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Diffusion-based inpainting models such as Stable Diffusion have 
shown strong potential for restoring occluded or damaged visual 
information in post-disaster imagery. However, fine-tuning these 
models remains computationally intensive, posing challenges for 
researchers aiming to deploy them at scale. Understanding how 
different accelerator architectures handle these workloads is essential 
for improving both efficiency and accessibility in large-scale geospatial 
analysis. 
This study benchmarks the fine-tuning performance of a diffusion-
based inpainting model across several modern AI accelerators, 
including NVIDIA A40, A100, and H200. We focus on evaluating 
throughput, runtime efficiency, and memory utilization to identify 
optimal hardware–software configurations for inpainting fine-tuning. 
Future research will expand this work to explore model convergence 
behavior, reconstruction quality, and energy efficiency—key factors for 
scaling generative models in real-world disaster analytics and large 
supercomputing environments.

Portions of this research were conducted with the advanced computing resources 
provided by Texas A&M High Performance Research Computing.
This work used the Delta system at the National Center for Supercomputing Applications 
through allocation CIV250023 from the Advanced Cyberinfrastructure Coordination 
Ecosystem: Services & Support (ACCESS) program, which is supported by National Science 
Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.

Dataset: ~6,500 geolocated street-view building images

- A100 is 1.6 - 1.7 x faster than A40
- H200 is 2.3–2.6× faster than A100 and 3.6–4.4× faster than A40
- A40 : at bs=16, VRAM = 60%, BW = 58%, primarily compute-limited
- A100 : at bs = 16, VRAM = 73%, BW = 70%, primarily compute-limited
- H200 : at bs = 32, VRAM = 99%, BW = 99%, while GPU util = 94%, 

memory bandwidth/capacity limited

Optimal Hardware-Software Configuration: For this workload, 
A40 and A100 are most efficient at batch size around 16 where 
GPU utilization is near 99 percent without saturating memory. 
On H200, batch sizes in the range of 16 to 24 are preferable, while 
batch size 32 saturates memory bandwidth and capacity and 
lowers training speed.

Evaluation Results

Input-Pipeline Optimizations on H200

Discussion
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GPU architecture

Cluster: NVIDIA A40/A100 GPU on the GRACE supercomputer at Texas 
A&M High Performance Research Computing (HPRC), and NVIDIA H200 
GPU on the Delta supercomputer at the National Center for 
Supercomputing Applications (NCSA) via the NSF ACCESS program.

Efficiency and Thermal Metrics 

NVIDIA A40 NVIDIA A100 NVIDIA H200

GPU Memory 48 GB GDDR6 40 GB HBM2 141 GB HBM3e
Memory 

Bandwidth 696 GB/s 1555 GB/s 4.8 TB/s

BFLOAT16
Tensor Core 149 TFLOPS 312 TFLOPS 362 TFLOPS

Architecture Ampere Ampere Hopper

Model: UNet (from Stable Diffusion v1.5) fine-tuned for location-aware 
inpainting

Future Direction : We will further optimize the H200 setup by 
profiling the pipeline with Nsight Systems/Compute to pinpoint 
dataloader and memory stalls, then applying targeted fixes 
(caching, prefetching, data-format tweaks).
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H200 bs16 
(baseline) 2.52 40.4 0.713 99.25 47.03 58.33 661 58.51 0.0038 0.0611

H200 bs16 
(optimized) 2.65 42.4 0.679 99.29 35.02 41.2 630 57.57 0.0042 0.0673

Δ (%) +5% +5% -4.8% +0.04% -25.55% -29.4% -4.67% -1.6% +10.2% +10.2%

- Optimized the input pipeline and memory transfers by using a 
pinned-memory DataLoader with more workers and prefetching, 
non-blocking host-to-device copies, and channels_last tensors. 

- The optimized run is ~5% faster (steps/sec), ~5% higher 
throughput, and ~10% more energy-efficient, while drawing ~31 
W less on average
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A40 A100 H200
4 280 228 550
8 283 283 602

16 286 286 661
32 - - 649

A40 A100 H200
4 66.4 57.5 49.4
8 66.3 58.4 53.0

16 51.4 57.7 58.5
32 - - 50.9

A40 A100 H200
4 98.87 90.27 94.96
8 99.78 92.59 98.87

16 99.92 99.34 99.25
32 - - 93.69

A40 A100 H200
4 4.12 2.57 1.13
8 3.50 2.07 0.85

16 3.13 1.84 0.71
32 - - 0.68

Measured via NVML API (steady-state average)
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