Finding Negative Vacancy Formation Energies in Amorphous Silicon

By Mack Cleveland

Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843

Collaborators:
Dr. Michael Demkowicz
Dr. Peng Chen
Introduction

• Goal: determine whether Amorphous Silicon has negative vacancy formation energies.
• Vacancies control diffusion in solids
• Vacancy formation energies
• Amorphous solids
Methodology

• Using LAMMPS software to conduct atomic simulations of amorphous silicon structures
• ADA Cluster at Texas A&M HPRC
• 20 cores with 2560 MB for between 20 and 100 Hrs.
Project Overview

1. Melt and quench simulations
2. Preliminary vacancy formation energy calculation
3. Generalized atom removal energy calculations
4. Repeated calculations for varied simulation size
5. Self Interstitial formation energy calculations
Results

• Vacancy Formation Energy Histograms

Performing algorithm on a-Si structures of 1000 atoms cooled at rates of 10^{10} and 10^{12}K/s.
Results

- Atom removal Energy vs Atom Cohesion Energy
Results

- ARE calculations for varied sizes
Results

Self Interstitial formation Energies

Amorphous silicon quenched at 10^{-10} K/S

Crystal with one self interstitial

Amorphous silicon quenched at 10^{-12} K/S
Conclusion

- Found that Amorphous Silicon has negative vacancy formation energies.
- Results suggest negative vacancy formation energy is due to relaxation in structures.
- A prior experimental study shows bulk amorphous silicon continuously relaxing into a crystalline form 1.
- More research is required to fully understand this phenomenon.

Acknowledgements

• Dr. Michael Demkowicz and Dr. Peng Chen

• Department of Energy, National Nuclear Security Administration. Award No. DE-NA0003857

• Center for Research Excellence of Dynamically Deformed Solids

• Online REU Program at Texas A&M

• HPRC at Texas A&M