Understanding and designing materials and processes via computational chemistry and engineering

> Diego Gómez-Gualdrón and Perla B. Balbuena Department of Chemical Engineering and Materials Science and Engineering Program Texas A&M University College Station, TX 77843 <u>balbuena@tamu.edu</u> <u>http://che.tamu.edu/balbuena</u>

TAMU Supercomputer Facility Annual Users Meeting, May 1, 2008

Molecular level knowledge

New chemical engineering designs require reaching the atomistic world

How? Solving exact laws of nature

Numerical solutions involving realistic models now possible because of supercomputers

Examples of our research

 Design of new catalysts for alternative power sources

 Design of catalysts for fabrication of carbon nanotubes with specific diameter and chiralities

DFT studies show that certain Pt-based alloys have higher barriers for penetration of oxygen into the subsurface

Pt-skin surfaces show better stability against dissolution than pure Pt surfaces

 A shift to more positive potentials is predicted for the onset of oxide growth for specific alloy compositions

 A clear correlation is established between alloy composition and stability

 Results of the surface segregation process (key for alloys) are obtained under reaction conditions

Design of catalysts for fabrication of single-wall carbon nanotubes

Potential applications: Medicine Desalinization of water Optical and electronic devices

Single-wall carbon nanotubes grow over catalysts

Images show simulated growth process over cobalt nanoparticles. Molecular dynamics methods were implemented by our group.

Challenge: Is it possible to produce tubes with specific diameters and chiralities?

Initial stages of growth

Interactions cluster-nascent cap, Role of catalyst shape, size, chemical composition, elucidated via first-principles calculations

What defines the nanotube chirality during growth?

Summary

- Computational work yields firm guidelines for catalyst design
- Collaborators:
 - DOE supported grant for fuel cell catalysts is a multi-institutional project TAMU-United Technologies Company-Johnson Matthey Co.-Brookhaven National Lab
 - DOE supported project for carbon nanotubes is in collaboration with Prof. Resasco from Southwest Nanotechnologies, Oklahoma

