Understanding and designing materials and processes via computational chemistry and engineering

Diego Gómez-Gualdrón and Perla B. Balbuena
Department of Chemical Engineering and Materials Science and Engineering Program
Texas A&M University
College Station, TX 77843
balbuena@tamu.edu
http://che.tamu.edu/balbuena

TAMU Supercomputer Facility Annual Users Meeting, May 1, 2008

The Chemical Engineering Profession

This is traditional Chemical Engineering….
New focus

From chemical processes to chemical products:

- Nanotechnology

Lab on a chip

Molecular level knowledge

New chemical engineering designs require reaching the atomistic world

How?
Solving exact laws of nature

Numerical solutions involving realistic models now possible because of supercomputers
Examples of our research

- Design of new catalysts for alternative power sources
- Design of catalysts for fabrication of carbon nanotubes with specific diameter and chiralities

Fuel cell converts chemical energy into electricity

Challenge: **Catalyst design**
Platinum best catalyst, scarce and expensive!!!
Computational design of alternative materials already helping
Fuel cell nanocatalysts durability: how theory and simulation can help

P. B. Balbuena et al, Texas A&M

Because of the nanosize of the catalyst:
- activity is a function of particle size, shape
- enhanced effects of particle-substrate interactions
- dissolution of metal atoms in acid medium
- particle sintering

Our DFT studies suggest that:
1) Formation of a surface oxide film is the initial stage of metal dissolution
2) Alloys may shift the onset of oxide formation to more positive potentials

Experimental results: Wang, Kumar, Myers, ESSL, 2006

DFT studies show that certain Pt-based alloys have higher barriers for penetration of oxygen into the subsurface

- Pt-skin surfaces show better stability against dissolution than pure Pt surfaces
- A shift to more positive potentials is predicted for the onset of oxide growth for specific alloy compositions
- A clear correlation is established between alloy composition and stability
- Results of the surface segregation process (key for alloys) are obtained under reaction conditions
Design of catalysts for fabrication of single-wall carbon nanotubes

Potential applications: Medicine Desalinization of water Optical and electronic devices

Single-wall carbon nanotubes grow over catalysts

Images show simulated growth process over cobalt nanoparticles. Molecular dynamics methods were implemented by our group.

Challenge: Is it possible to produce tubes with specific diameters and chiralities?
Initial stages of growth

What defines the nanotube chirality during growth?

Interactions cluster-nascent cap, Role of catalyst shape, size, chemical composition, elucidated via first-principles calculations

Differences in rates of growth determined computationally

Goal:
Understanding chemistry of growth process will lead to a controlled design of the fabrication process
Summary

- Computational work yields firm guidelines for catalyst design

Collaborators:
- DOE supported grant for fuel cell catalysts is a multi-institutional project TAMU-United Technologies Company-Johnson Matthey Co.-Brookhaven National Lab
- DOE supported project for carbon nanotubes is in collaboration with Prof. Resasco from Southwest Nanotechnologies, Oklahoma

Acknowledgments

- Generous allocations of supercomputer time from Texas A&M University Supercomputing Facility are gratefully acknowledged

- Department of Energy/Basic Energy Sciences for financial support
Thanks for your attention !!!