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based inpainting model across several modern Al accelerators,
including NVIDIA A40, A100, and H200. We focus on evaluating R A40  A100  H200
throughput, runtime efficiency, and memory utilization to identify 4 280 228 290 4 06.4 272 49.4

timal hardware—software configurations for inpainting fine-tunin ° 208 20 e ° °9-3 >0 >3
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Future research will expand this work to explore model convergence 32 _ i 649 39 i i 50.9
behavior, reconstruction quality, and energy efficiency—key factors for Measured via NVML API (steady-state average)

scaling generative models in real-world disaster analytics and large Discussion
supercomputing environments.

- A100is 1.6-1.7 xfaster than A40

Method - H200 is 2.3-2.6x faster than A100 and 3.6-4.4 x faster than A40

- A40: at bs=16, VRAM = 60%, BW = 58%, primarily compute-limited

- A100:atbs=16, VRAM =73%, BW =70%, primarily compute-limited
- H200: at bs =32, VRAM =99%, BW =99%, while GPU util = 94%,

Dataset: ~6,500 geolocated street-view building images

Model: UNet (from Stable Diffusion v1.5) fine-tuned for location-aware memory bandwidth/capacity limited
iInpainting Input-Pipeline Optimizations on H200
Cluster: NVIDIA A40/A100 GPU on the GRACE supercomputer at Texas RO T b D e e Bk Bl I el L R B R
, _ /Sec /Sec (h) util(%) util(%) util(%) (W) (°C) sec/W sec/W
A&M High Performance Research Computing (HPRC), and NVIDIA H200 —
GPU on the De.ta Supercomputer at the National Center for loasaline 2.52 40.4 0.713 99.25 47.03 58.33 661 58.51 0.0038 0.0611
Supercomputing Applications (NCSA) via the NSF ACCESS program. (Hzgo ?81(; 265 42.4 0679 99.29  35.02  41.2 630 57.57 0.0042 0.0673
optimize
GPU architectu re A (%) +5% +5% -4.8% +0.04% -25.55% -29.4% -4.67% -1.6% +10.2% +10.2%
- Optimized the input pipeline and memory transfers by using a
NVIDIA A40 NVIDIA A100 NVIDIAH200 pinned-memory DataLoader with more workers and prefetching,
non-blocking host-to-device copies, and channels_last tensors.
GPU Memory 48 GB GDDRG6 40 GB HBM2 141 GB HBM3e - The optimized run is ~5% faster (steps/sec), ~5% higher
Mem(?ry 596 GB/s 1EEE GB/s 4 8TB/s throughput, and ~10% more energy-efficient, while drawing ~31
Bandwidth W less on average
BFLOATT6 149 TFLOPS 312 TFLOPS 362 TFLOPs | Conclusion/Future Direction

Tensor Core : : : .
Optimal Hardware-Software Configuration: For this workload,

Architecture Ampere Ampere Hopper .. .
P P PP A40 and A100 are most efficient at batch size around 16 where
. GPU utilization is near 99 percent without saturating memory.
Evaluation Results On H200, batch sizes in the range of 16 to 24 are preferable, while
Training Speed (Steps/sec) Throughput (Images/sec) batch size 32 saturates memory bandwidth and capacity and
N o et lowers training speed.
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P e R e Future Direction : We will further optimize the H200 setup by
g, g 25.49 profiling the pipeline with Nsight Systems/Compute to pinpoint
. 2.80 72‘20 dataloader and memory stalls, then applying targeted fixes
g 2.53 7 _ 15.63 i '
8.l s - : 11_133.“7 (caching, prefetching, data-format tweaks).
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GPU Utilization (steady-state mean) Time for 20 Epochs (hours)
A40 A100 H200 A40 A100 H200
98.87 90.27 94.96 4 4.12 2.57 1.13
8 99.78 92.59 98.87 8 3.50 2.07 0.85 Jooho.kim@tamu.edu
16 99.92 99.34 99.25 16 3.13 1.84 0.71
32 - - 93.69 32 - - 0.68
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