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High-resolution imagery is essential for 
disaster response and recovery, where 
clear visuals guide evacuation routes, flood 
mapping, and infrastructure repair. 
Without reliable data, responders risk 
delays and misallocation of resources. In 
Texas alone, more than 500 under-
resourced communities lack updated 
floodplain information and monitoring 
systems, leaving them dependent on low-
quality community-shared photos or 
videos. Enhancing these images directly 
supports faster, more accurate decision-
making during floods and other hazards.

Challenge: Real-ESRGAN is a state-of-
the-art AI model for restoring and 
enhancing degraded images. Running 
inference on a single dataset can require 
more than a full day of compute time, with 
sustained GPU utilization. This high cost 
makes it difficult to integrate into time-
sensitive disaster workflows, where rapid 
results are critical. While powerful 
accelerators—ranging from high-memory 
GPUs to next-generation processors and 
wafer-scale engines—are available, most 
prior studies evaluate model design or 
hardware specifications in isolation. 
This leaves a gap in understanding how to 
best deploy these models at scale.

Approach/Impact: Develop a portable 
benchmarking pipeline for Real-ESRGAN 
that runs seamlessly across different 
accelerator platforms. Measure 
performance tradeoffs in runtime, 
throughput, memory use, and efficiency 
under varying dataset sizes. Use both 
image and video datasets relevant to 
disaster scenarios to ensure results reflect 
real-world conditions. The outcome is 
faster delivery of clearer, more actionable 
imagery to disaster-impacted 
communities—supporting situational 
awareness, resource allocation, and long-
term resilience planning.
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GPU Architectures

Dataset:  Data in the form of text, 
images, and videos is first collected and 
stored in a shared platform and 
geodatabase (DRIP). Then, a data analysis 
step using a Laplacian filter separates 
high- and low-resolution inputs; the high-
resolution data are returned to the 
database, while the low-resolution inputs 
are processed through the super-resolution 
upscaling pipeline.
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Model L40S A100 H200 Bow-2000

Architectur
e Ada Lovelace Ampere Hopper Bow IPU 

(3nm)

MEMORY

Capacity 48 GB HBM 80 GB 
HBM2

141 GB 
HBM3 14.4 GB*

Bandwidth 864 GB/s 2.04 TB/s 4.8 TB/s 47.5 TB/s*

PERFORMANCE

FP16 
(TFLOPS) 733* 624 1,979 250*

SYSTEM SPECS

Power 
(TDP) 350W 400W 700W 1500W

Interconne
ct PCIe 4.0 NVLink 3 NVLink 4 IPU-Link 

2Tbps

* Bow-2000 at full saturation 4 IPU processors, 16 tiles

Results

Future/in-development

IPU's offer an interesting architecture for this type of 
high-throughput and low-memory training. While 
performance gains were significant in jumping to higher 
memory bandwidths in the H200 compared to A100, 
there is significantly more wasted VRAM. At full 
saturation of the Bow-2000 engine, there is even more 
throughput potential without waste.
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H200 not only trains faster and runs cooler but 
also delivers better efficiency per watt, despite 
drawing more total power. The expanded VRAM 
and improved throughput make it a stronger 
choice for large-scale AI model training.
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