Computational Fluid Dynamics

Turbulence

Motivations, Simulations and testing Hydra

Johannes Kerimo Department of Aerospace Engineering Texas A&M University

Research groups of Dr. Girimaji & Dr. Bowersox

Content

- Background (Motivation)
- Examples on numerical simulations we perform on Cosmos and Hydra.
- Speed comparisons between Cosmos and Hydra. Scalability checks.

Background What is Turbulence ?

da Vinci sketch

Turbulence Characteristics

- Chaotic, seemingly random behavior.
- Sensitive to initial conditions.
- Wide range of temporal and spatial scales.
- Rapid variation of pressure and velocity in space and time.
- Enhanced diffusion (mixing) and dissipation.

Background (Why Study Turbulence?)

Most flows occurring in nature and engineering applications are turbulent:

- Flows around vehicles
- Mixing of fuel and air in engines
- Mixing of the reactants in chemical reactors
- Mixing of fluids
- Geophysical and Astronomical phenomena
- The interior of living biological systems
- The intellectual challenge

Background

(Navier-Stokes & Boltzmann Platforms)

Turbulence can be described by both Navier-Stokes equations and the Boltsmann kinetic equation.

Navier-Stoke platform:

 $\partial_{t} \phi \phi = (0) \psi$ $\partial_{t} \phi \phi \phi \phi \phi \phi \phi$ $\partial_{t} \phi \phi \phi \phi \phi \phi \phi$ $\partial_{t} \phi \phi \phi \phi \phi \phi \phi$ $\partial_{t} \phi$ $\partial_{t} \phi \phi$ $\partial_{t} \phi$ ∂_{t

Simplified model of the Boltzmann kinetic equation:

$$(\mathfrak{F}_{tii}\partial \mathfrak{H}_{fii}) = \frac{fg}{\tau}$$

g = equilibrium state (or Maxwellian state)

where

$$ge = \rho \left(\int_{\pi}^{\lambda} \int_{\pi}^{\frac{3}{2}} -\lambda \left[\partial \phi \right] V_{W}^{22} W \right)$$

t = relaxation time (average time interval between successive particle collisions for the same particle)

$$\begin{pmatrix}
\rho \\
\rho U \\
\rho \psi f d = \mathbf{f} \quad \alpha \\
\rho W \\
E
\end{pmatrix}$$

$$\Psi_{\overline{\alpha}} + + (1, \mu, \nu) / 2) w^{222} T$$

$$ddE_{\mu} dv dw$$

$$E = 131$$

$$E = 1.31$$

$$222$$

$$\lambda RT$$

Numerical Simulations (A box of Turbulence)

Iso-vorticity surfaces

Kinetic method

Navier-Stoke method

<u>Grid resolution:</u> 128 x 128 x 128

Blunt Body Simulations

- Excitation of internal degrees of freedom (rotation, vibration, etc)
- Direct Numerical Simulations not feasible:
 - → Large Eddy Simulations + Modeling of small scales.
- Goal: Put forward a working model capable of capturing small scale physics.

Speed Comparisons

The tests where performed using a Fortran serial code. n = optimization level.

Cosmos	Hydra	
128 sec, n=0	13.5 sec, n=0	
5.7 sec, n=1	6.1 sec, n=2	
2.8 sec, n=2	5.8 sec, n=3	
2.4 sec, n=3	3.8 sec, n=4	
	4.1 sec, n=5	

Scalability tests

The tests where performed using a parallelized (MPI) Fortran code. n = optimization level, p = number of processors

Cosmos n=1	Cosmos n=2	Hydra n=2	Hydra n=4
1 (p=1)	1 (p=1)	1 (p=1)	1 (p=1)
2.02 (p=2)	2.04 (p=2)	1.92 (p=2)	1.94 (p=2)
2.97 (p=3)	3.18 (p=3)	2.95 (p=3)	2.90 (p=3)
3.96 (p=4)	3.5 (p=4)	3.86 (p=4)	3.86 (p=4)
4.91 (p=5)	4.4 (p=5)	8.18 (p=8)	7.9 (p=8)
5.90 (p=6)	6.09 (p=6)	17.2 (p=16)	15.0 (p=16)
		32.6 (p=32)	28.4 (p=32)
		62.1 (p=64)	62.3 (p=64)