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To train a foundational image encoder model (PhySiViT) for Figure 3: Principal-component visualization of learned embeddings

scientific spatiotemporal data, enabling downstream tasks such as

Training Considerations

Training PhySiViT on the Cerebras CS-3 system achieved the

classification, temporal forecasting, and embedding

visualization.

fastest throughput; processing ~70 k 1mages in only 0.20
hours, compared with 2.50 hours on an NVIDIA H100 GPU
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e spatiotemporal
simulations

The Well using a Cerebras CS-3, reaching convergence in

22.83 hours with a batch size of 1,470.
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Image Processing

Training Speed Comparison (Single Device with 70 k Images)

Compute Device Total Time (hours)
Viscoelastic instability Shear Flow Acoustic Scattering c . Grayscale Colormap AMD EPYC 7702P (CPU) 14.03
olor Augmentation Applied
NVIDIA H100 80GB (GPU) 2.50
Cerebras CS-3 0.20

Conclusion & Future Work

PhyS1V1T 1s better at physics-related tasks, such as temporal
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prediction, and 1s comparable 1n general classification tasks,
particularly silhouette scores represent clearer cluster of

physical simulation domains in embedding space.
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