaps/mismatches, against a reference genome, and look for snps and indels

J. Sacchettini T. loerger

What can you do with all that sequence?

Sequence an entire genome of Mtb —4M bases in the Mtb genome

Therefore with 20Mx36 base reads you get 100% coverage with 200-fold redundancy- (depth of coverage) per genome; 7 genomes per chip

Or you can add a tag to each of 4 genomes and run them on a single lane -50 fold depth of cover per genome- 28 genomes per chip

J. Sacchettini T. loerger

loerger Sequencing Protocol

identify *putative SNPs*where majority base differs from
expected base

align reads

against

reference

genome

build *local contigs* in surrounding ~200 bp and align against reference genome to identify true SNPs vs. indels

edit genome sequence and realign reads

J. Sacchettini T. Ioerger

- Solexa's Genome Analysis Pipeline is a customizable analysis engine capable of taking the raw image data generated by the Genome Analyzer and producing intensity scores, base calls, and quality metrics, and quality scored alignments
- Based on Makefile
- Scales up to 8 shared-memory tasks (gmake -j 8)
- Typical problem size: 8 lanes x 36 cycles x 4 bases x 100 images/base/cycle = 115,200 images to be processed

J. Sacchettini T. loerger

ANALYSIS none, 79 cycles, **252,800** images

Raffaele Montuoro

SC staff

J. Sacchettini T. loerger

Advanced User Services

Q: How to apply?

A: E-mail the Supercomputing Help Desk:

help@sc.tamu.edu

