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PhySiViT : A Physics Simulation Vision Transformer

Introduction

Training Considerations

Objective

Scientific simulations generate petabytes of complex, multi-

channel, time-evolving data. Current machine learning models

are narrow, domain-specific, and unable to generalize across

physics types.

Vision transformers (ViTs) have revolutionized natural image

understanding via models like CLIP and DINO, but no

equivalent foundation models exist for scientific

spatiotemporal data
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To train a foundational image encoder model (PhySiViT) for

scientific spatiotemporal data, enabling downstream tasks such as

classification, temporal forecasting, and embedding

visualization.

Figure 1: The following simulation classes were selected from The 

Well, which resulted in 7M 2D images to train the Vision 

Transformer.

PhySiViT is better at physics-related tasks, such as temporal

prediction, and is comparable in general classification tasks,

particularly silhouette scores represent clearer cluster of

physical simulation domains in embedding space.

Model Accuracy (↑) R2 (↑) MSE (↓)
Silhouette 

(↑)

PhySiViT 0.98 0.33 0.57 0.23

DINOv2 

Giant
0.99 0.23 0.62 0.20

CLIP-ViT

Large
0.99 0.22 0.63 0.19

Training PhySiViT on the Cerebras CS-3 system achieved the

fastest throughput; processing ~70 k images in only 0.20

hours, compared with 2.50 hours on an NVIDIA H100 GPU

and 14.03 hours on an AMD EPYC CPU.

PhySiViT was trained on approximately 7 million images from

The Well using a Cerebras CS-3, reaching convergence in

22.83 hours with a batch size of 1,470.

Compute Device Total Time (hours) 

AMD EPYC 7702P (CPU) 14.03

NVIDIA H100 80GB (GPU) 2.50

Cerebras CS-3 0.20
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Helmholtz equations
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Training Speed Comparison (Single Device with 70 k Images)

For downstream task evaluation:

➢ Classification: logistic regression for domain labels

(accuracy).

➢ Temporal forecasting: ridge regression for next timestep

prediction (R²/MSE).

➢ Embedding visualization: silhouette score for domain

separation.

PhySiViT DINO V2 CLIP

Results

PhySiViT HuggingFace The Well

PhySiViT uses a standard Huge Vision Transformer

architecture[2], summarized below. Custom augmentations, such

as temporal splits and color schemes, were used on input data.
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Comparative Evaluation Models Compared
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evaluated on 

classification, forecasting 

and embedding quality 

tasks

Figure 3: Principal-component visualization of learned embeddings

Figure 2: Model training and evaluation pipeline

PhySiViT outperforms large natural-image foundation models

on physics-relevant tasks, with notable gains in temporal

forecasting and embedding separability that highlight the value

of domain-specific pretraining.
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