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High-resolution imagery is essential for
disaster response and recovery, Wwhere
clear visuals guide evacuation routes, flood
mapping, and infrastructure repair.

Data uuallt',r

. | Assessment @» o
Without reliable data, responders risk f =
delays and misallocation of resources. In =

_: [ aplacian }7 wunn :
Texas alone, more than 500 under-|: :: g Filter S i
iti . DataShare Platform& : _.@ @ z

resourced communities lack updated

floodplain information and monitoring ||  Geodatabase N — .
systems, leaving them dependent on low- | : T L e REOUMON WoALING
quality community-shared photos or|: P f
videos. Enhancing these images directly |  text/imagefvideo Super-ﬁesnlutlun _, i s
supports faster, more accurate decision- | : UpscallngMudel {:} RPthraunEd A100 & 200
making during floods and other hazards. e P ea-ESRGAN :

= ! ', _ Time to Complete 200k Iterations
Challenge: Real-ESRGAN is a state-of-fi g =& 5 | | _h@_ g i
the-art AI model for restoring andj: * & ¥ :E]: L
enhancing degraded images. Running | i L

Disaster related  Fine-tuning Fine-tuned

inference on a single dataset can require . Pt
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more than a full day of compute time, with
sustained GPU utilization. This high cost
makes it difficult to integrate into time-
sensitive disaster workflows, where rapid
results are critical. While powerful
accelerators—ranging from high-memory PROFESSIONAL ENTERPRISE ENTERPRISE = RESEARCH
GPUs to next-generation processors and
wafer-scale engines—are available, most
prior studies evaluate model design or
hardware  specifications in isolation.
This leaves a gap in understanding how to
best deploy these models at scale.
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Training Speed Comparison

IPU's offer an interesting architecture for this type of
1.8x faster high-throughput and low-memory training. While
‘ .80 far/e performance gains were significant in jumping to higher
memory bandwidths in the H200 compared to A100,
there is significantly more wasted VRAM. At full
saturation of the Bow-2000 engine, there is even more
| throughput potential without waste.
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