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Design Goals

ePolyScat.D, a legacy serial code
Many separate executables
Coarse grained parallelization using shell scripts
Low memory usage
+ Heavy use of scratch disk files
« Communication between executables through disk
— Static array allocation
ePolyScat.E, distributed-memory parallel (N < 64)
— One executable
— Limited disk I/O using only the master node
Dynamic array allocation
All intermediate data held in core
Fortran 90, MP| message passing
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Basic Equations

The three dimensional Schrodinger equation for an
electron interacting with a molecule

Hy (r.0.9) = Ey (r.0.9)

Use expansion in the angular coordinates
(r00)=5 3 i
Differential equation for radial functions
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Distribute Grid on Processors

The problem is solved on a grid
Fulr)= fo = finlr) k=1K .M

Each of the N processor then has part of the grid
[LK M| [M+1K M, L [M, +1K M,]

* The grid has different step sizes in different regions
of the molecule

 Different values of /_,, are used in different regions

» Different numbers of points are allocated to each
processors
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Exchange Integrals

The exchange integral contains a term from the
Coulomb potential of the form
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Partial integrations are done independently on each
processor and the sums are obtained in VDiff using
MPI_SCAN
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Solution of the Inhomogeneous Diff Eq

* The solution of the differential equation can also be
written as a series of matrix multiplications

fN = TNTN—IL Tlefo

where each T, matrix resides on a different
processor.

* Unfortunately, in order to obtain numerical stability,
the computation of T, depends in part on the value of
the vector obtained on the k-1 processor.

* Current code in GHomo uses a pipeline for
parallelization.
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Test Runs on Hydra

Tests using 8, 16, 32, and 64 processors with 8
processors per node

Elapsed time ranged from 3 hours for 8 processors to
1 hour with 64

Production runs typically use 32 processors

Test jobs compute the photoionization of BF, in an
asymmetric planar geometry
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Partial Wave Expansion
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Memory Usage
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Distribution of Time in ePolyScat
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Speedup in ePolyScat
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Distribution of Time in Scat
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Speedup in Scat
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Photoionization of C4F4 Leading to the
C 2B, State of C4F4*
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Response to the Two Symmetric Modes
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CgFg Vibrational Branching Ratios
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Experiments of E. Poliakoff and coworkers, Louisiana State University
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Conclusions

» Parallelization has been achieved using up to 32 processors
» The combination of a parallel code and a significant
computational resource, i.e. hydra, has allowed us to consider
much larger systems
* To go beyond 32 processors
— Additional work on the bottleneck, GHomo
— Consider larger systems
+ systems with no symmetry
« electron correlation, i. e. multichannel

— Additional coarse grained parallelization, e. g. more that one
scattering energy at one time
e hitp://www.chem.tamu.edu/rgroup/lucchese/ePolyScat.E2.manual/manual.html
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