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Surge Response Functions
Motivation

1. An improved, efficient, and accurate risk-assessment method for 

coastal flooding is required.

2. Develop a continuous surge estimator for emergency response
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Surge Response Functions
Background – Surge Generation

Primary mechanisms:

• Wind setup:

• Low pressure:

• Wave setup: breaking waves
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Surge Response Functions
Background – Surge Generation
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Surge Response Functions
Background – Historical Approach

• Form data set of “largest” storms (measurements or hindcasts)

• Typical applications: 
• Points over Threshold (POT)
• Annual series

• PARAMETRIC (GEV, Weibull, Log Normal or other assumed form):

• Considers sampling size effects on “fitted” curve
• Uses various fitting methods (MLM, MOM, etc.)
• Allows parametric estimation of return periods larger than given by the   
historical record

• NON-PARAMETRIC (e.g., EST):

• No assumptions on data’s probability distribution in interior
• Uses data to develop distribution in interior
• Still extrapolates beyond data range using parametric “fit” to data

• Results extremely sensitive to record length

• Storms assumed to be from a homogeneous parent population

• Climate variability typically excluded



Surge Response Functions
Methodology – Response Function Approach
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General form for surge response at location x and time t:



Surge Response Functions
Methodology – Response Function Approach
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Surge Response Functions
Methodology – Numerical Simulation

Storm surge – ADCIRC (Luettich et al. 1992)

• Hydrodynamic model:

• Finite element, variable resolution

• Model forcing:

• Wind stress

• Barometric pressure
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Surge Response Functions
Methodology – Numerical Simulation

• Planetary Boundary Layer Model (Thompson & Cardone 1996):

• Input Vf, θ, cp, Rp, track position, …

• 75 storms on 4 tracks (Vf constant, θ ~ constant)



Surge Response Functions
Surge Characteristics – Alongshore Variation

Track A Track D



Surge Response Functions
Surge Characteristics – Response Surfaces
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Surge Response Functions
Parameterization
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Surge Response Functions
Parameterization – Response Function
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Surge Response Functions
Parameterization – Response Function

1

3

2

4



Surge Response Functions
Results – All Four Tracks at 30 km Spacing
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Surge Response Functions
Results – Two Tracks at 60 km Spacing
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37 simulations:

mean error = -9 – +4 cm, RMS error = 10 – 19 cm



Surge Response Functions
Results – Two Tracks at 90 km Spacing
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38 simulations:

mean error = -16 – +9 cm, RMS error = 15 – 30 cm



Surge Response Functions
Results – Two Tracks at 90 km Spacing, Limited Storms
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Surge Response Functions
Ongoing Research – Continental Shelf Width (Preliminary)
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Surge Response Functions
Ongoing Research – Surge and Storm Size (Preliminary)
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Surge Response Functions
Hurricane Ike – Preliminary Results

• Hurricane Ike characteristics: cp=952 mb, Rmax = 38 km

• Location 28 km to the right of the landfall

• Water level elevation by tides and wave setup not included

• Impact of barrier island morphology not considered

Rmax[km] Peak [km]

10 10.78

14 12.48

18 13.32

22 13.88

26 14.29

30 13.76

34 13.30

38 12.94

42 12.65

46 12.41

50 12.21

54 12.04

Maximum Surge Calculation near Rollover Pass

http://texascoastgeology.com/passes/rollover.htmlhttp://texascoastgeology.com/passes/rollover.html

FEMA HWM = 14.70 ft, MSL (“wave runup”)



Surge Response Functions
Hurricane Ike – Preliminary Results

Comparison to USGS water level gauge data

http://pubs.usgs.gov/of/2008/1365/

• Water level elevation by tides and wave setup not included

• Impact of barrier island morphology not considered



ADCIRC Job Characterization on HYDRA

Each ADCIRC simulation ~ 1400 computational hours (32/64 processors)

Each coupled ADCIRC/wave simulation ~ 3500 computational hours (32/64 

processors)

Advantages of using Hydra:

• Capable of running nine parallel simulations simultaneously

• Linkage to large data storage via K2 server

Hydra Usage Information for FY09:

• 296 jobs, 146267 cpu hours

Job Type Total Jobs Total Cpu Hours Average 

Execution Time

1-cpu 153 65 25 minutes

32-cpu 82 76421 32 hours

64-cpu 60 68555 24 hours

128-cpu 1 1224 18 hours



Surge Response Functions
Summary

• Surge response approach presents solution to extreme-value statistics for 

coastal flooding

• Definable characteristics of response surfaces – given a single track:

• Surge distribution scales with Rp and cp

• Overall methodology must include a means to reflect uncertainty in predicted 

response surfaces

• Response surface prediction has potential to extend applicability of limited 

observation set (i.e. surges in stronger and weaker storms can be estimated)

• Response surface prediction reduces numerical simulation requirements by 

allowing functional interpolation between simulation results

• Application in coast bays viable


