A Short Introduction to Grid Computing

High Performance Computing Day

Texas A&M University May 2, 2007

Steve Johnson

Department of Mathematics and Institute for Scientific Computation Texas A&M University

What is a Computational Grid?

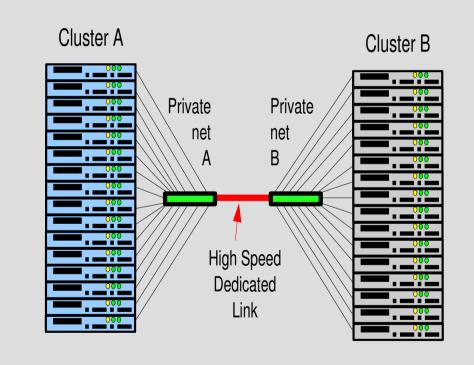
- Coordinates resources that are not subject to central control
- Uses open standards
- Non-trivial quality of service is achieved

Ian Foster, "What is the Grid? A Three Point Checklist"

Why use a grid?

- Cycle scavenging
- Event driven computing
- Cumulative cluster computing
- General purpose HPC
- Distributed Data Grids

Cycle Scavenging

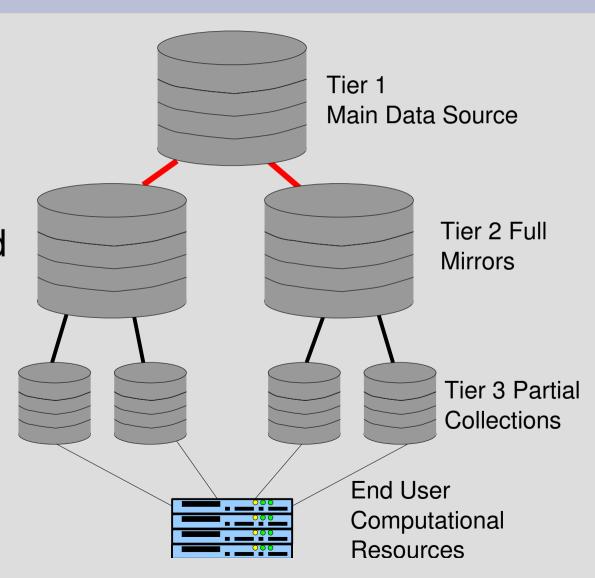

- Utilize "excess" cycles on an otherwise idle resource.
- Job output is not time critical
- SETI@home, Folding@home. Initiated by the owner of the resource.
- Condor (free), United Devices (not free)
 - Schedules jobs on idle workstations
 - Supports checkpoint/restart
 - Usually for single-node non-MPI jobs

Event Driven Computing

- Time critical computations
- Triggered by availability of input data
- Usually runs on HPC resources, not desktops
- A scheduler supporting preemption is desirable for busy resources
- Examples:
 - Weather models
 - Storm surge models
 - High energy physics data analysis

Cumulative Cluster Computing

- Run a single application using multiple, distinct resources
- MPI across two or more clusters
- Not frequently used
 - Difficult to schedule
 - Bandwidth issues
 - Connectivity issues:
 compute nodes are
 typically on a private
 network.

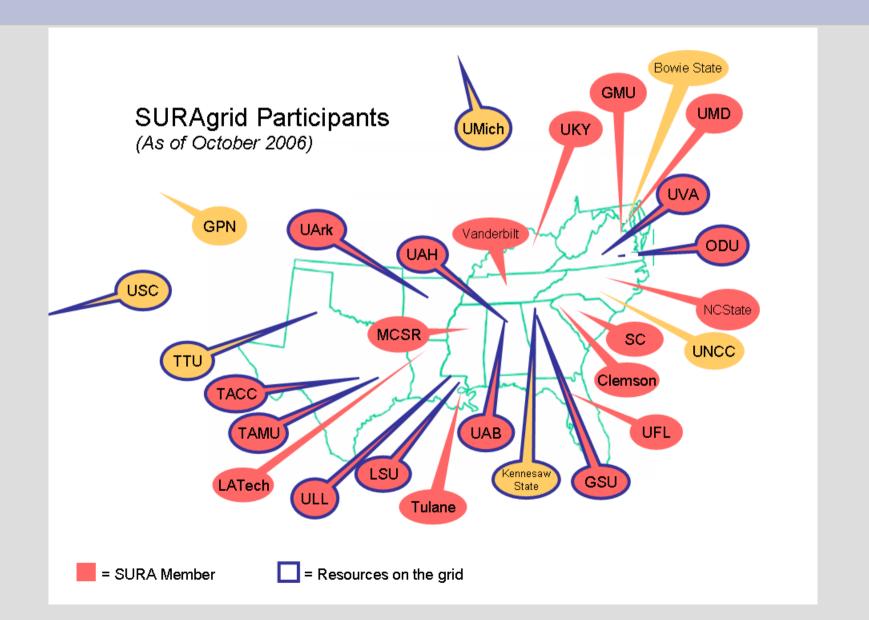

General Purpose HPC

- Use a grid metascheduler to match resources to the requirements of the job.
 - Maintains list of resources, their attributes, and their availability.

 Can also write your own metascheduler if you have knowledge of the resources.

Distributed Data Grids

- Not necessarily a grid solely for computation
- Provides access to data collections and repositories
- End users access lower tier data based on their project affiliations, proximity


Authentication Authorization

- Each user and each resource is issued a certificate
 - Public and private keys
 - User unlocks his/her private key w/ a password
- Trust fabric between grid participants
 - User can trust that the host is who it says it is and vice versa.
- Resource owners have ultimate control over who can access their systems

SURAgrid

- Southeastern Universities Research
 Association http://www.sura.org/suragrid
- Started as NSF NMI testbed in 2003
- Over 25 participating institutions
- Over 10 Tflops capacity and growing

SURAgrid Participants

SURAgrid Resources at A&M

Calclab

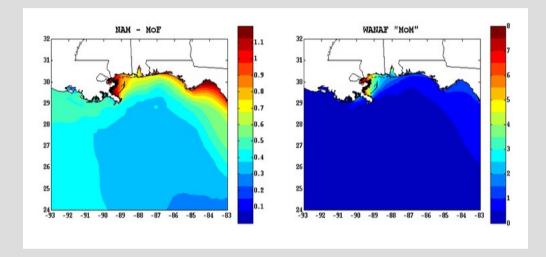
 191 Dell Optiplex desktops available during off hours. 281 cores, 2TFlops, 1GB mem per core, 3.5TB disk

Tensor

- 128 node Opteron cluster. 256 cores, 735GFlops,
 1GB-2GB mem per core, 3TB disk, GigE and IB (35 nodes)
- Immersive Visualization Center
 - 25' x 8' x 120 degrees rear-projected curved screen
 - Dell Precision 690, Dual Xeon, 32GB RAM,
 2xNVIDIA Quadro 4500

SURAgrid Resources at A&M

(coming soon)

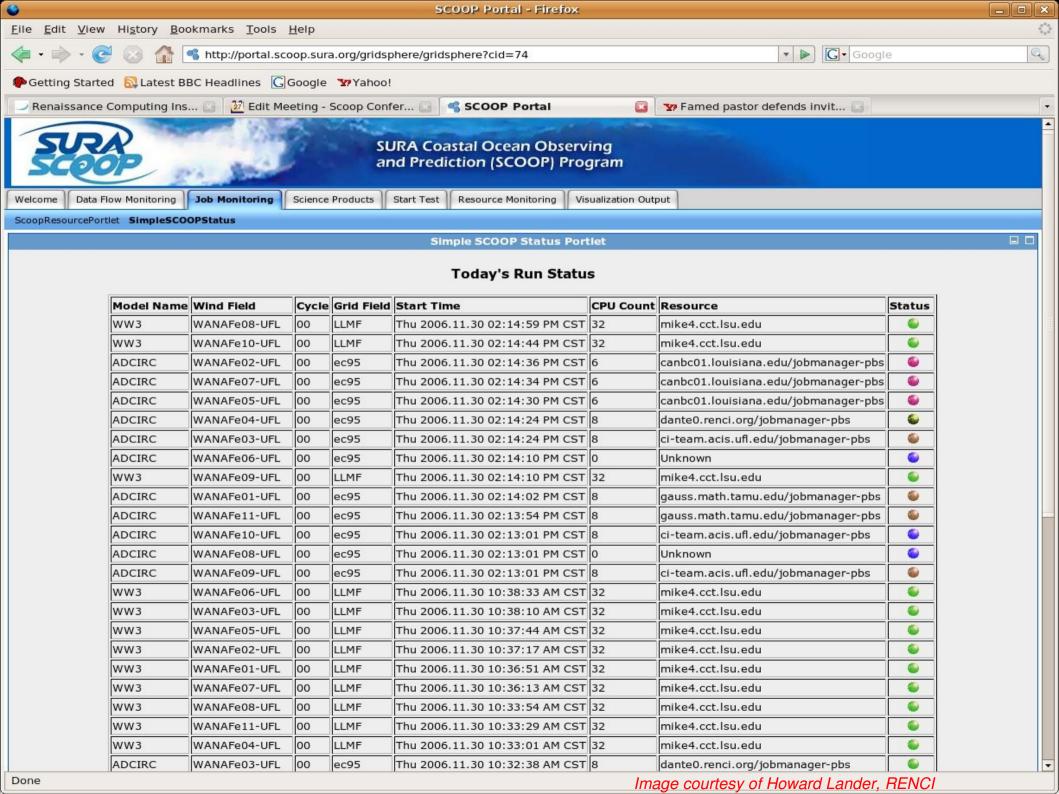

Hydra

- IBM p5/575+. 40 nodes, 32GB/node. 21TB
 GPFS disk, HPS, 640 total cores, 5TFlops.
- 20% of resources for SURAgrid per IBM/SURA partnership

TexAQS & Windfarm

- AMD and Intel clusters, 84 cores, 2GB/core, GigE, 410GFlops
- support SURA Coastal Ocean Observing and Prediction (SCOOP) program

- ADCIRC Coastal Circulation and Storm Surge Model
 - Part of SURA Coastal
 Ocean Observing and
 Prediction (SCOOP)
 program
 - Managed by RENCI
 - Data driven on-demand computing
 - Uses its own internal scheduler, portal


Left: ADCIRC max water level for 72 hr forecast starting 29 Aug 2005, driven by the "usual, always-available" ETA winds.

Right: ADCIRC max water level over ALL of UFL ensemble wind fields for 72 hr forecast starting 29 Aug 2005, driven by "UFL always-available" ETA winds.

Images credit: Brian O. Blanton, SAIC

ADCIRC info courtesy of Howard Lander, RENCI

- Wavewatch 3 event driven coastal modeling
 - Part of SCOOP project
 - LSU
- UcoMs Ubiquitous Computing and Monitoring System
 - Petroleum simulation
 - LSU
- Optimization for Threat Management in Urban Water Systems
 - User submission and simulated event triggered
 - NCSU

- Genome Alignment
 - GSU
- Bio-Sim: Bio-electric Simulator for Whole Body Tissues
 - ODU
- Dynamic BLAST
 - Use meta scheduler for distributing BLAST computations
 - UAB

- Grid enabling of WRF and MM5 to support SCOOP project
 - Weather models
 - Texas A&M
- Grid enabling of QXPPC2D
 - Quasicrystal phason-phonon coupling 2D model
 - wide parameter space
 - Texas A&M
- Distributed Computing Course at Old Dominion
 - CS 775/875: Distributed Systems
 - Spring 2007

SURAgrid at A&M The Next Steps

 SURAgrid is still under development, but is capable of running some time critical production jobs. E.g., ADCIRC.

 Looking for suitable grid computing apps from TAMU.

Application Development Early Considerations

- Match resources to your application
 - MPI, SMP, or single-threaded?
 - x86, x86_64, p5, sparc?
 - time requirements?
- Data movement
 - assume no long term storage on remote resource
 - bandwidth requirements?
 - total storage requirements?
 - temporary storage on compute nodes?

Contacts

- SURAgrid web sites
 - http://www.sura.org/suragrid
 - https://gridportal.sura.org

- Texas A&M contact
 - Steve Johnson
 - steve //AT// isc.tamu.edu
 - 979-845-4267

Questions?