
Accelerating Inpainting: Benchmarking Fine-Tuning Performance

Introduction

Method

References/Acknowledgements

Conclusion/Future Direction

Jooho Kim1, Sunyoung Park2 and Pranav Handa3

1 Institute for Disaster Resilient Texas (IDRT), Texas A&M University, College Station, TX
2 Department of Computer Science and Engineering, Texas A&M University, College Station, TX
3 Department of Computer Science and Engineering, Texas A&M University, College Station, TX

Diffusion-based inpainting models such as Stable Diffusion have
shown strong potential for restoring occluded or damaged visual
information in post-disaster imagery. However, fine-tuning these
models remains computationally intensive, posing challenges for
researchers aiming to deploy them at scale. Understanding how
different accelerator architectures handle these workloads is essential
for improving both efficiency and accessibility in large-scale geospatial
analysis.
This study benchmarks the fine-tuning performance of a diffusion-
based inpainting model across several modern AI accelerators,
including NVIDIA A40, A100, and H200. We focus on evaluating
throughput, runtime efficiency, and memory utilization to identify
optimal hardware–software configurations for inpainting fine-tuning.
Future research will expand this work to explore model convergence
behavior, reconstruction quality, and energy efficiency—key factors for
scaling generative models in real-world disaster analytics and large
supercomputing environments.

Portions of this research were conducted with the advanced computing resources
provided by Texas A&M High Performance Research Computing.
This work used the Delta system at the National Center for Supercomputing Applications
through allocation CIV250023 from the Advanced Cyberinfrastructure Coordination
Ecosystem: Services & Support (ACCESS) program, which is supported by National Science
Foundation grants #2138259, #2138286, #2138307, #2137603, and #2138296.

Dataset: ~6,500 geolocated street-view building images

- A100 is 1.6 - 1.7 x faster than A40
- H200 is 2.3–2.6× faster than A100 and 3.6–4.4× faster than A40
- A40 : at bs=16, VRAM = 60%, BW = 58%, primarily compute-limited
- A100 : at bs = 16, VRAM = 73%, BW = 70%, primarily compute-limited
- H200 : at bs = 32, VRAM = 99%, BW = 99%, while GPU util = 94%,

memory bandwidth/capacity limited

Optimal Hardware-Software Configuration: For this workload,
A40 and A100 are most efficient at batch size around 16 where
GPU utilization is near 99 percent without saturating memory.
On H200, batch sizes in the range of 16 to 24 are preferable, while
batch size 32 saturates memory bandwidth and capacity and
lowers training speed.

Evaluation Results

Input-Pipeline Optimizations on H200

Discussion

Accelerating Inpainting: Benchmarking Fine-Tuning Performance, Kim et al. (2025)

GPU architecture

Cluster: NVIDIA A40/A100 GPU on the GRACE supercomputer at Texas
A&M High Performance Research Computing (HPRC), and NVIDIA H200
GPU on the Delta supercomputer at the National Center for
Supercomputing Applications (NCSA) via the NSF ACCESS program.

Efficiency and Thermal Metrics

NVIDIA A40 NVIDIA A100 NVIDIA H200

GPU Memory 48 GB GDDR6 40 GB HBM2 141 GB HBM3e
Memory

Bandwidth 696 GB/s 1555 GB/s 4.8 TB/s

BFLOAT16
Tensor Core 149 TFLOPS 312 TFLOPS 362 TFLOPS

Architecture Ampere Ampere Hopper

Model: UNet (from Stable Diffusion v1.5) fine-tuned for location-aware
inpainting

Future Direction : We will further optimize the H200 setup by
profiling the pipeline with Nsight Systems/Compute to pinpoint
dataloader and memory stalls, then applying targeted fixes
(caching, prefetching, data-format tweaks).

Run Step
/Sec

Img
/Sec

Time
(h)

GPU
util(%)

Mem BW
util (%)

VRAM
util (%)

Power
(W)

Temp
(°C)

Steps/
sec/W

Images/
sec/W

H200 bs16
(baseline) 2.52 40.4 0.713 99.25 47.03 58.33 661 58.51 0.0038 0.0611

H200 bs16
(optimized) 2.65 42.4 0.679 99.29 35.02 41.2 630 57.57 0.0042 0.0673

Δ (%) +5% +5% -4.8% +0.04% -25.55% -29.4% -4.67% -1.6% +10.2% +10.2%

- Optimized the input pipeline and memory transfers by using a
pinned-memory DataLoader with more workers and prefetching,
non-blocking host-to-device copies, and channels_last tensors.

- The optimized run is ~5% faster (steps/sec), ~5% higher
throughput, and ~10% more energy-efficient, while drawing ~31
W less on average

Jooho.kim@tamu.edu

A40 A100 H200
4 280 228 550
8 283 283 602

16 286 286 661
32 - - 649

A40 A100 H200
4 66.4 57.5 49.4
8 66.3 58.4 53.0

16 51.4 57.7 58.5
32 - - 50.9

A40 A100 H200
4 98.87 90.27 94.96
8 99.78 92.59 98.87

16 99.92 99.34 99.25
32 - - 93.69

A40 A100 H200
4 4.12 2.57 1.13
8 3.50 2.07 0.85

16 3.13 1.84 0.71
32 - - 0.68

Measured via NVML API (steady-state average)

	Slide Number 1

