Computational Catalysis and Electrocatalysis

Perla B. Balbuena Department of Chemical Engineering and Materials Science and Engineering Program Texas A&M University <u>balbuena@tamu.edu</u>

SC Annual User Meeting 2009, 20th Anniversary Celebration, May 6th, 2009

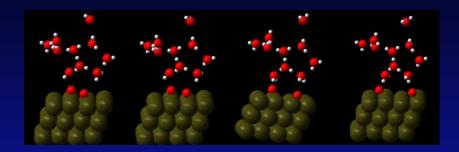
Why catalysis?

Most Reactions are too slow to be useful...

Catalysts speed up a chemical reaction without being used up...

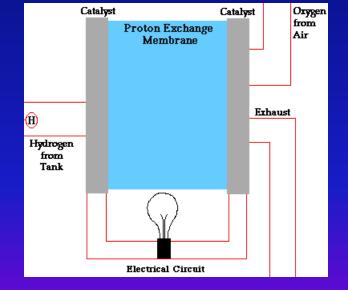
Why computational catalysis?

A good catalyst is a material whose surface is composed of active sites where reactants may be temporarily attached or may be decomposed


The challenge: find out an efficient, durable, and cost effective materials for catalysis

Experiments help, but... Too lengthy and expensive !!!

First-principles based computations are excellent tools to guide experiments and design novel materials


Tools-methods

From the atomistic level...

To mesoscopic

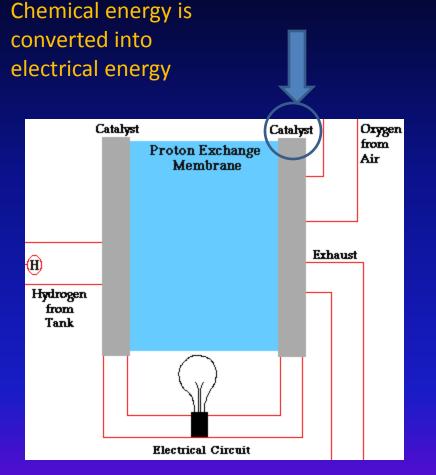
And macroscopic systems...

Covering large time scales: from femtoseconds to minutes, hours...

Tools-hardware

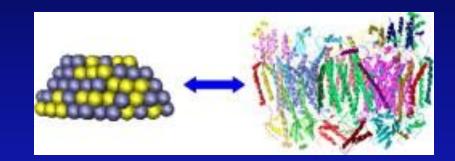
Novel catalytic designs require reaching the atomistic world

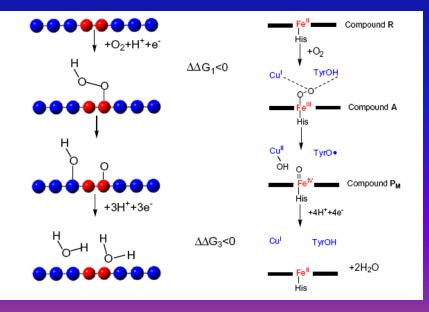
How? Solving exact laws of nature


Numerical solutions involving realistic models now possible because of supercomputers

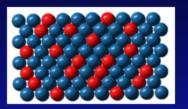
Dese			191	44 C	
10.925		-	100	112.0	
200	· salary		100	145	
1.42	1	-		111	
	N	102 =	r 193	1 1	
	18 H	108 -		-	
		10 ÷	-18		
	1-	D- B	111	in the	
E P		112 1		10	
18		10 C		- 88	
1.0	-	LON N	100		Ι.
100	12	100 1		11	
		118 5			Γ
		100	125		
1		108	1		Γ
J. Pr		12 1	r 188	10	Γ.
		100 -	100	- 15	Γ
		155 -			
10		100 -		÷ 10	
	1.6		100	a .	
12		5			
	18 ÷	10 -	18	- 11	
1 80	1.4			10 C 1	
		102 1	1		
		121		- 1	Γ.
	1.8	10.			Γ
-		6 1	1000	a di	
1	10 2	10 1			Г
					Γ
	N	68X =	101	ar 14	Γ
1 10	8	10X P	7 1 1	87 R	I.
		100	100		Γ.
1		112	111	- 60	Γ
1		108	12		
100			100	B T 	Γ
		100			I.

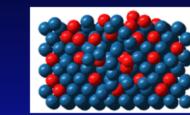
Applications from our research

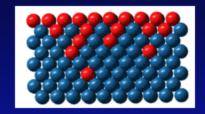

- Fuel cell electrocatalysts
- Controlled growth of carbon nanostructures
- Hydrogen storage
- Photocatalysis


Fuel cell electrocatalysts

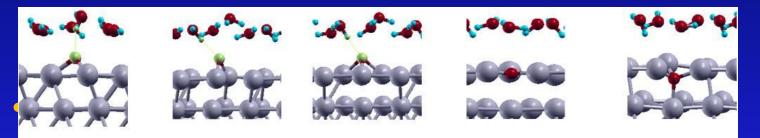
Wang and Balbuena, JPCB 2005; Ma and Balbuena, CPL, 2007

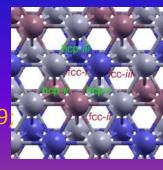

Parallelism between bimetallics and metalloenzymes



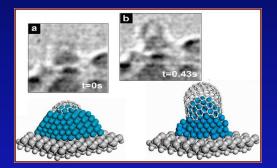


Predictions and challenges

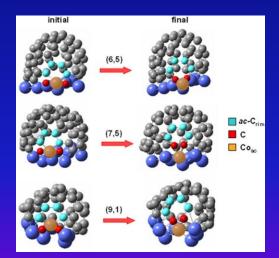

catalyst surface evolution during reaction



catalyst degradation in acid medium

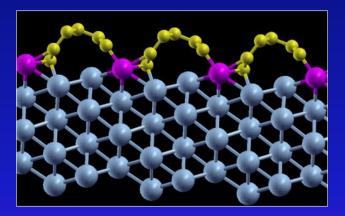

new formulations of binary and ternary alloys

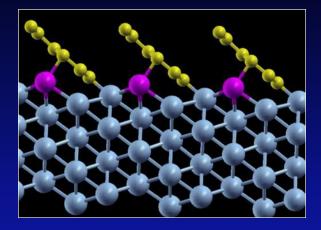
Ma and Balbuena, Surf. Sci, 2008; Ma and Balbuena, JPCC, 2008; Ramirez-Caballero and Balbuena, CPL, 2008; Callejas-Tovar and Balbuena, Surf. Sci, 2008; Hirunsit and Balbuena, Surf. Sci. 2009 Martinez de La Hoz, Callejas-Tovar, and Balbuena, Mol. Sim., 2009


Controlled growth of carbon structures

Carbon structures (e.g. carbon nanotubes) grow over metal nanocatalysts at high temperatures

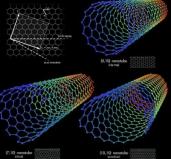
Robertson et al, Nanoletters, 2007

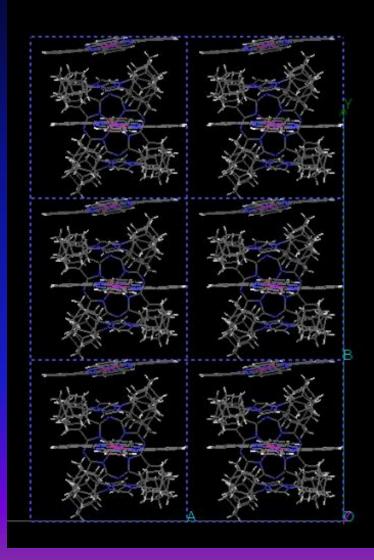

But a controlled growth is desired to form structures with specific properties



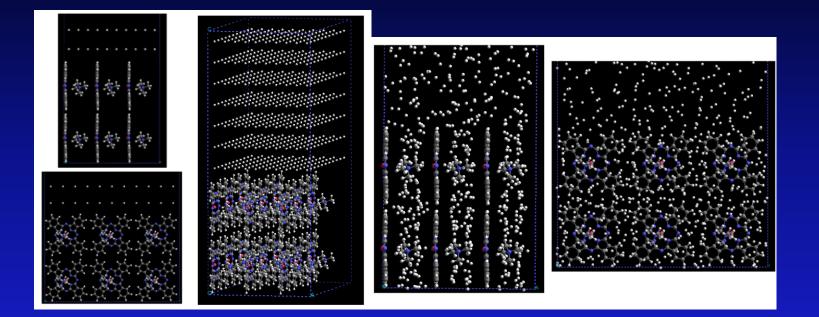
D. A. Gómez-Gualdrón andP. B. Balbuena, Nanotechnology,2009

Predictions and challenges


Graphene growth parallel to the (100) plane of Co

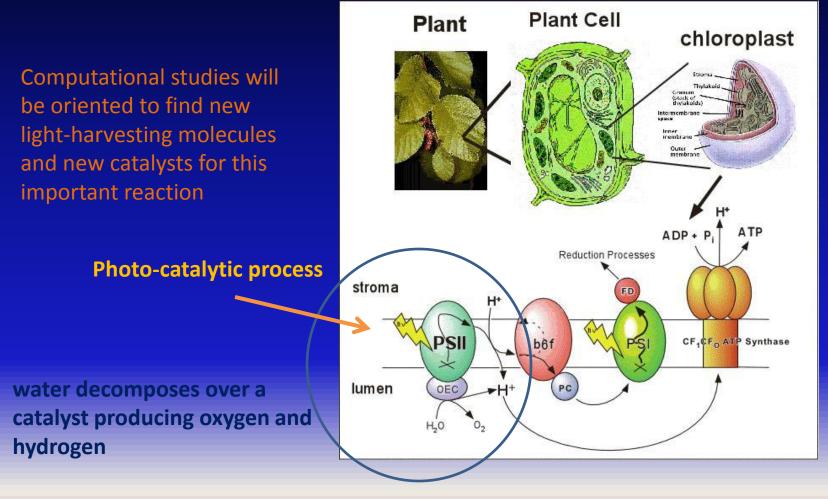

Formation of horizontally aligned semi-nanotubes

G. E. Ramirez-Caballero, J. C. Burgos, and P. B. Balbuena J. Phys. Chem. C (2009)


We are working towards predicting controlled nanotube helicity

New materials for hydrogen storage

We are testing new materials that promise good ability for hydrogen storage— Another fuel cell challenge


Predictions and challenges

Using molecular dynamics simulations we showed that certain layered materials have good storage capacity at moderate pressures and room temperature

Lamonte, Gomez-Gualdron, Cabrales-Navarro, Scanlon, Sandi, Feld, and Balbuena, J. Phys. Chem. B, 2008

Future projects: photo-catalysis

From members.tripod.com/beckysroom/pictures2.htm

Acknowledgements

Department of Energy/Basic Energy Sciences for financial support; grants DE-FG02-05ER15729; DE-FG02-06ER15836 and DE-FG36-07GO17019

Special thanks to

TEXAS A&M UNIVERSITY SUPERCOMPUTING FACILITY

SC time from NERSC, ARL, and TACC is also acknowledged

